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1. INTRODUCTION

Let $\mathbb{H}$ be the upper half-plane in $\mathbb{C}$ endowed with the Poncar\’e metric $ds^{2}=(dx^{2}+$

$dy^{2})/y^{2}$ and let $\Gamma_{1}=PSL(2,\mathbb{Z})$ be the modular group

$PSL(2, \mathbb{Z})=\{(\begin{array}{ll}a bc d\end{array})$ : $a,$ $b,$ $c,$ $d\in \mathbb{Z}$ , $ad$ - $bc$ $=1\}/\{I, -I\}$

identified with the set of linear fractional transformations $z\mapsto(az+b)/(cz+d)$ as usual.
We consider the so-called continued fraction transformation (Gauss transformation) $T_{G}$

defined by $T_{G}$ : $(0,1)arrow(0,1)$ , : $x\mapsto 1/x-[1/x]$ . It is well-known that the ergodic theory
of $T_{G}$ is closely related to the dynamical theory of the geodesic flow on the modular surface
$M_{1}=\mathbb{H}/\Gamma_{1}$ as well as the metric theory of continued fractions ([14], [15], [16], [25], [32]).
Now we pay attention to the fact that the modular surface $M_{1}$ has two different aspects.
The first aspect is rather classical. We consider $M_{1}$ as an example of Riemann surface
of finite area (possibly with cusps and elliptic singularities). The second one is slightly
fancy. We consider $M_{1}$ as the moduli space of complex structures of surface of genus 1.
So there are at least two directions to generalize $M_{1}$ according to which aspect we look
at. The aim of the article is to explain about the generalizations focusing the role of the
continued fraction transformation.

In the case of the modular surface the crucial point is the existence of a natural one-
to-one correspondence among the following three sets.

$\bullet$ $CG(M_{1})$ : the totality of oriented prime closed geodesics $\gamma$ in $M_{1}$ .
$\bullet$ $HC(\Gamma_{1})$ : the totality of primitive hyperbolic conjugacy classes $c$ in $\Gamma_{1}$ , i.e. $c$ can be

written as $c=(h\rangle=\{g^{-1}hg : g\in\Gamma_{1}\}$ , where $h$ is a primitive hyperbolic element in $\Gamma_{1}$ .
$\bullet$ $PO(T_{G}^{2})$ : the totality of prime periodic orbits $\tau$ of $T_{G}^{2}$ , i.e. $\tau$ can be regarded as the

set of the distinct points $\tau=\{x, T_{G}^{2}x, \ldots , T_{G}^{2(p-1)}x\}$ , where $x$ is a periodic point of $T_{G}^{2}$

and $p$ is the least period of $x$ .
To be more precise, assume that $\gamma\in CG(M_{1}),$ $c\in HC(\Gamma_{1})$ , and $\tau\in PO(T_{G}^{2})$ are
corresponding one another. Let $l(\gamma)$ be the least period of $\gamma,$ $\lambda(c)$ , the maximal eigenvalue
of $h\in c$ as a matrix and $N(\tau)=J(T_{G}^{2p})(x)=|DT_{G}^{2p}(x)|$ . Note that for each periodic
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point $x\in\tau$ there exists a neighborhood $U_{x}$ of $x$ and an hyperbolic element $h_{x}\in\Gamma_{1}$ such

that $T_{G}^{2p}=h_{x}$ in $U_{x}$ . In addition we can easily show that $h_{x},$
$\ldots,$ $h_{T_{G}^{2(p-1)}x}$ belong to the

same conjugacy class. Under the notation above, the corresponding elements satisfy

(1.1) $\exp(l(\gamma))=\lambda(c)=N(\tau)$ .

The one-to-one correspondence enables us to express the Selberg zeta function in terms
of periodic orbits of $T_{G}^{2}$ . In order to see this, we recall the definition of the Selberg zeta

function. Let $U(N)$ be the unitary group of degree $N$ and $\rho$ : $\Gamma_{1}arrow U(N)$ a unitary

$representationas$
. The Selberg zeta function for $\Gamma_{1}$ with representation $\rho$ is formally defined

$Z(s, \rho)=\prod_{k=0}^{\infty}\prod_{c\in HC(\Gamma_{1})}\det(I_{N}-\rho(c)e^{-(s+k)l(c)})$ ,

where $s$ is a complex variable and $\det(I_{N}-\rho(c)e^{-(\epsilon+k)l(c)})$ is regarded as $\det(I_{N}-$

$\rho(h)e^{-(s+k)l(c)})$ for some $h\in c$ since the determinant is a conjugacy invariant. The Selberg
$L$ function for $\Gamma_{1}$ with $\rho$ is also formally defined as

$L(s, \rho)=\frac{Z(s+1,\rho)}{Z(s,\rho)}=\prod_{c\in HC(\Gamma_{1})}\det(I_{N}-\rho(c)e^{-sl(c)})^{-1}$ .

By virtue of (1.1), a formal calculation leads us to the identity:

(1.2) $Z(s, \rho)=\exp(-\sum_{k=0}^{\infty}\sum_{n=1}^{\infty}\frac{1}{n}\sum_{x:T_{G}^{2n}x=x}$ trace$(\rho(T_{G}^{2n}|_{x})J(T_{G}^{2n})(x)^{-(s+k)})$ ,

where $T_{G}^{2n}|_{x}$ denotes the hyperbolic element in $\Gamma_{1}$ which coincides with $T_{G}^{2n}$ in a neighbor-

hood of $x$ . Note that the formal products and formal series in the above are absolutely
convergent in the half-plane ${\rm Re} s>1$ and determine analytic functions. Classically the
Selberg zeta function is studied via the Selberg trace formula (see [7], [8]). The equation

(1.2) suggests us an alternative approach to the Selberg zeta function via thermodynamic

formalism for $T_{G}^{2}$ (see [31]). In fact, Pollicott [25] obtained some results on the distribution

of closed geodesics on the modular surface and quadratic irrationals and Mayer [16] gave
a determinant representation of the Selberg zeta function in terms of transfer operator
with complex parameter associated to $T_{G}$ . Speaking of ergodic theoretic approach to the

distribution of closed geodesics, there is a monumental work by Margulis in 1970 con-
cerned with asymptotics of number of closed trajectories of Anosov systems on a compact

manifold (see [12]). Note that the methods in [12] is different from ours but it is also re-
marked in [12] that those methods are applicable to the geodesic flows over non-compact
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Riemannian manifolds of finite volume with negative sectional curvature $(M_{1}$ is of finite
area but not compact and has an elliptic singularity). On the other hand, Parry [22]
and Parry and Pollicott [23] (see also [24]) employ another approach via zeta functions
in analytic number theory to obtain the prime number type theorem for closed orbits of
Axiom A flows on compact manifolds. They represents Axiom A flows as suspension flows
over appropriately chosen subshifts of finite type and studied the analytic properties of
some zeta functions by thermodynamic formalism.

Next let us consider the two way of generalization of $M_{1}$ in view of the equation (1.1).
In the first generalization, we want to extend the results to the case when $\Gamma_{1}$ is replaced by
any co-finite Fuchsian group F. If we have a map playing the same role as $T_{G}^{2}$ for a general
co-finite Fuchsian group, we can follow the arguments in [15]. Fortunately we know that
Bowen and Series construct in [3] a one-dimensional Markov map whose action on an
appropriately chosen subset in $\mathbb{R}$ is orbit equivalent to that of $\Gamma$ on RU $\{\infty\}$ . Inspired by
[15], [16], and [23], Morita [19] considered some renormalized Boewn-Series map instead of
subshift of finite type and studied a unified approach to the determinant representation
of the Selberg zeta function and the prime number type theorem for general co-finite
Fuchsian groups via thermodynamic formalism. We have to note that there is a work
of Pollicott [26] in the case when $\Gamma$ is co-compact and a similar problem for co-compact
Keinian groups are treated in [30].

