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A note on quantum fundamental groups and
quantum representation varieties for 3-manifolds

Kazuo Habiro
RIMS, Kyoto University

September 25, 2011

This informal note is based on the author’s talk “Quantum fundamental
groups and quantum representation varieties for 3-manifolds” given in the work-
shop “Geometric and analytic approaches to representations of a group and rep-
resentation spaces”, held at RIMS during June 20 — June 24, 2011. Details of
this note will appear in papers in preparation.

1 Cobordism categories and embedding categories

1.1 Cobordism categories and TQFTs

In Quantum Topology, one considers the cobordism category Cobg, whose ob-
jects are compact, oriented (d — 1)-manifolds and whose morphisms are home-
omorphism classes of d-dimensional cobordisms.

A d-dimensional Topological Quantum Field Theory is a functor
F. Coby; — Vect

from Coby to the category Vect of vector spaces.

1.2 Embedding category Emby,

In this note, we consider embedding categories, which are another type of cat-
egories closely related to manifold topology. Let d > 1 be an integer. The
d-dimensional embedding category Emby is the category whose objects are com-
pact, oriented d-manifolds, and whose morphisms are isotopy classes of embed-
dings. Composition of morphisms is induced by composition of embeddings,
and the identity morphisms is represented by the identity homeomorphisms.

In what follows, we often confuse an embedding f: M — N and its isotopy
class [f]: M — N.



1.3 Relation between embedding categories and cobor-
dism categories

The embedding category is related to the cobordism category as follows. There
is a functor

d: Emby; — Coby,
M— 0M
[f: M — N]w— [N\ (int f(M))].
More precisely, the functor 8 maps each (d—1)-manifold M to its boundary M,
and each morphism [f]: M — N (represented by an embedding f: M — N) to

its “complement” [N \ (int f(M))], where f is chosen so that f(M) is contained
in the interior of M.

1.4 Functors from Emb,

Note that a homeomorphism f: M — M’ between two d-manifolds M, M’ €
Ob(Emby,) represents an isomorphism in Emby. Therefore, for each functor
F: Emb, — C from Emby to a category C, the isomorphism class of F(M) €
Ob(C) for M € Ob(Emby) is an invariant of M.

1.4.1 The functor U: Emb; — Toph

Let
U: Emby — Toph := Top/homotopy

denote the functor which maps M € Ob(Emby) to the underlying topological
space of M and which maps each morphism [f]: M — M’, which is an isotopy
class, to the homotopy class of f. Composing U with various functors from
Toph defined in Algebraic Topology, one obtains many functors from Emb,.
For example,

Emby;-LToph 252 Ab
Emb};-ZToph* I Grp Hom(7:6) getor

Here Emb); and Toph™ are the basepointed versions of Emby and Toph, re-
spectively, and G is a fixed group.

1.4.2 Skein modules

Another important class of functors defined on Emby is defined by skein mod-
ules. Roughly speaking, a skein module associated with a manifold M is

A(M) = k{“links” in M}/(ambient isotopy and local relations)
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Here “links” are a certain kind of subcomplexes in M, possibly with framings,
coloring, etc. It is clear that A(M) is functorial in embeddings, and hence we
have a functor

A: Emb, — k-Mod.

2 The category &

In the rest of this note, we restrict to the case d = 3.

In this section, we define the “category of disc-based 3-manifolds and disc-
based embeddings”, denoted by &€, which is the main object of study in this
note.

In what follows, all manifolds are oriented and all codimension 0 embeddings
are orientation-preserving.

2.1 Disk-based 3-manifolds and disk-based embeddings
A disk-based 3-manifold (M,1) consists of

e a connected 3-manifold M, and
e an embedding i: D? — oM.

The embedding ¢ is called the disc-basing.

A (disk-based) embedding f: (M,i) — (N, j) is an embedding f: M — N
which is compatible with the disc-basing, i.e., j = (f|aar) 0 4.

2.2 The category &

Define £ to be the category as follows. The objects are disc-based 3-manifolds,
the morphisms are the equivalence classes of disk-based embeddings, where
two disc-based 3-manifolds are equivalent if there is an isotopy between them
through disk-based embeddings. The composition in & is induced by composi-
tion of embeddings. The identity morphisms are defined by 1(as,q) = [idas).

For simplicity, we often write M for (M, ) by dropping the disc-basing i,
and we often confuse embeddings and their isotopy classes.

