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This informal note is based on the author $s$ talk “Quantum fundamental
groups and quantum representation varicties for 3-manifolds“ givcn in the work-
shop “Geometric and analytic approaches to representations of a group and rep-
resentation spaces‘’, held at RIMS during June 20–June 24, 2011. Details of
this note will appear in papers in preparation.

1 Cobordism categories and embedding categories

1.1 Cobordism categories and TQFTs

In Quantum Topology, one considers the cobordism category $Cob_{d}$ , whose ob-
jects are compact, oriented $(d-1)$-manifolds and whose morphisms are home
omorphism classes of d-dimensional cobordisms.

A d-dimensional Topological Quantum Field Theory is a functor
$F:Cob_{d}arrow$ Vect

from $Cob_{d}$ to the category Vect of vector spaces.

1.2 Embedding category $Emb_{d}$

In this note, we consider embedding categories, which are another type of cat-
egories closely related to manifold topology. Let $d\geq 1$ be an integer. The
d-diniensional embedding category $Emb_{d}$ is the category whose objects are com-
pact, oriented d-manifolds, and whose morphisms are isotopy classes of embed-
dings. Composition of morphisms is induced by composition of embeddings,
and the identity morphisms is represented by the identity homeomorphisms.

In what follows, we often $(^{\backslash },ont_{l1}se$ an embedding $f:Marrow N$ and its isotopy
class $[f];Marrow N$.
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1.3 Relation between embedding categories and cobor-
dism categories

The embedding category is related to the cobordism category as follows. There
is a functor

$\partial:Emb_{d}arrow Cob_{d}$ ,
$M\mapsto\partial M$

$[f:MLarrow N]\mapsto[N\backslash (intf(M))]$ .
More precisely, the fumctor $\partial$ maps each $(d-1)$-manifold $Af$ to its boumdary $\partial M$ ,
and each morphism $[f]:Marrow N$ (represented by an embedding $f:Marrow N$) to
its “complement“ $[N\backslash (int f(M))]$ , where $f$ is chosen so that $f(M)$ is contained
in the interior of $\Lambda f$ .

1.4 Functors from $Emb_{d}$

Note that a homeomorphism $f:Marrow M’$ between two d-manifolds $M,$ $M’\in$

Ob$(Emb_{d})$ represents an isomorphism in $Emb_{d}$ . Therefore, for each functor
$F:Emb_{d}arrow C$ from $Emb_{d}$ to a catcgory $C$ , thc isomorphism class of $F(M)\in$

Ob$(C)$ for $M\in$ Ob$(Emb_{d})$ is an invariant of $M$ .

1.4.1 The functor $U:Emb_{d}arrow$ Toph

Let

$U:Emb_{d}arrow$ Toph: $=$ Top/homot$opy$

denote the functor which maps $M\in$ Ob$(Emb_{d})$ to thc underlying topological
space of $M$ and which maps each morphism $[f]:Marrow M$‘, which is an isotopy
class. to the homotopy class of $f$ . Composing $U$ with various fUnctors from
Toph defined in Algebraic Topology, one obtains many functors $fi\cdot omEmb_{d}$ .
For example,

$Emb_{d}arrow^{U}$Toph
$H_{k}\underline{(-}’ Z$ )

$\rangle$ Ab

$Emb_{d}^{*}arrow^{U}$Toph“ $arrow^{\pi_{1}}$ Grp $Hom(-\prime G)arrow$ Setop

Here Emb7 and Toph“ are tlie basepointed versions of $Emb_{d}$ and Toph, re-
spectively, and $G$ is a fixed group.

1.4.2 Skein modules

Another important class of functors defined on $Emb_{d}$ is defined by skein mod-
ules. Roughly speaking, a skein module associated with a manifold $M$ is

$A(M)=k$ { links” in M}/(ambient isotopy and local relations)
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Here “links“ are a certain kind of subcomplexes in $M$ , possibly with framings,
coloring, etc. It is clear that $A(M)$ is functorial in embeddings, and hence we
have a functor

$A:Emb_{d}arrow k$-Mod.

2 The category $\mathcal{E}$

In the rest of this note, we restrict to the case $d=3$ .
In this section, we define the “category of disc-based 3-manifolds and disc-

based embeddings”, denoted by $\mathcal{E}$ . which is the main object of study in this
note.

In what follows, all manifolds are oriented and all codimension $0$ embeddings
are orientation-preserving.

2.1 Disk-based 3-manifolds and disk-based embeddings

A disk-based 3-manifold $(M, i)$ consists of

1 a connected 3-manifold $M$ , and
$\bullet$ an embedding $i:D^{2_{a}}arrow\partial M$ .

The embedding $i$ is called the disc-basing.
A (disk-based) embeddin9 $f:(M, i)arrow(N,j)$ is an embedding $f:Mrightarrow N$

which is compatible with the disc-basing, i.e., $j=(f|_{\partial M})oi$ .