In the second generalization, we consider the moduli space $M_{9}$ of genus $g\geq 2$ instead
of $M_{1}$ . It is known that $M_{9}$ has a similar structure to $M_{1}$ . For example, the Teichm\"uller

space of genus $g$ , the Teichm\"uller modular group, and the Teichm\"uller geodesic flow play
the roles of the upper-half plane $\mathbb{H}$ , the modular group $PSL(2, \mathbb{Z})$ , and the geodesic flow
of $M_{1}$ , respectively. Note that Masur [13] and Veech [34] solved the Keane Conjecture
(see [9], [33]) independently by showing the ergodicity of the Teichm\"uller geodesic flow
with respect to a canonical invariant measure. To the question “what plays the role of
$T_{G}^{2}$ in the case of $M_{g}$ ?” we do not have a satisfactory answer at present while the Rauzy
induction and its renormalizations are expected to play the role of $T_{G}^{2}$ for Teichm\"uller

modular group (see [29], [34], [35], [36], [37], [38], and [40]). Selberg
Keeping the above mentioned facts in mind, we explain about the first generalization

in Section 2. We mainly take up the determinant representation of Selberg zeta functions
for co-finite Fuchsian groups with representation $\rho$ . Since we already obtained such a
result in [19] in the case when $\rho$ is trivial, we just give some ideas to handle nontrivial
$\rho$ . The section include some unpublished results but they might be folklore in nowadays.
Section 3 is devoted to the second generalization. We discuss about some results in [20]
and [21] on distribution of periodic orbits of a class of renormalized Ruazy-Veech-Zorich
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inductions. Comparing with the first generalization, these results are not satisfactory and
it seems there are many problems left unsolved.

2. GENERALIZATION I : MARKOV SYSTEMS FOR $CO$-FINITE FUCHSIAN GROUPS

Following [3] we work on the Poincar\’e disc $D=\{z\in C : |z|<1\}$ endowed with

the metric $ds^{2}=4dzd\overline{z}/(1-|z|^{2})^{2}$ in this section. Let $\Gamma$ be a co-finite subgroup of
$SU(1,1)$ . Starting with a Markov map assocated to $\Gamma$ in [3], we can construct a triplet
$\mathcal{T}_{\Gamma}=(\mathcal{R}, \mathcal{P}, T)$ called a Markov system associated to $\Gamma$ . The Markov system plays the

role of $T_{G}^{2}$ although it is not a single transformation. We summarize the fundamental
facts on our Markov system below (for the detailed construction see [19]).

(M.1) (finiteness) $\mathcal{R}=\{A(1), \ldots, A(q)\}$ is a set of a finite number of closed arcs on the

unit circle $S^{1}$ with mutually disjoint nonempty interior.
(M.2) $\mathcal{P}=\{J\}$ is a set of closed arcs with mutually disjoint nonempty interior such that

for each $J$ there exists $A\in \mathcal{R}$ such that int$J\subset intA$ and $| \bigcup_{A\in \mathcal{R}}A\backslash \bigcup_{J\in \mathcal{P}}J|=0$ ,

where $|\cdot|$ denotes the Haar measure on the unit disc. In particular, there exists a
map $\iota$ : $\mathcal{P}arrow\{1, \ldots, q\}$ such that int$J\subset$ int$A(\iota(J))$ .

From the construction, we see that $\Gamma$ is co-compact if and only if $\#’P<$ oo.
(M.3) To each $J\in \mathcal{P}$ , an arc $A\in \mathcal{R}$ and an element $T_{J}\in\Gamma$ satisfying $T_{J}J=A$

are assigned. Namely, there exists a map $\tau$ : $\mathcal{P}arrow\{1, \ldots, q\}$ such that $T_{J}J=$

$A(\tau(J))$ .
(M.4) $T$ is an a.e. defined transformation on $X=u_{A\in R}$ $A$ such that $T|_{intJ}=T_{J}|_{1ntJ}$ for

each $J\in \mathcal{P}$ .
We need some notation. For closed arc $A$ , we denote by $[A)$ (resp. $(A])$ the half-open

arc obtained by taking the right (resp. left) endpoint away from A. $T_{R}$ (resp. $T_{L}$ ) is a
right continuous modification (resp. a left continuous modification) of $T$ .

(M.5) (orbit equivalence) For for any $x$ there exists $g\in\Gamma$ (resp. $g’\in\Gamma$) such that
$gx \in\bigcup_{A\in \mathcal{R}}[A)$ (resp. $g’x \in\bigcup_{A\in \mathcal{R}}(A])$ and for any $x,$ $y \in\bigcup_{A\in R}[A)$ (resp. $x,$ $y\in$

$\bigcup_{A\in \mathcal{R}}(A])$ satisfying $y=gx$ for some $g\in\Gamma$ , we can fined $m,$ $n\geq 0$ such that
$T_{R}^{m}x=T_{R}^{n}y$ $($ resp. $T_{L}^{m}x=T_{L}^{n}y)$ .

Next we introduce the notion of n-fold iteration $\mathcal{T}_{\Gamma}^{n}$ of $\mathcal{T}_{\Gamma}$ . Let $\mathcal{P}_{1}=P$ . For $n\geq 2$ , let
$\mathcal{P}_{n}$ be the family of closed arcs $J$ with nonempty interior having the form

(2.1) $J=J(i_{0})\cap T_{J(i_{0})}^{-1}J(i_{1})\cap T_{J(i_{0})}^{-1}\circ T_{J(i_{1})}^{-1}J(i_{2})\cap\cdots\cap T_{J(i_{0})}^{-1}oT_{J(i_{1})}^{-1}o\cdots oT_{J(i_{n-2})}^{-1}J(i_{n-1})$

for $J(i_{0})$ , . . . , $J(i_{n-1})\in \mathcal{P}$ . Such a $J$ is often denoted by $J(i_{0}, \cdots i_{n-1})$ . To each $J=$

$J(i_{0}, \cdots i_{n-1})\in \mathcal{P}_{n}$ we assign an element $T_{J}^{n}\in\Gamma$ defined by $T_{J}^{n}=T_{J(i_{n-1})}\circ\cdots oT_{J(i_{0})}$ .
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Then n-fold iteration $T^{n}$ : $Xarrow X$ of $T$ is defined a.e. so that $T^{n}|_{intJ}=T_{J}^{n}|_{intJ}$ for each
$J\in \mathcal{P}_{n}$ . Then we can easily see that the triplet $(\mathcal{R}, \mathcal{P}_{n}, T^{n})$ satisfies (M.1), (M.2), (M.3),
and (M.4). We call it the n-fold iteration of $\mathcal{T}_{\Gamma}$ and denote it by $\mathcal{T}_{\Gamma}^{n}$ . Note that $\iota$ and
$\tau$ : $\mathcal{P}_{n}arrow\{1, \ldots, q\}$ are defined in the same way as in (M.2) and (M.3), respectively.

By virtue of Proposition 3.2 in [19], we may assume without loss of generality that the
Markov system $\mathcal{T}_{\Gamma}$ satisfies the following mixing condition.
(M.6) (mixing) There exists a positive integer $n_{0}$ such that for each $J\in \mathcal{P}$ we can find

$J_{1},$
$\ldots,$

$J_{q}\in \mathcal{P}_{n_{0}}$ such that $J_{j}\subset J$ and $T_{J_{j}^{0}}^{n}J_{j}=A(j)$ hold for each $j=1$ . $\ldots,$ $q$ .
The following are needed to investigate the analytic properties of the Selberg zeta

function for $\Gamma$ .
(M.7) (expanding) There exists a positive integer $k$ such that

$\inf_{J\in \mathcal{P}_{k}}\inf_{x\in}|DT_{J}^{k}(x)|>1$ .

(M.8) (R\’enyi condition) For any positive integer $n$ we have

$R( \mathcal{T}_{\Gamma}^{n})=\sup_{J\in \mathcal{P}_{n}}\sup_{x\in J}\frac{|D^{2}T_{J}^{n}(x)|}{|DT_{J}^{n}(x)|^{2}}<\infty$ .

Moreover, $\sup_{n}R(\mathcal{T}_{\Gamma}^{n})/n<$ oo,

(M.9) For each $j=1,2$ , . . . , $q$ , there exist simply connected domains $B(j)$ and $D(j)$

in complex plane such that
$(M.9,i)A(j)\subset B(j)\subset\subset D(j)$ ;

(M.9.ii) $T_{J}^{-1}D(\tau(J))\subset B(\iota(J))$ for any $J\in P$ ;

($M.9$ .iii) for any $\delta>1/2$ , we have

$\sum_{J\in’\mathcal{P}}\sup_{z\in D(\tau(J))}|DT_{J}(T_{J}^{-1}z)|^{-\delta}<\infty$ .