2.3 Based-homeomorphisms as isomorphisms in &

Clearly, a based-homeomorphism is an isomorphism in &.

Thus, given a functor F: & — C from & to a category C, the isomorphism
class of F(M) in C is a topological invariant of M.
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Proposition 1. A morphism f: M — M’ in £ i3 an isomorphism if and only
if f is represented by a disk-based homeomorphism.

Corollary 2. For M € Ob(£), the group Autg (M) is isomorphic to the “disc-
based mapping class group of M7, i.e., the group of the disc-based ambient
isotopy classes of the disc-based self-homeomorphisms of M.

2.4 Braided monoidal structure of £

The category £ has a braided monoidal category structure.

e The tensor functor
®: EXEE
is given by a kind of boundary connected sum.
e The monoidal unit given by the 3-ball B3,
e The braidings
Y MM S M oM

is represented by a homeomorphism which switches the M-part and the
M'-partin M @ M' and M' ® M.

3 The category H of handlebody embeddings

3.1 The full subcategory H of £

Let H denote the full subcategory of £ such that
Ob(H) = {%9 ‘/1’V21 .. -})

where V, is a fixed genus g handlebody obtained from a cylinder D? x [0, 1] with
g 1-handles on the top.

We identify Ob(H) with {0,1,2,...}.
In other words, H is the category with Ob(*) = {0,1,2,...} and

H(m,n) = {d.b. embeddings V,,, — V,,}/isotopy
= {m-component bottom tangles in V,,}/isotopy.
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3.2 Relations of H and other categories
Let C denote the Crane-Kerler-Yetter (CKY) cobordism category [3, 5]:
¢ objects — surface with boundary parametrized by S?,
¢ morphisms — homeomorphism classes of connected cobordisms.
Remark 3. HC°P is isomorphic to

o the “category of bottom tangles in handlebodies” ([4])

e the “category of special Lagrangian cobordisms” ([2})

which are (isomorphic to) a subcategory of the CKY category C.

3.3 Some structures of H

Fact. H is a braided monoidal subcategory of £. In particular, V,®Vy =V, »
in&.

Foct. In H, there is a braided Hopf algebra structure
H = (‘}:'l!ﬂ’)n?A’e:S)‘

{Crane-Yetter [3] and Kerler [5] had introduced the same structure in C(= C°P).)

4 Quantum fundamental groups

4.1 Definition of quantum fundamental groups
The quantum fundamental group (QFG) of M € Ob(€) is the functor
P(M)=E(i(-),M): H°P — Set.
Clearly, P(M) is functorial in M. Thus, we have a functor
P: &~ H :=Set"”.

Note that

P(M)(n) = E(i(n), M) = E(V,,, M) = {[Vo, = M]}
= {[n-component bottom tangle in M|}

maps surjectically onto the direct product 71 (M)". Thus, P(M) is a refinement
of the set m(M).



4.2 Goal

I would like to generalize everything about 7; into QFGs.
In the rest of this talk, I will explain attempts to generalizing

e representation spaces Rep®(m; M) = Homgp(m M, G),

¢ van Kampen Theorem.

5 Kan extension

For the definitions and properties of the Kan extensions, see Mac Lane’s book

[7].

5.1 Left Kan extension along i: H —» &

Let V be a cocomplete category, such as Set, Vect, Grp, Ab, ....

If we are given a functor Q: H — V, then there is the left Kan extension of
Q along ¢

Lan; Q: € — V.
Example 4. 1. For the fundamental groups, we have
Lan;(m: H — Grp) = (m: & — Grp).
2. For the QFGs, we have
Lany(Pi=Y: H — H)= (P: € — H).
Thus, the QFG is the left Kan extension along i of the Yoneda embedding
Y: H—-H.
5.2 Kan extension as coend

For simplicity, consider the case V = Vect = Vecty.
Let k(—): Set — Vect, S — k-S. For M € Ob(£), we have a functor

kP(M): H°® — Vect.

If Q: H — Vect is a functor, then (Lan; Q)(M) can be computed as the
coend, or the “tensor product” of kP(M): H°® — Vect and Q: H — Vect
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over H
(Lan; Q)(M) = kP(M) @ Q

neH
= / kP(M)(n) @5 Q(n)

z( P kP (n) ek Q(n)) /Relatiohs

n€Oh(H)

where Relations is spanned by

z®Q(f)(y) -~ kP(M)(f)(z) ®y
for f € H(n,n'), y € Q(n), x € kP(M)(r’), and n,n’ € Ob(H).

