AN EPIMORPHISM BETWEEN KNOT GROUPS WHICH DOES NOT MAP A MERIDIAN TO A MERIDIAN (II)

MASAAKI SUZUKI

1. Introduction

Let K be a knot in S^3 and G(K) the knot group. The existence of an epimorphism between knot groups defines a partial order on the set of prime knots. In [4], we consider epimorphisms which map meridians to a meridians. it is determined whether there exists such an epimorphism between the knot groups for each pair of prime knots with up to 10 crossings in [4]. The result of [4] is extended to prime knots with up to 11 crossings in [2]. On the other hand, we show an example of an epimorphism which does not map a meridian to a meridian in [9]. In this paper, we will show another expmple of an epimorphism, whose image is the knot group of the figure eight knot.

2. Definition of an epimorphism and main theorem

Let K_1 be knots as depicted in Figure 1 and K_2 the figure eight knot.

FIGURE 1. Knot K_1

The knot group $G(K_1)$ admits a Wirtinger presentation with respect to Figure 1. We denote the generators by x_1, x_2, \ldots, x_{32} and the defining relators are

```
x_5x_1\bar{x}_5\bar{x}_2,
                                        x_{13}x_3\bar{x}_{13}\bar{x}_2,
                                                                                  x_{25}x_3\bar{x}_{25}\bar{x}_4,
                                                                                                                            x_{31}x_5\bar{x}_{31}\bar{x}_4,
                                                                                                                                                                                                               x_1x_6\bar{x}_1\bar{x}_7
                                                                                                                                                                     x_{13}x_{6}\bar{x}_{13}\bar{x}_{5},
                                                                                  x_{31}x_{9}\bar{x}_{31}\bar{x}_{10}, x_{25}x_{11}\bar{x}_{25}\bar{x}_{10}, x_{13}x_{11}\bar{x}_{13}\bar{x}_{12}, x_{5}x_{13}\bar{x}_{5}\bar{x}_{12},
x_{20}x_{8}\bar{x}_{20}\bar{x}_{7},
                                        x_{26}x_{8}\bar{x}_{26}\bar{x}_{9},
x_5x_{14}\bar{x}_5\bar{x}_{13},
                                        x_9x_{14}\bar{x}_9\bar{x}_{15},
                                                                                  x_{26}x_{16}\bar{x}_{26}\bar{x}_{15}, \quad x_{20}x_{16}\bar{x}_{20}\bar{x}_{17}, \quad x_{23}x_{18}\bar{x}_{23}\bar{x}_{17}, \quad x_{17}x_{18}\bar{x}_{17}\bar{x}_{19},
x_7x_{20}\bar{x}_7\bar{x}_{19},
                                        x_{31}x_{20}\bar{x}_{31}\bar{x}_{21}, \quad x_{18}x_{22}\bar{x}_{18}\bar{x}_{21}, \quad x_{28}x_{22}\bar{x}_{28}\bar{x}_{23}, \quad x_{11}x_{24}\bar{x}_{11}\bar{x}_{23}, \quad x_{3}x_{24}\bar{x}_{3}\bar{x}_{25},
x_{31}x_{26}\bar{x}_{31}\bar{x}_{25}, \quad x_7x_{26}\bar{x}_7\bar{x}_{27},
                                                                                  x_{17}x_{28}\bar{x}_{17}\bar{x}_{27}, \quad x_{23}x_{28}\bar{x}_{23}\bar{x}_{29}, \quad x_{28}x_{30}\bar{x}_{28}\bar{x}_{29}, \quad x_{18}x_{30}\bar{x}_{18}\bar{x}_{31},
x_3x_{32}\bar{x}_3\bar{x}_{31},
                                        x_{11}x_{32}\bar{x}_{11}\bar{x}_{1},
```

where $\bar{x}_i = x_i^{-1}$. Note that x_1 can be regarded as a meridian of K_1 since all the generators are conjugate to one another.

We fix a presentation of the knot group $G(K_2)$:

$$G(K_2) = \langle y_1, y_2 | \bar{y}_1 y_2 y_1 \bar{y}_2 y_1 y_2 \bar{y}_1 \bar{y}_2 y_1 \bar{y}_2 \rangle.$$

where $\bar{y}_i = y_i^{-1}$ again.