Now we introduce some notions concerned with $\mathcal{T}_{\Gamma}$-periodic orbit. We write as $\mathcal{P}=$

$\{J(j)\}_{j=1}^{\#\mathcal{P}}$ for the sake of convenience. A sequence $\xi=(\xi_{0}\xi_{1}\cdots)$ is called admissible
if $T_{J(\xi)}:J(\xi_{i})\supset J(\xi_{i+1})$ for any $i$ . To a point $x\in X=u_{I=1}^{q}A(i)$ , one can assign an
admissible sequence $\xi=(\xi_{0}\xi_{1}\cdots)$ called $\mathcal{T}_{\Gamma}$-itinerary of $x$ such that $x\in J(\xi_{0})$ and $T_{J(\xi_{k})^{\circ}}$

. . . $oT_{J(\xi_{0})}x\in J(\xi_{k+1})$ for each $k\geq 0$ . It is denoted as $\xi(x)=(\xi_{0}(x)\xi_{1}(x)\cdots)$ . A point $x$

having a periodic $\mathcal{T}_{\Gamma}$-itinerary is called a $\mathcal{T}_{\Gamma}$-periodic point. A set of $p$ distinct points $\tau=$

$\{x_{0}, x_{1}, \ldots, x_{p-1}\}$ is a $\mathcal{T}_{\Gamma}$-periodic orbit of period $p$ if there exists a permutation $\pi$ of the
set $\{0,1, \cdots , p-1\}$ such that $\mathcal{T}_{\Gamma}$-itineraries $\xi(x_{\pi(i)})$ of $x_{\pi(i)}$ satisfy $\sigma\xi(x_{\pi(i)})=\xi(x_{\pi(i)+1})$

$mod p$ , where $\sigma$ is the shift transformation on the sequence space such that $(\sigma\xi)_{k}=\xi_{k+1}$

5



for any $k\geq 0$ . Note for any admissible sequence $\xi$ with least period $p$ , there exists a
unique $\mathcal{T}_{\Gamma}$-periodic point $x\in X$ such that $\xi(x)=\xi$ by virtue of the expanding condition
(M.7). In particular, the set $\tau(x)=\{x, T_{J(\xi_{0}(x))}x, \cdots, T_{J(\xi_{p-1}(x))}o\cdots oT_{J(\xi_{0}(x))}x\}$ forms

a $\mathcal{T}_{\Gamma}$-periodic point of period $p$ . We denote by $PO(\mathcal{T}_{\Gamma})$ the totality of $\mathcal{T}_{\Gamma}$-periodic orbits.
Then we have the following.

LEMMA 2.1. (1) For $\tau=\{x, \ldots, x_{p-1}\}\in PO(\mathcal{T}_{\Gamma})$ with $\xi(x)=(\dot{j}_{0}, \ldots,\dot{j}_{p-1}),$ $T_{J(i_{0},\ldots,i_{p-1})}^{p}$

is a primitive hyperbolic element in $\Gamma$ .
(2) If we define a map $\Phi$ : $PO(\mathcal{T}_{\Gamma})arrow HC(\Gamma)$ by

$\Phi(\tau)=(T_{j()}^{p}i_{0},\ldots,i_{p-1})$ ,

then we have
$\lambda(\Phi(\tau))=|DT_{J(i_{0},\ldots,i_{p-1})}^{p}(x_{0})|$ ,

where $\tau$ is wriuen as in (1) above and $(\gamma)$ denotes the conjugacy class of $\gamma\in\Gamma$ .
(3) The set $PO(\mathcal{T}_{\Gamma})$ is divided into four subsets as $PO( \mathcal{T}_{\Gamma})=\bigcup_{i=0}^{3}PO(\mathcal{T}_{\Gamma})_{i}$ the fol-

lowing hold.
(S. i) $\Phi(PO(\mathcal{T}_{\Gamma})_{0})\cup\Phi(PO(\mathcal{T}_{\Gamma})_{1})=HC(\Gamma)$ (disjpoint union).
(S. ii) The restrictions $\Phi|_{PO(\mathcal{T}_{\Gamma})_{:}}$ are injective.
$(3.iii)PO(\mathcal{T}_{\Gamma})_{i}(i=1,2,3)$ are finite sets having the common image under $\Phi$ . In

particular, these are empty if the corresponding surface $to\Gamma$ has genus $0$ .

For the proof see Lemma 4.2 in [19].

We need some function spaces. For a bounded domain $D$ in $\mathbb{C}$ and a positive integer
$N,$ $A(D;\mathbb{C}^{N})$ and $\mathcal{A}_{b}(D;\mathbb{C}^{N})$ denote the totality of $\mathbb{C}^{N}$ valued holomorphic functions

on $D$ and its subspace of $\mathbb{C}^{N}$ valued bounded holomorphic functions on $D$ , respectively.
$\mathcal{A}(D;\mathbb{C}^{N})$ is a nuclear Fr\’echet space with semi-norms $p_{K}(f)= \sup_{x\in K}|f(z)|_{\mathbb{C}^{N}}$ , where $K$

is any compact subset of $D$ and $|\cdot|_{\mathbb{C}^{N}}$ is the usual norm on $\mathbb{C}^{N}$ . $\mathcal{A}_{b}(D;\mathbb{C}^{N})$ is a Banach
space with the norm $\Vert f\Vert_{\infty}=\sup_{z\in D}|f(z)|_{\mathbb{C}^{N}}$ . For a compact set $K,$ $C(K;\mathbb{C}^{N})$ denotes

the space of all $\mathbb{C}^{N}$ valued continuous functions with the norm $\Vert f\Vert_{\infty}=\sup_{x\in K}|f(x)|_{\mathbb{C}^{N}}$ .
For a finite number of domains $D_{1},$

$\ldots,$
$D_{k}$ in $\mathbb{C}$ and a positive integer $N$ , a $\mathbb{C}^{N}$ valued

function $f$ on $u_{j=1}^{k}D_{j}$ is said to be an element in $A(u_{j=1}^{k}D_{j};\mathbb{C}^{N})$ $($resp. $\mathcal{A}_{b}(u_{j=1}^{k}D_{j};\mathbb{C}^{N}))$

if $f|_{D_{j}}$ is in $A(D_{j};\mathbb{C}^{N})$ (resp. $\mathcal{A}_{b}(D_{j};\mathbb{C}^{N})$ ) for each $j$ . The space $\mathcal{A}(u_{j=1}^{k}D_{j};\mathbb{C}^{N})$

$($resp. $\mathcal{A}_{b}(U_{j=1}^{k}D_{j};\mathbb{C}^{N}))$ is naturally identified with the space $\oplus_{j=1}^{k}\mathcal{A}(D_{j};\mathbb{C}^{N})$ (resp.

$\oplus_{j=1}^{k}\mathcal{A}_{t}(D_{j};\mathbb{C}^{N}))$ by $\mathcal{A}(u_{j=1}^{k}D_{j};\mathbb{C}^{N})\ni f\mapsto\oplus_{j=1}^{k}f_{j}\in\oplus_{j=1}^{k}\mathcal{A}(D_{j};\mathbb{C}^{N})$ , where $f_{j}=$

$f|_{D_{j}}$ for each $j$ . Finally a finite number of compact sets $K_{1},$
$\ldots$ , $K_{k},$ $C(u_{j=1}^{k}K_{j};\mathbb{C}^{N})$

6



denotes the totality of functions $f$ defined on $u_{j=1}^{k}K_{j}$ with $f|_{K_{j}}\in C(K_{j};\mathbb{C}^{N})$ for each $j$

and $C(\lfloor\rfloor_{j=1}^{k}K_{j};\mathbb{C}^{N})$ is identified with $\oplus_{j=1}^{k}C(K_{j};\mathbb{C}^{N})$ .
Put $B(X)=u_{j=1}^{q}B(j)$ and $D(X)=u_{j=1}^{q}D(j)$ , where $B(j)$ ’s and $D(j)$ ’s are the

domains appearing in (M.9). For $J\in \mathcal{P}$ , consider a holomorphic function $B(\iota(J))\cross \mathbb{C}\ni$

$(w, s)arrow G_{J}(s)(w)\in \mathbb{C}$ defined by

$G_{J}(s)(w)=(DT_{J}(w) \frac{w}{T_{J}w})^{-8}$

Note that if $w\in S^{1}$ , we have $G_{J}(-1)(w)=(DT_{J}(w))(w/T_{J}(w))=|DT_{J}(w)|$ .
Now we are in a position to define a family of twisted transfer operators with complex

parameter. It is shown that the family determines a meromorphic function which takes
values in the space of nuclear operators acting on an appropriate chosen Banach space.
The main purpose of this section is to represent the Selberg zeta function by using the
Fredholm determinants of these operators. Let $\rho$ : $\Gammaarrow U(N)$ be a unitary representation.
For an element $f=\oplus_{j=1}^{q}f_{j}\in \mathcal{A}(D(X);\mathbb{C}^{N})$ or $C(X;\mathbb{C}^{N})$ , we define an operator $\int,$

$\rho$

formally by

(2.2)
$( \mathcal{L}(s, p)f)_{i}(z)=\sum_{J\in \mathcal{P},\tau(J)=i}G_{J}(s)(T_{J}^{-1}z)\rho(T_{J})f_{i}(T_{J}^{-1}z)$

.