2.2 The category $\mathcal{E}$

Define $\mathcal{E}$ to be the category as follows, The objects are disc-based 3-manifolds,
the morphisms are the equivalence classes of disk-based embeddings, where
two disc-based $3arrow manifolds$ are equivalent if tliere is an isotopy between them
through disk-based embeddings. The composition in $\mathcal{E}$ is induced by composi-
tion of embeddings. The identity morphisms are defined by $1_{(M,i)}=[id_{M}]$ .

For simplicity, we often write $M$ for $(M, i)$ by dropping the disc-basing $i$ ,
and we often confuse embeddings and their isotopy classes.

2.3 Based-homeomorphisms as isomorphisms in $\mathcal{E}$

Clearly, a based-homeomorphism is an isomorphism in $\mathcal{E}$ .
Thus, given a functor $F:\mathcal{E}arrow C$ from $\mathcal{E}$ to a category $C$ , the isomorphism

class of $F(M)$ in $C$ is a topological invariant of $M$ .
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Proposition 1. A morphism $f:Marrow M’$ in $\mathcal{E}$ is an isomorph,$\dot{u}m$ if and only
if $f$ is represented by a disk-based homeomorphism.

Corollary 2. For $M\in$ Ob$(\mathcal{E})$ , the group Aut$e(M)$ is isornorphic to the “disc-
based mapping class group of $M$ ”, i.e., the group of the disc-based ambient
isotopy classes of the disc-based self-homeomorphisms of $M$ .

2.4 Braided monoidal structure of $\mathcal{E}$

The category $\mathcal{E}$ ha,s a braided monoidal category structure.

$\bullet$ The tensor functor

$\otimes:\mathcal{E}\cross \mathcal{E}arrow \mathcal{E}$

is given by a kind of boundary connected sum.
$\bullet$ The monoidal unit given by the 3-ball $B^{3}$ .
$\bullet$ The braidings

$\psi_{M,M’}:M\otimes M’arrow\Lambda;I’\otimes M\underline{\simeq}$

is represented by a homeomorphism which switches the M-part and the
M’-part in $M\otimes M’$ and $M’\otimes M$ .

3 The category $’\kappa$ of handlebody embeddings

3.1 The full subcategory $\mathcal{H}$ of $\mathcal{E}$

Let $?t$ denote the full subcategory of $\mathcal{E}$ such that

$Ob(\mathcal{H})=\{V_{0}, V_{1}, V_{2}, \ldots\}$ ,

where $V_{g}$ is a fixed genus 9 handlebody obtained from a cylinder $D^{2}\cross[0_{!}1]$ with
$g1$-handles on the top.

We identify Ob $(\mathcal{H})$ with $\{0,1,2, \ldots\}$ .
In other words, $H$ is the category with Ob$(\mathcal{H})=\{0,1,2, \ldots\}$ and

$?t(m,n)=$ {d.b. embeddings $V_{m}rightarrow V_{;}$ }$/isotopy$

$=$ { $m$-component bottom tangles in $V_{n}$ } $/isotopy$.
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3.2 Relations of $\prime kt$ and other categories

Let $C$ denote the $Cranarrow Kei\backslash ler$-Yettcr (CKY) cobordism category [3, 5]:

$\bullet$ objects –surface with boundary parametrized by $S^{1}$ .
$\bullet$ $morphisms-\cdot$homeomorplxism classes of connected cobordisms.

Remark 3. $H^{op}$ is isomorphic to

$\bullet$ the “category of bottom tangles in handlebodies“ ([4])
$\bullet$ the く ‘category of special Lagrangian cobordisms” ([2])

which are (isomorphic to) a subcategory of the CKY category $C$ .

3.3 Some structures of $\mathcal{H}$

Fact. $tt$ is a braided monoidal subcategory of $\mathcal{E}$ . In particular, $V_{g}\otimes V_{9’}\cong V_{g+g’}$

in $\mathcal{E}$ .
Fact. In $\prime k\ell$ , there is a $bi\cdot ai(ied$ Hopf algebra structure

$H=(V_{1},\mu, \eta, \Delta, \epsilon, S)$ .
( $Crane\cdot-\cdot Yetter[3]$ and Kerler [5] had introduced the same structiire in $C(\cong C^{op}).$ )

4 Quantum fundamental groups

4.1 Definition of quantum fundamental groups

The quantum fundamental group (QFG) of $M\in$ Ob$(\mathcal{E})$ is the functor

$P(M)=\mathcal{E}(i(-), M):\mathcal{H}^{op}arrow$ Set.