Let $f: G(K_1) \to G(K_2)$ be a mapping defined by the image of generators of $G(K_1)$ as follows. Here we write numbers 1, 2 for the generators y_1, y_2 respectively. For example, $11\overline{2}$ means $y_1y_1y_2^{-1}$.

```
f(x_1)=11\bar{2},
                                                                  f(x_2) = 1\bar{2}111\bar{2}\bar{1}2\bar{1},
                                                                  f(x_4) = 11\bar{2}1\bar{2}12\bar{1}\bar{1},
f(x_3) = 2\bar{1}\bar{2}1121\bar{2}\bar{1},
                                                                 f(x_6) = 2\bar{1}\bar{2}111\bar{2},
f(x_5)=121,
                                                                  f(x_8) = 2\bar{1}2\bar{1}\bar{2}1\bar{2}1\bar{2}1\bar{2}1\bar{2},
f(x_7)=1\bar{2}1,
f(x_9) = 1\bar{2}1,
                                                                  f(x_{10}) = 112121211,
                                                                  f(x_{12}) = 1\bar{2}111\bar{2}\bar{1}2\bar{1},
f(x_{11}) = 2\bar{1}\bar{2}1121\bar{2}\bar{1},
f(x_{13}) = 11\bar{2},
                                                                  f(x_{14}) = \bar{1}21\bar{2}121,
                                                                  f(x_{16}) = 2\bar{1}2\bar{1}\bar{2}111\bar{2}1\bar{2},
f(x_{15}) = 11\overline{2},
f(x_{17}) = 11\bar{2},
                                                                  f(x_{18}) = 2\overline{1}\overline{2}1121\overline{2}\overline{1},
f(x_{19}) = 1\bar{2}121\bar{2}1\bar{2}\bar{1}2\bar{1},
                                                                  f(x_{20}) = 21\bar{2}1\bar{2},
                                                                  f(x_{22}) = 12\bar{1}\bar{1}\bar{1}21\bar{2}1\bar{2}111\bar{2}\bar{1},
f(x_{21}) = 111\bar{2}\bar{1},
                                                                  f(x_{24}) = 12\overline{1}\overline{1}\overline{1}21\overline{2}1\overline{2}111\overline{2}\overline{1},
f(x_{23}) = 111\bar{21},
f(x_{25}) = 111\bar{2}\bar{1},
                                                                  f(x_{26}) = 21\overline{2}1\overline{2},
f(x_{27}) = 1\bar{2}121\bar{2}1\bar{2}\bar{1}2\bar{1},
                                                                  f(x_{28}) = 2\bar{1}\bar{2}1121\bar{2}\bar{1},
f(x_{29}) = 11\bar{2},
                                                                  f(x_{30}) = 12\overline{1}\overline{1}\overline{2}\overline{1}21\overline{2}1\overline{2}1211\overline{2}\overline{1},
                                                                  f(x_{32}) = 12\bar{1}\bar{1}\bar{2}\bar{1}21\bar{2}1\bar{2}1211\bar{2}\bar{1}.
f(x_{31})=11\bar{2},
```

Theorem 2.1. The above mapping $f: G(K_1) \to G(K_2)$ is an epimorphism which does not map a meridian of K_1 to a meridian of K_2 .

3. Proof

Theorem 2.1 is shown in this section. First, we will verify the defining relators of $G(K_1)$ vanish under the mapping f so that we prove that $f: G(K_1) \to G(K_2)$ is a group homomorphism,

```
\begin{array}{rcl} f(x_5x_1\bar{x}_5\bar{x}_2) &=& 1\bar{2}1\cdot 11\bar{2}\cdot \bar{1}2\bar{1}\cdot 1\bar{2}1\bar{1}\bar{1}\bar{2}\bar{1} = e, \\ f(x_{13}x_3\bar{x}_{13}\bar{x}_2) &=& 11\bar{2}\cdot 2\bar{1}\bar{2}1121\bar{2}\bar{1}\cdot 2\bar{1}\bar{1}\cdot 1\bar{2}12\bar{1}\bar{1}\bar{1}2\bar{1} = e, \\ f(x_{25}x_3\bar{x}_{25}\bar{x}_4) &=& 111\bar{2}\bar{1}\cdot 2\bar{1}\bar{2}1121\bar{2}\bar{1}\cdot 12\bar{1}\bar{1}\bar{1}\cdot 11\bar{2}\bar{1}2\bar{1}2\bar{1}\bar{1}\\ &=& 111\bar{2}\bar{1}2\bar{1}\bar{2}1\bar{2}1\bar{2}\bar{1}\bar{1}\bar{1} = e, \\ f(x_{31}x_5\bar{x}_{31}\bar{x}_4) &=& 11\bar{2}\cdot 1\bar{2}\bar{1}\cdot 2\bar{1}\bar{1}\cdot 11\bar{2}\bar{1}2\bar{1}\bar{2}\bar{1}\bar{1} = e, \\ f(x_{13}x_6\bar{x}_{13}\bar{x}_5) &=& 11\bar{2}\cdot 2\bar{1}\bar{2}111\bar{2}\cdot 2\bar{1}\bar{1}\cdot \bar{1}2\bar{1} = e, \\ f(x_{13}x_6\bar{x}_{13}\bar{x}_7) &=& 11\bar{2}\cdot 2\bar{1}\bar{2}111\bar{2}\cdot 2\bar{1}\bar{1}\cdot \bar{1}2\bar{1} = e. \end{array}
```