By virtue of the condition (M.9), for ${\rm Re} s>1/2$ the formally defined operator $\mathcal{L}(s, \rho)$

can be realized as an element in $\mathcal{L}(\mathcal{A}_{b}(B(X);\mathbb{C}^{N});\mathcal{A}_{b}(D(X);\mathbb{C}^{N})),$ $\mathcal{L}(\mathcal{A}_{b}(D(X);\mathbb{C}^{N}))$ ,
and $\mathcal{L}(C(X;\mathbb{C}^{N}))$ , where $\mathcal{L}(\mathcal{X};\mathcal{Y})$ denotes the space of bounded linear operators from
$\mathcal{X}$ to $\mathcal{Y}$ for topological linear spaces $\mathcal{X}$ and $\mathcal{Y}$ and $\mathcal{L}(\mathcal{X})=\mathcal{L}(\mathcal{X};\mathcal{X})$ . We see that for
$f=\oplus_{j=1}^{q}f_{j}$ as above, the n-fold iteration $\mathcal{L}(s, \rho)^{n}$ of the operator $\mathcal{L}(s, \rho)$ can be written
as

$( \mathcal{L}(s,\rho)^{n}f)_{i}(z)=\sum_{J\in p_{\backslash ,\tau(J)=i}}G_{n,J}(s)(T_{J}^{-n}z)\rho(T_{J}^{n})f_{i}(T_{J}^{-n}z)$
,

where $T_{J}^{-n}=(T_{J}^{n})^{-1}$ and $G_{n,J}(s, w)$ is given by

$G_{n,J}(s)(w)=G(s)(w)G(s)(T_{J(i_{0})}w)G(s)(T_{J(i_{0}i_{1})}^{2}w)\cdot\cdot\cdot\cdot$ $\cdot$ $G(s)(T_{J(i_{0}i_{1},\ldots,i_{n-2})}^{n-1}w)$

if $J\in \mathcal{P}_{n}$ has the form as in (2.1).
The following theorem is easily proved in the similar way to Theorem 5.1 and its corollary
in [19],

THEOREM 2.2. An analytic function $\{s\in \mathbb{C} : {\rm Re} s>1/2\}\ni s\mapsto \mathcal{L}(s,\rho)\in \mathcal{A}_{b}(D(X);\mathbb{C}^{N})$

has a meromorphic extension to the entire s-plane which takes values in the space of
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nuclear opemtors of order $0$ . The candidates of poles are the points $s=-k/2,$ $k=$

$-1,0,1,2,$ $\cdots$ . In particular, the Fredholm determinant $Det(I-\mathcal{L}(s, \rho))$ extends to a
meromorphic function to the entire s-plane and the candidates of its poles are the same
as those of $\mathcal{L}(s,\rho)$ , possibly with different order.

Now we can state the following.

THEOREM 2.3. Let $\mathcal{T}_{\Gamma}$ is the Markov system associated to co-finite Rachsian group $\Gamma$ .
Consider a representation $\rho$ : $\Gammaarrow U_{N}$ . For $s$ with ${\rm Re} s>1$ , the Fredholm determinant
$Det(I-\mathcal{L}(s,\rho))$ of the twisted tmnsfer operator $\mathcal{L}(s, \rho)$ with respect to $\mathcal{T}_{\Gamma}$ is represented
by an absolutely convergent series as

$Det(I-\mathcal{L}(s, \rho))=\exp(-\sum_{k=0}^{\infty}\sum_{n=0}^{\infty}\sum_{J\in \mathcal{P}_{n}T_{J}^{n}J\supset J}\frac{1}{n}$ trace$(\rho(T_{J}^{n}))|DT_{J}^{n}(x_{J})|^{-(s+k)})$

$=\exp$ $(- \sum_{\tau\in PO(\mathcal{T}_{\Gamma})}\sum_{k=0}^{\infty}\sum_{n=0}^{\infty}\frac{1}{n}$ trace$(\rho(\Phi(\tau))^{n})\lambda(\Phi(\tau))^{-(e+k)n})$ ,

where $x_{J}$ is the unique fixed poin$t$ of $T_{J}^{n}$ for $J\in P_{n}$ with $T_{J}^{n}J\supset J$ .

Proof. By Theorem 2.2 and the estimate of the norm of $\mathcal{L}(s, 1)$ with trivial representation
in [19], we see that $\mathcal{L}(s,\rho)$ is a nuclear operator of order $0$ with operator norm less than
1 if ${\rm Re} s>1$ . Therefore we have

$Det(I-\mathcal{L}(s, \rho))=\exp(-\sum_{n=0}^{\infty}\frac{1}{n}trace\mathcal{L}(s, \rho)^{n})$ .

On the other hand we have

$trace\mathcal{L}(s,\rho)^{n}=\sum_{J\mathcal{P}_{n},T_{J}^{n}\supset J}trace\mathcal{L}(n, s, J, \rho)$
,

where $\mathcal{L}(n, s, J, \rho)$ is the nuclear operator on $\mathcal{A}_{b}(D(\iota(J));\mathbb{C}^{N})$ of order $0$ defined by

$\mathcal{L}(n, s, J, \rho)f(z)=G_{n,J}(s)(T_{J}^{-n}z)\rho(T_{J}^{n})f(T_{J}^{-n}z)$ $(z\in D(\iota(J)))$

for $f\in \mathcal{A}_{b}(D(\iota(J));\mathbb{C}^{N})$ . Therefore we can obtain the theorem in the same way as
Theorem 7.2 in [19] if we verify the validity of the following lemma. $\square$

LEMMA 2.4. $Let\varphi$ be a univalent function on a domain $D\subset \mathbb{C}$ into itself with $\sup_{z\in D}|D\varphi(z)|<$

$1$ . Let $a\in D$ be a unique fixed point of $\varphi$ . Given an analytic function $F$ on $D$ with $F(a)\neq$

$0$ and a unitary matrix $U$ of order $N$ , consider the opemtor $L$ : $\mathcal{A}_{b}(D;\mathbb{C}^{N})arrow \mathcal{A}_{b}(D;\mathbb{C}^{N})$
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defined by
$Lf(z)=F(\varphi(z))Uf(\varphi(z))$ .

Then we have $Spec(L)\backslash \{0\}=\{F(a)(D\varphi)(a)^{k}\lambda_{j}$ : $j=1,2,$ $\ldots$ , $N$ and $k=0,1,$ . $,$ . $\}$ ,
where $\lambda_{1},$ $\ldots\lambda_{N}$ are the eigenvalues of $U$ .

Pmof. We write $f\in \mathcal{A}_{b}(D;\mathbb{C}^{N})$ as $f={}^{t}(f_{1},$
$\ldots,$

$f_{N})$ , Since $U$ is a unitary matrix, there
exists a unitary matrix $V$ such that $VUV^{-1t}(e_{1}, \ldots, e_{N})={}^{t}(\lambda_{1}e_{1},$

$\ldots,$
$\lambda_{N}e_{N})$ , where

$\{e_{1}, \ldots, e_{N}\}$ is a orthonormal basis of $\mathbb{C}^{N}$ consisting of eigenvectors of $U$ . Consider
the operator $V^{-1}LV$ which is spectrally equivalent to $L$ . Since $V^{-1}LV^{t}(f_{1}, \ldots, f_{N})=$

${}^{t}(\lambda_{1}F(\varphi(z))f_{1}(\varphi(z)),$
$\ldots,$

$\lambda_{N}F(\varphi(z))f_{N}(\varphi(z)))$ , we reduce our problem to the cases when
$N=1$ . Thus we obtain the desired result from Lemma 7.1 in [19]. $\square$

In order to rewrite the Selberg zeta function $Z(s, p)$ in terms of the $\mathbb{R}edholm$ determi-
nant of $\mathcal{L}(s, \rho)$ , we introduce the following.

(2.3) $—(s, \rho)=\prod_{k=0}^{\infty}\prod_{c\in\Phi(P\circ 1(\Gamma))}\det(I_{N}-\rho(c)e^{-(\epsilon+k)l(c)})$ .

Since $\Phi(PO_{1}(\Gamma))$ is a finite set, the analytic properties of:$(s, \rho)$ are easily investigated.
Combining Theorem 2.2 with Theorem 2.3 we obtain our main result.

THEOREM 2.5. For ${\rm Re} s>1$ , we have

$Z(s, \rho)$三 $(s, \rho)^{2}=Det(I-\mathcal{L}(s,\rho))$ .
In particular, $Z(s, p)$ is an analytic function in the half-plane ${\rm Re} s>1$ without zero
having a meromorphic extension to the entire s-plane. Moreover, the candidates of poles
are located on the ${\rm Re} s=-k/2,$ $k=-1,0,1,$ $\ldots$ .