Clearly, $P(M)$ is functorial in $M$ . Thus, $\backslash ve$ have a functor

$P:\mathcal{E}arrow\hat{H}:=Set^{H^{\circ p}}$

Note t.hat

$P(M)(n)=\mathcal{E}(i(n), M)=\mathcal{E}(V_{n}, M)=\{[V_{n^{\sigma}}arrow A\prime I]\}$

$=$ {[n-component bottom tangle in Aq}

maps surjectically onto the direct product $\pi_{1}(1|$ノ$I)^{n}$ . Thus, $P(M)$ is a refinement
of the set $\pi_{1}(M)$ .
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4.2 Goal

I would like to generalize everything about $\pi_{1}$ into QFGs.

In the rest of this talk, I will explain attempts to generalizing

$\bullet$ representation spaces Rep$G(\pi_{1}M)=Hom_{Grp}(\pi_{1}M, G)$ ,

$\bullet$ van Kampen Theorem.

5 Kan extension

For the definitions and properties of the Kan extensions, see Mac Lane’s book
[7].

5.1 Left Kan extension along $i:Harrow \mathcal{E}$

Let $V$ be a cocomplete category, such as Set, Vect, Grp, Ab, . . . .
If we are given a fumctor $Q:\mathcal{H}arrow V$ , then there is the left $Kane\prime xtension$ of

$Q$ along $i$

$Lan_{i}Q:\mathcal{E}arrow \mathcal{V}$ .

Example 4. 1. For the fundamental groups, we have

$Lai\}(\pi_{1} : \mathcal{H}arrow Grp)\cong(\pi_{1}$ : $\mathcal{E}arrow$ Grp$)$ .

2. For the QFGs, we have

Lani $(Pi=Y:\mathcal{H}arrow\hat{\mathcal{H}})\cong(P:\mathcal{E}arrow \mathcal{H})$へ.

Thus, the QFG $is$ the left Kan extension along $i$ of the Yoneda embedding
$Y:\mathcal{H}arrow’\hat{\kappa}$ .

5.2 Kan extension as coend

For simplicity, consider the case $\mathcal{V}=$ Vect $=$ Vect $k$ .
Let $k(-)$ : Set $arrow$ Vect, $S\mapsto k\cdot S$ . For $M\in$ Ob$(\mathcal{E})$ , we have a functor

$kP(M):\mathcal{H}^{op}arrow$ Vect.

If $Q:\gamma\{arrow$ Vect is a functor, then $(Lai\searrow Q)(M)$ can be computed as the
coend, or the “tensor product” of $kP(M):\mathcal{H}^{op}arrow$ Vect and $Q:\mathcal{H}arrow$ Vect
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over $\prime \mathcal{H}$

$(Lan_{i}Q)(\lambda I)=kP(M)\otimes_{\mathcal{H}}Q$

$:= \int^{n\in \mathcal{H}}kP(M)(n)\otimes_{k}Q(n)$

$=( \bigoplus_{n\in Ob(\gamma\ell)}kP(M)(n)\otimes_{k}Q(n))$ /Relations

where Relations is spanned by

$x\otimes Q(f)(y)-kP(M)(f)(x)\otimes y$

for $f\in 7\cdot l(n,n’),$ $y\in Q(n),$ $x\in kP(M)(n’)$ , and $n,n’\in$ Ob $(\mathcal{H})$ .

5.3 Problem

$Lan_{i}Q$ can be denoted
$L_{c}\backslash n_{i}Q=kP\otimes_{\mathcal{H}}Q=Ind_{l\ell}^{f}Q:\mathcal{E}arrow$ Vect.

Problem. Construct interesting functors
$Q:\mathcal{H}arrow$ Vect

which induce interesting functors on $\mathcal{E}$

Lal$i_{i}Q:\mathcal{E}arrow$ Vect.

5.4 Co-ribbon Hopf algebras

The notion of co-ribbon Hopf algebra is the dual to that of ribbon Hopf algebra:
A co-ribbon Hopf algebm is a Hopf algebra $H=(H, \mu, \eta, \Delta, \epsilon,\cdot S)$ equipped

with

$\bullet$ a universal R-form $R:H\otimes Harrow H$ ,
$\bullet$ a co-ribbon element $r:Harrow k$ .

5.5 Examples of co-ribbon Hopf algebras
$\bullet$ The dual $H^{*}=Hom(H, k)$ of a finite diniensional ribbon Hopf algebra $H$ .
$\bullet$ Commutative Hopf algebras. $(R=\epsilon\otimes\epsilon, r=\epsilon)$

-The algebra $Fun_{k}(G)$ of fUnctions on a finite group $G$ .
-The algebra $k(G)$ of regular functions on a linear algebraic group $G$ .

$\bullet$ The quantized algebra of regular functions, $k_{q}(G)$ , for $G=SL(N),$ $\ldots$ .
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5.6 The category $Comod_{H}$

Let $Comod_{H}$ denote tlxe category of left H-comodules.
Fact. $\bullet$ If $H$ is a Hopf algebra, then $Comod_{H}$ is a rnonoidal category.