5.3 Problem

Lan; Q can be denoted
Lan; @ = kP ®y Q = Inds, Q: & — Vect.
Problem. Construct interesting functors
Q: H — Vect

which induce interesting functors on £
Lan; @: £ — Vect.

5.4 Co-ribbon Hopf algebras

The notion of co-ribbon Hopf algebra is the dual to that of ribbon Hopf algebra:

A co-ribbon Hopf algebra is a Hopf algebra H = (H,u,n,A, €, S) equipped
with

e a universal R-form R: HQ@ H — H,

e 3 co-ribbon element r: H — k.

5.5 Examples of co-ribbon Hopf algebras
e The dual H* = Hom(H, k) of a finite dimensional ribbon Hopf algebra H.
o Commutative Hopf algebras. (R=¢e¢Qe€, 7 =¢)

— The algebra Fung(G) of functions on a finite group G.
— The algebra k(G) of regular functions on a linear algebraic group G.

e The quantized algebra of regular functions, k(G), for G = SL(N),....



5.6 The category Comody
Let Comody denote the category of left H-comodules.
Fact. e If H is a Hopf algebra, then Comody is a monoidal category.

e (Majid) If H is co-quasitriangular, then Comodpy is a braided category.
The object H := (H,coad) € Oh(Comody) has a braided Hopf algebra
structure. Here

coad: H - H®H, 117'-—)2.’13(1)3(.1‘(3))@11(2)

is the left coadjoint coaction.

Theorem 5 (Cf. [6]). If H is a co-ribbon Hopf algebra, then there is a braided
monotdal functor

Q¥: H — Comody,
which maps the braided Hopf algebra structure in H to that in Comody.

5.7 Quantum representation variety

Since Comodpy is cocomplete, we have the following.
Corollary. If H is a co-ribbon Hopf algebra, then we have a functor

Rep? :=Lan; Q¥: £ —» Comody.

We call Rep” (M) the quantum representation variety of M associated to H.

5.8 Examples
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e If H = Funy(G) with G a finite group, then Rep™™ @ (M) = Fun(Homg,p (M M, G)).

o If H = k(G) with G a linear algebraic group, then Rep*®) (M) = Reg(Rep® (m M)),

the algebra of regular functions on the representation variety Rep® (m1 M).
o If H = k4(G), then Rep®a(%) is a g-deformation of Rep™® (m; M).
It is simply an H-comodule. It is not an algebra.

Remark 6. Recall that the Kauffman bracket skein module is a g-deformation
of the SLy(C)-character variety ([1], etc.).

Rep*e(5L2) g closely related to the Kauffman skein modules.

In fact, one can define “quantum character variety” X #(M) C Rep¥ (M)
for a co-ribbon Hopf algebra H and M € £ as the H-invariant part of the
H-comodule Rep™ (M).

When H = ky(SLy), X*«(5L2) (M) seems almost isomorphic to the Kauffman
bracket skein module of M.



5.9 Quantum van Kampen (sketch)

There is a gluing formula for the QFG, or “quantum van Kampen theorem”, of
the disk-based 3-manifold M; Ug M, € € obtained from M;, M, € £ by gluing
along a connected surface ¥ on the boundaries of My, M,.

We have
P(‘Ml Us: Mz) &~ P(Ml) ®p(g) P(]\/Iz).

Here P(X) = P(Zx (0, 1]) equipped with a monoid structure in the cocompletion
H = Set™™, which is a monoidal category.

@p(x) denotes “tensor product over the monoid P(X)”, which exists since
H is a cocomplete monoidal category.

5.10 Gluing formula for QRVs (sketch)

The Quantum van Kampen Theorem for QFGs implies a gluing formula for
QRYV associated to a co-ribbon Hopf algebra H.

For a connected surface Z, there is an (ordinary) algebra structure for As, :=
Rep™(Z x [0,1]).

If M is a “cobordism” from ¥ to ¥’, then RepH (M) is equipped with an
(Ag, Asr)-bimodule structure. Then the gluing formula for QRVs states that

Rep™ (M U Ma) = Rep® (My) ® 4., Rep™ (My).

These constructions give a 2-functor

surfaces algebras
Rep”: { cobordisms § —s bimodules

embeddings homomorphisms
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