Furthermore we can show the following theorem for the L-functions without consulting
the Selberg trace formula.

THEOREM 2.6 (cf.[l]). The Selberg L-function has the following properties.
(L.1) In the half-plane ${\rm Re} s>1,$ $L(s, \rho)$ is absolutety convergent and analytic.
(L.2) $L(s, \rho)$ has a meromorphic extension to the entire s-plane.
(L.3) In the closed half-plane ${\rm Re} s\geq 1,$ $L(s, \rho)$ has no zeros.
(L.4) Let $\varphi:\Gammaarrow G$ be a group homomorphism such that the image of those elements

whose conjugacy classes contains elements of $HC(\Gamma)$ genemtes G. Let $\psi$ : $Garrow U(N)$

be any nontrivial irreducible representation. Consider a representation given by $\rho=\psi\varphi$ .
Then $L(s, \rho)$ is analytic in the half-plane ${\rm Re} s>1/2$ .

(L.5) $L(s, 1)$ has a simple zero at $s=1$ and is analytic in the half-plane ${\rm Re} s>1/2$ .
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As a corollary to Theorem 2.6, we can show the following Chebotarev type density
theorem (cf, [1], [28]).

THEOREM 2.7. Let $G$ be a normal subgroup of $\Gamma$ with finite index. For any conjugacy
class $[g]\in[\Gamma/G]$ , Then we have

$\#\{c\in HC(\Gamma):\pi_{G^{C\in}}[g], l(c)\leq t\}\sim\frac{\#[g]}{[\Gamma,G]}\frac{\exp(t)}{t}$ $(tarrow\infty)$ ,

where $\pi_{G}$ : $\Gammaarrow\Gamma/G$ is the natural projection and $A(t)\sim B(t)(tarrow\infty)$ means
$\lim_{tarrow\infty}A(t)/B(t)=1$ .

Sketch of Proof of Theorem 2.6. If ${\rm Re} s>1$ we see that

$L(s, \rho)=\frac{Z(s+1,\rho)}{Z(s,\rho)}$

holds. Thus the assertions (L.1), (L.2), and (L.3) follow from Theorem 2.5. The validity
of the assertion (L.5) is verified in Theorem 7.4 in [19]. It remains to show the assertion
(L.4). By virtue of Theorem 2.5 and the fact that $\Xi(s,\rho)$ given by (2.3) is an analytic

function without zeros in the half-plane ${\rm Re} s>0$ , we see that each pole of $L(s, \rho)$ in the
half-plane ${\rm Re} s>1/2$ is located on the axis ${\rm Re} s=1$ and for $s$ with ${\rm Re} s=1$ is a pole if
and only if 1 is an eigenvalue of $\mathcal{L}(s, \rho)$ . Therefore we have only to show that the following
lemma. If $N=2$

LEMMA 2.8. Let $\rho$ : $\Gammaarrow U_{N}$ be a unitary representation appearing in (L.4). For $s$ with
${\rm Re} s=1$ , we denote by $\mathcal{L}_{X}(s, \rho)$ : $C(X;\mathbb{C}^{N})arrow C(X;\mathbb{C}^{N})$ the twisted tmnsfer opemtor

defined by (2.2). Then $\mathcal{L}_{X}(s, \rho)$ has no eigenvalues of modulus 1.

Idea of Proof We do not have enough space to give the proof. So we just explain about
how to prove it. First of all, we note that Lemma 6. 2 in [19] is strong enough that we can
show the lemma in the case when $N=1$ i.e. $\rho$ is a character. In the case when $N=2$,

we can show that if $\mathcal{L}_{X}(s,\rho)$ has an eigenvalue of modulus 1 and $f$ is the corresponding

eigenvector, then there exists a function $\alpha$ : $X\cross Xarrow S^{1}$ such that $f(y)=\alpha(x,y)f(x)$

for any $(x, y)\in X\cross X$ . This contradicts the irreducibility of $\rho$ . Note that the proof of
this step is carried out following the method proving Proposition 4.4 in[l].

3. GENERALIZATION II: RENORMALIZED RAUZY-VEECH-ZORICH INDUCTIONS

In this section, we consider renormalized Rauzy-Veech-Zorich inductions as generaliza-
tions of the continued fraction transformation. The definition of these transformations is
based on the ergodic property of Rauzy induction established by Veech [34] and Masur [13]
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in their way to solve the Keane conjecture on interval exchange transformations. Therefore
we start with the definition of interval exchange transformations ([9], [33]). Let $d\geq 2$ be
an integer. Consider the cone $\Lambda_{d}=\{\lambda=(\lambda_{1},$

$\ldots,$
$\lambda_{d})^{t}\in \mathbb{R}^{d}$ : $\lambda_{j}>0$ for each $j\}$ and the

symmetric group $\mathfrak{S}_{d}$ of degree $d$ . For $(\lambda, \pi)\in\Lambda_{d}\cross \mathfrak{S}_{d}$ , we define $\beta(\lambda)\in\{0\}\cross\Lambda_{d}.so$ that
$\beta_{j}(\lambda)=\sum_{i=1}^{j}\lambda_{j}$ for $0\leq j\leq d$ . Consider a partition $\alpha(\lambda)$ of the interval $X(\lambda)=[0, |\lambda|_{1})$

into subintervals $X_{j}(\lambda)=[\beta_{j-1}(\lambda),\beta_{j}(\lambda))(1\leq j\leq d)$ . Let $\lambda^{\pi}=(\lambda_{\pi^{-1}1}, \ldots, \lambda_{\pi^{-1}d})^{t}$ .
Then the interval exchange transformation $T_{(\lambda.\pi)}$ : $X(\lambda)arrow X(\lambda)$ is defined by

$T_{(\lambda,\pi)}x=x+ \sum_{j=1}^{d}(\beta_{\pi j-1}(\lambda^{\pi})-\beta_{j-1}(\lambda))I_{X_{j}(\lambda)}(x)$.

By definition $\tau_{(\lambda.\pi)}$ maps the j-th interval $X_{j}(\lambda)$ in $\alpha(\lambda)$ onto $\pi j$-th interval $X_{\pi j}(\lambda^{\pi})$ in
$\alpha(\lambda^{\pi})$ isometrically preserving the orientation. Thus the Lebesgue measure $m$ restricted
to $X(\lambda)$ is an invariant measure for $T_{(\lambda.\pi)}$ . Keane conjectured that for fixed irreducible
$\pi\in \mathfrak{S}_{d},$ $T_{(\lambda.\pi)}$ is uniquely ergodic Lebesgue almost every $\lambda\in\Lambda_{d}$ .

Next we recall the definition of Rauzy induction $\mathcal{T}_{0}$ : $\Lambda_{d}\cross \mathfrak{S}_{d}arrow\Lambda_{d}\cross \mathfrak{S}_{d}$ for our
convenience. Consider the following $d\cross d$ matrices $L(\pi)$ and $R(\pi)$

$L(\pi)=(e_{d-1}(\pi^{-1}j)^{t}I_{d-1}$ $0_{d-1,1})$ , $R(\pi)$ $=(\begin{array}{ll}I_{\pi^{-1}d} K_{\pi^{-1}d,d-\pi^{-1}d}O_{d-\pi^{-1}d,\pi^{-1}d} J_{d-\pi^{-1}d}\end{array})$ ,

where $I_{k}$ is the $k\cross k$ identity matrix, $0_{d-1}$ is $d-1$-dimensional zero column vector,
$e_{d-1}(\pi^{-1}j)$ is the $d-1$-dimensional unit vector whose $\pi^{-1}j$-th component is 1, $O_{k,l}$ is
the $k\cross l$ zero matrix and $K_{\pi^{-1}d,d-\pi^{-1}d}$ and $J_{d-\pi^{-1}d}$ are $\pi^{-1}d\cross(d-\pi^{-1}d)$ matrix and
$(d-\pi^{-1}d)\cross(d-\pi^{-1}d)$ matrix given by

$K_{\pi^{-1}d,d-\pi^{-1}d}=(\begin{array}{llll}0 0 \cdots 0\vdots \vdots \ddots \vdots 0 0 \cdots 0l 0 \cdots 0\end{array}),$ $J_{d-\pi^{-1}d}=(\begin{array}{llll}0 1 \cdots 0\vdots \vdots \ddots \vdots 0 0 \cdots 11 0 \cdots 0\end{array})$ ,

respectively. In addition we consider two transformations $L,$ $R$ : $\mathfrak{S}_{d}arrow \mathfrak{S}_{d}$ defined by