$\bullet$ (Majid) If $H$ is co-quasitriangular, then $Comod_{H}$ is a braided category.
The object $\underline{H}$ $:=$ ( $H$, coad) $\in$ Ob$(Comod_{H})$ has a braided Hopf algebra
structilre. Here

coad: $Harrow H\otimes H$, $x \mapsto\sum x_{(1)}S(x_{(_{\backslash }!)})\otimes x_{(2)}$

is the left coadjoint coaction.

Theorem 5 (Cf. [6]). If $H$ is a co-ribbon Hopf algebra, then there is a braided
monoidal functor

$Q^{H}:\mathcal{H}arrow Comod_{H}$ ,

which maps the braided Hopf algebra structure in $\prime H$ to that in $Comod_{H}$ .

5.7 Quantum representation variety

Since $Comod_{H}$ is cocomplete, we have the following.

Corollary. If $H$ is a co-ribbon Hopf algebra, then we have a functor

Rep $H$
$:=Lan_{i}Q^{H}:\mathcal{E}arrow Comod_{H}$ .

We call Rep$H(M)$ the quantum representation variety of $M$ associated to $H$ .

5.8 Examples

1 If $H=F\iota m_{k}\cdot(G)$ with $G$ a finite group, tlzen Rep$\mathfrak{N}n(c,)(M)=$ Fun$(Ho\iota n_{Grp}(\pi_{1}M, G))$ .
$\bullet$ If $H=k(G)$ with $G$ a linear algebraic group, then Rep$k(G)(M)=$ Reg $($Rep$G(\pi_{1}M))$ ,

the algebra of regtdar functions on the representation variety Rep$c_{(\pi_{1}M)}$ .
$\bullet$ If $H=k_{g}(G)$ , then Rep$k_{q}(G)$ is a q-deformation of Rep$k(G)(\pi_{1}M)$ .

It is simply an H-comodule. It is not an algebra.

Remark 6. Recall that the $Ka\iota 1ffn$)$aJ$l bracket skein module is a q-deformation
of the $SL_{2}$ (C)-character variety ([1], etc.).

Rep$k_{q}(SL_{2})$ is closely related to the Kauffman skein modules.

In fact, one can define “quantum character variety” $X^{H}(M)\subset$ Rep$H(M)$

for a co-ribbon Hopf algebra $H$ and $M\in \mathcal{E}$ as the H-invariant part of the
H-comodule Rep$H(M)$ .

When $H=k_{q}(SL_{2}),$ $X^{k_{q}(SL_{2})}(M)$ seems almost isomorphic to the Kauffian
bracket skein module of $Af$ .
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5.9 Quantum van Kampen (sketch)

There is a gluing formula for the QFG, or “quantum van Kampcn theorem”, of
the disk-based 3-manifold $M_{1} \bigcup_{\Sigma A}1I_{2}\in \mathcal{E}$ obtained from $J\uparrow/I_{1},$ $M_{2}\in \mathcal{E}$ by gluing
along a connected surface $\Sigma$ on the boundaries of $M_{1},$ $M_{2}$ .

We have

$P(M_{1} \bigcup_{I^{\backslash },}M_{2})\cong P(M_{1})\otimes_{P(\Sigma)}P(j|/I_{2})$.

$HereP(\Sigma)=P(\Sigma x$
へ

$[0,1])$ equipped with a monoid structure in the cocompletion
$\mathcal{H}=Set^{7\{^{op}}$ , which is a monoidal category.

$\otimes_{P(\Sigma)}$ denotes “tensor product over the monoid $P(\Sigma)$ ”, which exists since
$\mathcal{H}$

へ

is a cocomplete monoidal category.

5.10 Gluing formula for QRVs (sketch)

The Quantum van Kampen Theorem for QFGs implies a gluing formula for
QRV associated to a co-ribbon Hopf algebra $H$ .

For a connected surface $\Sigma$ , there is an (ordinary) algebra structure for $A_{\Sigma}$ $:=$

$Rep^{H}(\Sigma\cross[0,1])$ .
If $M$ is a icobordism” from $\Sigma$ to $\Sigma’$ , then Rep $H(M)$ is equipped with an

$(A_{\Sigma}, A_{\Sigma’})$-bimodule structure. Thcn the gluing formula for QRVs states that

Rep$H(ztI_{1^{\cup}\Sigma s}\eta h_{-})\cong$ Rep $H(11$ノ$I_{1})\otimes_{A_{I}}$, Rep$H(M_{2})$ .

These constructions give a 2-fumctor

$Rep^{H}:\{\begin{array}{l}surfacescobordismsembeddings\end{array}\}arrow\{\begin{array}{l}algebrasbimoduleshon1o\mathfrak{n}1\circ rphisms\end{array}\}$
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