Then $f: G(K_1) \to G(K_2)$ is a group homomorphism by the above and similar calculations. Next, we will show that the group homomorphism $f: G(K_1) \to G(K_2)$ is surjective. We consider two elements $x_1\bar{x}_7x_1\bar{x}_{23}x_1, \bar{x}_7x_1\bar{x}_{23}x_1x_1\bar{x}_7x_1\bar{x}_{23}x_1$ of $G(K_1)$.

Since two elements 1 and 2 generate $G(K_2)$, it is shown that the group homomorphism f is surjective. Finally, we will prove that f does not map a meridian of K_1 to a meridian of K_2 . We can fix meridians for K_1 and K_2 by x_1 and 1, without loss of generality. Let $\rho: G(K_2) \to SL(2; \mathbb{Z}/3\mathbb{Z})$ be a representation of $G(K_2)$ defined by

$$\rho(1) = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \qquad \rho(2) = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}.$$

We can check easily that ρ is a representation of $G(K_2)$. Besides, we get

$$\rho(f(x_1)) = \rho(11\overline{2}) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

Note that the trace of $\rho(1)$ is 1. On the other hand, the trace of $\rho(f(x_1))$ is not equal to 1. Hence $f(x_1)$ is not conjugate to 1. It follows that the epimorphism f does not map a meridian of K_1 to a meridian of K_2 . This completes the proof.

4. Problem

In this section, we propose some problems related to epimorphisms between knot groups. We determined whether there exist an epimorphism mapping a meridian to a meridian between the knot groups of each pair of prime knots with up to 11 crossings in [4] and [2].

Problem 4.1. Determine whether there exist an epimorphism between the knot groups of each pair of prime knots with up to 11 crossings. Here we do not assume that an epimorphism maps a meridian to a meridian. In particular, does there exist such an epimorphism between 2-bridge knot groups?

We note that Ohtsuki-Riley-Sakuma [7] and Lee-Sakuma [6] studied epimorphisms between 2-bridge link groups. Perhaps there exist several epimorphisms for the given knot groups. In this sense, we are interested in the following.

Problem 4.2. Which pair of knots with up to 11 crossings admit an epimorphism between their knot groups which does not map a meridian to a meridian?

ACKNOWLEDGEMENT

This work was partially supported by KAKENHI (21740033).

REFERENCES

- [1] J.C. Cha and C. Livingston, *KnotInfo: Table of Knot Invariants*, http://www.indiana.edu/knotinfo, March 15, 2011.
- [2] K. Horie, T. Kitano, M. Matsumoto and M. Suzuki, A partial order on the set of prime knots with up to 11 crossings, J. Knot Theory Ramifications 20 (2011), 275-303.
- [3] D. Johnson, Homomorphs of knot groups, Proc. Amer. Math. Soc. 78 (1980), 135-138.
- [4] T. Kitano and M. Suzuki, A partial order in the knot table, Experiment. Math. 14 (2005), 385-390.
- [5] T. Kitano, M. Suzuki and M. Wada, Twisted Alexander polynomials and surjectivity of a group homomorphism, Algebr. Geom. Topol. 5 (2005), 1315-1324.
- [6] D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: Homotopically trivial simple loops on 2-bridge spheres, arXiv:1004.2571.
- [7] T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between 2-bridge link groups, Geom. Topol. Monogr. 14 (2008), 417-450.
- [8] D. Silver, W. Whitten and S. Williams, Knot groups with many killers, Bull. Aust. Math. Soc. 81 (2010), 507-513.
- [9] M. Suzuki, An Epimorphism between knot groups which does not map a meridian to a meridian, Twisted topological invariants and topology of low-dimensional manifolds (Akita, 2010). Surikaisekikenkyusho Kokyuroku No. 1747 (2011), 135-139,
- [10] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256.

DEPARTMENT OF MATHEMATICS, AKITA UNIVERSITY E-mail address: macky@math.akita-u.ac.jp