$(L\sigma)j=\{$ $\sigma d+1$ $(\sigma j=d)$

$\sigma j$

$(\sigma j\leq\sigma d),$

$(R\sigma)j=\{\begin{array}{ll}\sigma j (j\leq\sigma^{-1}d)\sigma d (j=\sigma^{-1}d+1)\sigma(j-1) otherwise\end{array}$

$\sigma j+1$ otherwise

For $(\lambda, \pi)\in\Lambda_{d}\cross \mathfrak{S}_{d}$ with $\lambda_{\pi^{-1}d}\neq\lambda_{d}$ , we put

$A(\lambda, \pi)=\{$

$L(\pi)$
$(if \lambda_{d}>\lambda_{\pi^{-1}d})$ $D(\lambda)$ $=\{\begin{array}{l}L (if \lambda_{d}>\lambda_{\pi^{-1}d})R (if \lambda_{d}<\lambda_{\pi^{-1}d}).\end{array}$

$R(\pi)$ $(if \lambda_{d}<\lambda_{\pi^{-1}d})$
’
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Then the Rauzy inductions $\mathcal{T}_{0}$ : $\Lambda_{d}\cross \mathfrak{S}_{d}arrow\Lambda_{d}\cross \mathfrak{S}_{d}$ and $\mathcal{T}$ : $\Delta_{d-1}\cross \mathfrak{S}_{d}arrow\Delta_{d-1}\cross \mathfrak{S}_{d}$

are defined for $(\lambda, \pi)$ with $\lambda_{\pi^{-1}d}\neq\lambda_{d}$ by

(3.1) $\mathcal{T}_{0}(\lambda, \pi)=(A(\lambda, \pi)^{-1}\lambda, D(\lambda)\pi)$ , $\mathcal{T}(\lambda, \pi)=$ $( \frac{A(\lambda,\pi)^{-1}\lambda}{|A(\lambda,\pi)^{-1}\lambda|_{1}}, D(\lambda)\pi)$ .

A permutation $\pi\in \mathfrak{S}_{d}$ is called irreducible if $\pi\{1, \ldots, k\}=\{1, \ldots, k\}$ yields $k=d$. Fix
a irreducible element $\pi_{0}\in \mathfrak{S}_{d}$ . Consider the Rauzy class $\mathcal{R}=\mathcal{R}(\pi_{0})$ introduced in [29].
$\omega_{d-1}$ and $\#\Re$ below denote the volume measure on $\triangle_{d-1}$ and the counting measure on $\mathcal{R}$ ,
respectively. We need the following result on $\mathcal{T}$ : $\triangle_{d-1}\cross \mathcal{R}arrow\Delta_{d-1}\cross \mathcal{R}$ .

THEOREM 3.1 (Veech [34]). There exists a $\mathcal{T}$ invariant measure $\mu$ equivalent to $\omega_{d-1}\cross\#_{R}$

on $\Delta_{d-1}\cross \mathcal{R}$ which makes $\mathcal{T}$ both conservative and ergodic. For each $\pi\in \mathcal{R}$, the density
$\mu$ on $\Delta_{d-1}(=\Delta_{d-1}\cross\{\pi\})$ with respect to $\omega_{d-1}$ is given by the restriction of a function on
$\Lambda_{d}$ which is mtional, positive, and homogeneous of degree-d.

Theorem 3.1 implies that $\mathcal{T}$ satisfies the Poincar\’e recurrence. Thus we can define jump
transformations and induced transformations for $\mathcal{T}$ . Recall these notions briefly. Let
$(X, \mathcal{B},\mu)$ be a $\sigma-finite$ measure space and $T$ : $Xarrow X$ a $\mu$-nonsingular transformation
satisfying the Poincar\’e recurrence i.e. $\mu$ almost every $x\in X$ has the property that for any
$E\in \mathcal{B}$ with $\mu(E)>0,$ $T^{n}x\in E$ holds for infinitely many $n\geq 0$ . Then for any $E,$ $F\in \mathcal{B}$

with $\mu(E)>0$ and $\mu(F)>0$ , we put for $x\in E$

$n(E, F;x)= \inf\{n\geq 1 : T^{n}x\in F\}$ .

In the case when $E=F$ we just write as $n(E;x)=n(E, E : x)$ . From our assumption
$n(E, F;x)<\infty\mu-$a.e. Thus we obtain almost everywhere defined transformation $T_{E,F}$ :
$Earrow F$ called the jump transformation of $T$ from $E$ to $F$ by

$T_{E,F}x=T^{n(E,F;x)_{X}}$ .

In the case $E=F,$ $T_{E,F}$ is denoted by $T_{E}$ and called the induced transformation of
$T$ to $E$ or the first return map of $T$ to $E$. Roughly speaking, ‘renormalization of the
transformation $T$ ’ means the procedure of constructing a new transformation by producing
jump transformations and their compositions.

We now consider the renormalization of the Rauzy induction $\mathcal{T}$ : $\triangle_{d-1}\cross \mathcal{R}arrow\Delta_{d-1}\cross \mathcal{R}$

given by (3.1). Set

$\triangle(L, \pi)=\{\lambda\in\Delta_{d-1}:\lambda_{d}>\lambda_{\pi^{-1}d}\}\cross\{\pi\}$ $\triangle(R, \pi)=\{\lambda\in\triangle_{d-1}:\lambda_{d}<\lambda_{\pi^{-1}d}\}\cross\{\pi\}$

$\Delta(L)=\bigcup_{\pi\in \mathcal{R}}\Delta(L, \pi)$
,

$\Delta(R)=\bigcup_{\pi\in’\mathcal{R}}\triangle(R, \pi)$
.
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Note that the sets $\triangle(L, \pi)$ and $\triangle(R, \pi)$ are expressed by

$\Delta(L, \pi)=(L(\pi)\Lambda_{d-1}\cap\triangle_{d-1})\cross\{\pi\}$ , $\Delta(R, \pi)=$ $(R(\pi)\Lambda_{d-1}\cap\triangle_{d-1})\cross\{\pi\}$ .

We consider the jump transformations $\mathcal{T}_{\Delta(L),\Delta(R)}$ : $\Delta(L)arrow\triangle(R)$ and $\mathcal{T}_{\Delta(R),\Delta(L)}$ :
$\Delta(R)arrow\Delta(L)$ . The Rauzy-Veech-Zorich induction $\mathcal{G}$ : $\Delta(L)\cup\triangle(R)arrow\Delta(L)\cup\Delta(R)$ is
the transformation such that $\mathcal{G}|_{\Delta(L)}=\mathcal{T}_{\Delta(L),\Delta(R)}$ and $\mathcal{G}|_{\Delta(R)}=\mathcal{T}_{\Delta(R),\Delta(L)}$ . The transfor-
mation $S=\mathcal{T}_{\Delta(L),\Delta(R)}\circ \mathcal{T}_{\Delta(R),\Delta(L)}$ : $\triangle(L)arrow\triangle(L)$ is a typical example of the renormalized
Rauzy-Veech-Zorich induction. Note that if $d=2$ and $\pi=(21)$ , then $S$ is conjugate with
$T_{G}^{2}$ . Therefore we would like to consider the renormalizations of the Rauzy induction as
generalizations of the continued fraction transformation.

The rest of the section is devoted to the study of a special class of renormalized Rauzy-
Veech-Zorich inductions whose members play the same role as $T_{G}^{2}$ in our argument. Let
$(\hat{\lambda}, \pi_{0})\in\triangle(L, \pi_{0})$ be such that $\hat{\lambda}$ is irrational, i.e. the entries of $\lambda$ are linearly independent
over $\mathbb{Q}$ . Then the corresponding interval exchange transformation $T_{(\hat{\lambda},\pi 0)}$ is minimal by

the result in [9]. Therefore we can find $N\geq 2$ such that $A_{N}(\hat{\lambda}, \pi_{0})>0$ by virtue of the
remark after Proposition 3.30 in [33]. We denote $A_{N}(\hat{\lambda}, \pi_{0})$ by $B$ for the sake of simplicity.
Consider the set $\triangle_{B}=B\Lambda_{d}\cap\triangle_{d-1}$ and $\Delta(B, \pi)=\triangle_{B}\cross\{\pi\}$ . We are interested in the
induced transformation $S_{B}$ of $S$ to the set $\triangle(B, \pi)$ . We regard $S_{B}$ as a transformation
on $\Delta_{B}$ in a natural way. Note that since $S_{B}$ is an renormalization of $S$ , it is also a
renormalization of $\mathcal{G}$ . In particular, $S_{B}$ and $\mathcal{G}_{B}$ coincides in this case.

For a nonnegative invertible matrix $A$ , let $\triangle_{A}=A\Lambda_{d}\cap\Delta_{d-1}$ and define the map
$A$
へ

: $\triangle_{d-1}arrow\triangle_{d-1}$ by $\overline{A}x=Ax/|Ax|_{1}$ for $x\in\triangle_{d-1}$ . Then we have the following.

LEMMA 3.2 (Lemma 3.1 in [21]). Let $S_{B}$ be as above. There exist sequences of distinct
nonnegative integml matrices $\mathcal{A}=\{A^{(k)}\}$ and $C=\{C^{(k)}\}$ satisfying the following:

(1) $A^{(k)}B=BC^{(k)}$ and $\det A^{(k)}=\det C^{(k)}=\pm 1$ .

(2) $S_{B}|_{\Delta_{AB}}=\overline{A^{-1}},$ $i.e$ . $S_{B}x= \frac{A^{-1_{X}}}{|A^{-1}x|_{1}}$ for $A\in A$ . In particular, $S_{B}\Delta_{AB}=\Delta_{B}$ for
each $A\in \mathcal{A}$ .

(3) The family of the set $\mathcal{P}=\{\Delta_{AB} : A\in \mathcal{A}\}$ forms a measumble partition of $\Delta_{B}$ ,
$i.e$ . $\omega_{B}(\triangle_{AB}\cap\Delta_{A’B})=0$ for $A,$ $A’\in A$ with $A\neq A’$ and $\omega_{B}(\triangle_{B}\backslash \bigcup_{A\in A}\Delta_{AB})=0$,
where $\omega_{B}=\omega_{d-1}(\triangle_{B})^{-1}\omega_{d-1}|_{\Delta_{B}}$

Next we introduce the Hilbert projective metric on $\Delta_{d-1}$ . Note that the results on the
Hilbert projective metrics that we need as well as their application to the study of ergodic
behavior of dynamical systems are summarized in [11]. For $x,$ $y\in\Lambda_{d}$ , we write $x\leq y$ if
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each entry of $y-x$ is nonnegative. Put

$\alpha(x, y)=\sup\{a\geq 0:ax\leq y\}$ , $\beta(x,y)=\inf\{b\geq 0 :y\leq bx\}$ ,

$\Theta(x, y)=\log\frac{\beta(x,y)}{\alpha(x,y)}$ .

$\Theta$ is called the Hilbert projective metric on $\Lambda_{d}$ . $\Theta$ is a pseudo-metric on $\Lambda_{d}$ such that
$\Theta(x, y)=0$ if and only if $x=cy$ holds for some $c>0$ . Thus $\Theta$ is a metric on the projective
space $\Delta_{d-1}$ . We summarize the basic properties of the renormalized Rauzy-Veech-Zorich
induction $S_{B}$ as the following lemma.

LEMMA 3.3 (Lemma 3.4 in [21]). Let $S_{B}$ be as above. Then we have the following.

(1) (Markov property) For any $n\geq 1$ we have

$P_{n}=n-1k=0\vee S_{B}^{-k}\mathcal{P}$ and $S_{B}^{n}\triangle_{AB}=\triangle_{B}$

for any $\triangle_{AB}\in \mathcal{P}_{n}$ . In particular $S_{B}^{n}$ : $\Delta_{AB}arrow\Delta_{B}$ is a homeomorphism.
(2) (expanding) There eanst $C_{1}>0$ and $\theta\in(0,1)$ such that for any $n\geq 1$

$\Theta(S_{B}^{n}x,S_{B}^{n}y)\geq C_{1}^{-1}\theta^{-n}\Theta(x, y)$

holds for any $x,$ $y\in\triangle_{AB}\in \mathcal{P}_{n}$ .
(3) (finite distortion) There exists $C_{2}>0$ such that for any $n\geq 1$

$| \log\frac{J(S_{B}^{n})(x)}{J(S_{B}^{n})(y)}|\leq C_{2}\Theta(S_{B}^{n}x,S_{B}^{n}y)$

holds for any $x,$ $y\in\triangle_{AB}\in P_{n}$ , where $J(S_{B}^{n})$ denotes the Jacobian of $S_{B}^{n}$ vnth
respect to $\omega_{B}$ .

(4) There exist $\delta\in(0,1)$ and $C_{3}>0$ such that

$\sum_{A\in A}\sup_{x\in\Delta_{B}}\frac{1}{|Ax|_{1}^{d(1-\delta)}}<C_{3}$ .

Note that for the proof of the assertion (4) in Lemma 3.3, we need some results in
Bufetov [4].

Now we introduce a family of transfer operators. Let $S_{E}$ be the renormalized Rauzy-
Veech-Zorich induction defined just before Lemma 3.2 above. For $s\in \mathbb{C}$ with ${\rm Re} s>1-\delta$

and a complex-valued function on $\Delta_{B}$ , we put

$\mathcal{L}(s)f(x)=\sum_{A\in A}\frac{1}{|Ax|_{1}^{ds}}f(\overline{A}x)$ ,
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where $\delta\in(0,1)$ is as in Lemma 3.3. Let $C(\triangle_{B})$ be the Banach space of complex-valued
continuous functions on $\Delta_{B}$ endowed with the supremum norm $\Vert\cdot\Vert_{\infty}$ and let $F_{\Theta}(\triangle_{B})$ be
the Banach space of complex-valued Lipschitz continuous functions on $\Delta_{B}$ with respect
to the projective metric $\Theta$ endowed with the norm

$\Vert g\Vert_{\Theta}=[g]_{\Theta}+\Vert g\Vert_{\infty}$ ,

where $\Vert g\Vert_{\infty}=\sup_{x\in\Delta_{B}}|g(x)|$ and $[g]_{\Theta}= \sup_{x,y\in\Delta_{B}:x\neq y}|g(x)-g(y)|/\Theta(x,y)$ i.e. the
Lipschitz constant of $g$ with respect to $\Theta$ . $C(\triangle_{B}arrow \mathbb{R})$ and $F_{\Theta}(\triangle_{B}arrow \mathbb{R})$ denote the
subspaces of real-valued elements of $C(\triangle_{B})$ and $F_{\Theta}(\triangle_{B})$ , respectively. In [20] we proved
a weak version of local central limit theorem for the partial sum $\sum_{k=0}^{n-1}foS_{B}^{k}$ with $f\in$

$F_{\Theta}(\Delta_{B})$ using the methods in [18]. If the perturbed $Perron-\mathbb{R}obenius$ operators given by

$\mathcal{L}(1)(e^{\sqrt{-1}tf}g)(x)=\sum_{A\in A}\frac{\exp(\sqrt{-1}tf(\overline{A}x))}{|Ax|_{1}^{d}}g(\overline{A}x)$

form an analytic family of bounded linear operators on $F_{\Theta}(\triangle_{B})$ , it seems that the same
technique does work.. The assertion (4) in Lemma 3.3 guarantees that if we choose
$f(x)=\log|A^{-1}x|_{1}$ , the family $\mathcal{L}(1)(e^{\sqrt{-1}tf}\cdot)$ becomes an analytic family of bounded linear
operators on $F_{\Theta}(\Delta_{B})$ although $f$ is not an element in $F_{\Theta}(\triangle_{B})$ . Anyway we can show the
following;

PROPOSITION 3.4 (Proposition 4.4 in [21]). There exist a neighborhood $U$ of the half-plane
${\rm Re} s\geq 1$ and the open disc $r_{0}\in(0, \delta)\subset U$ with mdius $r_{0}<\delta$ centered at 1 such that the
analytic family $\{\mathcal{L}(s) : s\in D(1, r_{0})\}$ of bounded linear opemtors on $F_{\Theta}(\triangle_{B})$ satisfies the
following,.

(1) For $s\in D(1, r_{0}),$ $\mathcal{L}(s)$ has the spectml decomposition

$\mathcal{L}(s)^{n}=\lambda(s)^{n}E(s)+R(s)^{n}$

for each $n\in \mathbb{N}_{f}$ where $\lambda(s)$ is a simple eigenvalue of $\mathcal{L}(s)$ with maximal modulus,
$E(s)$ is the projection onto the one-dimensional eigenspace corresponding to $\lambda(s)$ ,
and $R(s)$ is a bounded linear opemtor with spectml mdius less than $r_{1}$ for some
$r_{1}\in(0,1)$ independent of $s\in D(1, r_{0})$ .

(2) For $s\in U\backslash D(1, r_{0})$ , the spectml mdius of $\mathcal{L}(s)$ is less than 1.
(3) $\lambda(s)$ in the assertion (1) is $a$ analytic function on $D(1, r_{0})$ such that $\lambda(1)=1$

and is decreasing on $[1-r_{0},1]$ .
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(4) $E(s)$ and $R(s)$ in the assertion (1) are analytic functions on $D(1,r_{0})$ with values
in bounded linear opemtors on $F_{e}(\triangle_{B})$ given by the Dunford integrals

$E(s)= \frac{1}{2\pi\sqrt{-1}}\int_{|z-1|=r_{2}}R(\mathcal{L}(s), z)dz$,

$R(s)^{n}= \frac{1}{2\pi\sqrt{-1}}\int_{|z|=r1}z^{n}R(\mathcal{L}(s), z)dz$

for each $n\in N$ , where $0<r_{1},$ $r_{2}<1$ are independent of $s\in D(1,r_{0})$ satisfying
$r_{1}+r_{2}<1$ and $R(\mathcal{L}(s), z)=(zI-\mathcal{L}(s))^{-1}$ denotes the resolvent opemtor of $\mathcal{L}(s)$ .

Moreover, we can show that there exists $\delta_{1}>0$ such that $\mathcal{L}(s)$ is quasicompact for $s$

with ${\rm Re} s>1-\delta_{1}$ as follows. For each $A\in A_{m},$ $x_{A}$ denotes the unique fixed point of $\overline{A}$

in $\Delta_{B}$ . Defined an operator $\mathcal{K}_{n}$ on $F_{\Theta}(\Delta_{B})$ by

$\mathcal{K}_{n}g(x)=\sum_{A\in A_{\hslash}}\frac{1}{|Ax|_{1}^{d\epsilon}}g(x_{A})$

for $f\in F_{\Theta}(\Delta_{B})$ . Let $r_{0}$ and $\lambda(s)$ be as in Proposition 3.4, we show the following.

PROPOSITION 3.5 (Proposition 4.5 in [21]). There ext. $ts$ positive constants $C_{4}$ and $C_{5}$

such that for any $s$ with $Res>1-r_{0}$ and $g\in F_{e}(\Delta_{B})$ we have

$\Vert(\mathcal{L}(s)^{n}-\mathcal{K}_{n})g\Vert_{\infty}\leq C_{4}\lambda({\rm Re} s)^{n}\theta^{n}[g]_{\Theta}$,

$[(\mathcal{L}(s)^{n}-\mathcal{K}_{n})g]e\leq C_{5}(|s|+1)\lambda({\rm Re} s)^{n}\theta^{n}[g]_{\Theta}$ .

In particular $\mathcal{L}(s)$ is quasicompact as far as $\lambda({\rm Re} s)\theta<1$ holds.

Let $PO(S_{B})$ denote the totality of prime periodic orbits $\tau$ of $S_{B}$ . For $\tau=\{\lambda,$ $S_{B}\lambda$ ,

. . . , $S_{B}^{p-1}\lambda\}\in PO(S_{B})$ , put
$N(\tau)=J(S_{B}^{p})(\lambda)^{\frac{1}{d}}$

Let us consider the following zeta function given by the formal Euler product

(3.2) $\zeta(s)=\prod_{\tau\in PO(S_{B})}(1-N(\tau)^{-ds})^{-1}$
.

A formal calculation leads us to the equation

$\zeta(s)=\exp(\sum_{n=1}^{\infty}\frac{1}{n}\sum_{x:S_{B}^{n}x=x}J(S_{B}^{n})(x)^{-e})=\exp(\sum_{n=1}^{\infty}\frac{1}{n}\sum_{A\in A_{n}}|Ax_{A}|_{1}^{-d\epsilon})$

(3.3)

$= \exp(\sum_{n=1}^{\infty}\frac{1}{n}\sum_{A\in \mathcal{A}_{m}}\lambda_{A}^{-ds})$ .
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The main theorem in this section is the following.

THEOREM 3.6 (cf. Theorem 5.1 in [21]). The infinite product in the reght hand side of
(3.2) is absolutely convergent for $s$ with ${\rm Re} s>1$ and defines an analytic function urthout
$zem$ . In addition, the series in (3.3) are absolutely convergent and the equations are all
justified. Moreover there exists $\delta_{1}>0$ such that $\zeta(s)$ has the meromorphic extension to
the half-plane ${\rm Re} s>1-\delta_{1}$ satisfying the following:

(1) $s=1$ is the unique pole on the axis ${\rm Re} s=1$ and it is simple.
(2) In the half-plane ${\rm Re} s>1-\delta_{1},$ $\zeta(s)$ does not have zeros.
(3) There exists $\delta_{2}\in(0, \delta_{1})$ such that in the half-plane ${\rm Re} s>1-\delta_{2z}s=1$ remains to

be the unique pole of $\zeta(s)$ . $i.e$ . $\{s:{\rm Re} s>1-\delta_{2}\}\backslash \{1\}$ tums out to be a pole free region
for $\zeta(s)$ .

Sketch of Proof The reader familiar with the transfer operator approach to dynamical
zeta function will notice that Proposition 3.4 and Proposition 3.5 imply the validity of
the assertions (1) and (2). In order to prove the assertion (3) we consult the results in [2]
concerned with exponential decay of correlations of $S_{B}$ (see also [27]).

It is well known that Theorem 3.6 provides us with enough information in order to
prove the following.

THEOREM 3.7 (cf. [27]). Thee exists $\alpha\in(0, d)$ such that

$\#\{\tau\in PO(S_{B}):\log N(\tau)\leq t\}=\frac{e^{dt}}{dt}+O(e^{\alpha t})$ $(tarrow+\infty)$ .

Finally we explain about an geometric interpretation of Theorem 3.7 following Veech
[34] and Mosher [17]. Let $g\geq 2$ be an integer. $T_{9}$ and $Mod_{g}$ denote the Teichm\"uller space
and the mapping class group of genus $g$ , respectively. Consider the following sets.

$\bullet$ $CG(T_{g})$ : the totality of oriented prime closed geodesics $\gamma$ with respect to the Te-
ichm\"uller metric in $T_{g}$ .

$\bullet$ $HC(Mod_{g})$ : the totality of primitive hyperbolic conjugacy classes $c$ in $Mod_{g}$ , i.e.
$c$ can be written as $c=\langle h\rangle=\{g^{-1}hg : g\in Mod_{g}\}$ , where $h$ is a primitive hyperbolic
element in in $Mod_{9}$ whose representative is a pseudo-Anosov diffeomorphism.

For $\gamma\in CG(T_{g})$ and $c=\langle h\rangle$ , we put
$\bullet$ $l(\gamma)$ : the least period of $\gamma$ .
$\bullet$ $\lambda(c)$ : the dilatation of $h$ .

Then there exists a natural one-to-one correspondence between these sets such that
$\exp(l(\gamma))=\lambda(c)$ holds if $\gamma\in CG(T_{9})$ and $c\in HC(Mod_{g})$ are corresponding each other. If

17



we consider an analogue of the prime number theorem for length spectrum of Teichm\"uller

space of genus greater than 1, we arrive at a difficulty that there is no results for the zeta
function which plays the role of the Selberg zeta function for the modular surface. On
the other hand, if we look at the renormalized Rauzy-Veech-Zorich induction which is a
sort of generalization of the continued fraction transformation, we notice the following

facts. For any periodic point $x$ of $S_{B}$ there exists $A \in\bigcup_{n=1}^{\infty}A$ , such that the eigenvector
$x_{A}$ corresponding to the Perron-Frobenius root $\lambda_{A}$ coincides with $x$ . By way of zippered
rectangles in [34] (see also [39], and [10]), there exist an positive integer $g$ depending only

on the irreducible permutation $\pi_{0}$ , a closed Riemann surface $R$ of genus $g$ , a holomorphic
l-form $\omega$ , and a pseudo-Anosov diffeomorphism $\varphi$ on $R$ such that $\lambda_{A}$ is the dilatation of $\varphi$

and the interval exchange transformation $T_{(x_{A},\pi_{0})}$ is obtained by choosing an appropriate

transversal to the measured foliation determined by $\omega$ . Therefore we see that for each
$\tau\in P(S_{B})$ , we can find a Teichm\"uller closed geodesic $\gamma$ and a hyperbolic conjugacy class
$c$ of $Mod_{9}$ such that $\exp(l(\gamma))=\lambda(c)=N(\tau)$ . Note that the number $d$ of intervals turns

out to be the dimension of the corresponding moduli space of Abelian differentials. Al-
though $\tau$ is a primitive periodic orbit, $\gamma$ and $c$ are not necessarily so. We have to note that
recently Eskin and Mirzakhani [6] establish remarkable result. They prove an analogue of
the prime number theorem for closed Teichm\"uller geodesics on the principal stratum of
the moduli space of quadratic differentials using the method in Margulis [12]. As a trial
Theorem 3.7 may be still interesting, but it seems that we need more ideas to establish an
analogue of the prime number theorem for closed Teichm\"uller geodesics on any stratum
of the moduli space of quadratic differentials.
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