Numerical range of a matrix associated with the graph of a trigonometric polynomial

Hiroshi Nakazato（Hirosaki University ）

Abstract

We present a determinantal representation of a hyperbolic ternary form associated with a trigonometric polynomial．The result is obtained by a joint work with Professor Mao－Ting Chien．

Keywords：curves，numerical range，curves
Mathematics Subject Classification：15A60，14Q05

1．Lax－Fiedler conjecture

Suppose that A is an $n \times n$ complex matrix．The numerical range $W(A)$ of A is defined as

$$
\begin{equation*}
W(A)=\left\{\xi^{*} A \xi: \xi \in \mathbf{C}^{n}, \xi^{*} \xi=1\right\} . \tag{1.1}
\end{equation*}
$$

In 1918 Toeplitz introduced this set $W(A)$ ．He characterized $\partial W(A)$ by

$$
\begin{equation*}
\max \left\{\Re\left(e^{-i \theta} z\right): z \in W(A)\right\}=\max \sigma(H(\theta: A)), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{gather*}
H(\theta: A)=\frac{1}{2}\left(e^{-i \theta} A+e^{i \theta} A^{*}\right) \\
\sigma(H)=\{\lambda \in \mathbf{R}: \operatorname{det}(\lambda I-H)=0\}, \tag{1.3}
\end{gather*}
$$

for $H=H^{*}$ ．In 1919 Hausdorff proved the simply connectedness of the range $W(A)$ ．The simply connectedness of the numerical range is also valid for a linear matrix pencil $A \lambda+B$ with $0 \notin W(A)([20])$ ．To compute the eigenvalues of $H(\theta: A)$ we introduce a ternary form

$$
\begin{equation*}
F_{A}(t, x, y)=\operatorname{det}\left(t I_{n}+x / 2\left(A+A^{*}\right)-y i / 2\left(A-A^{*}\right)\right) . \tag{1.4}
\end{equation*}
$$

By the equation

$$
\operatorname{det}\left(t I_{n}-H(\theta: A)\right)=F_{A}(t,-\cos \theta,-\sin \theta),
$$

this ternary form determines the eigenvalues of $H(\theta)$ for every angle θ ．

In 1951, Kippenhahn [15] showed that

$$
\begin{gathered}
W(A)=\operatorname{Conv}\left(\left\{X+i Y:(X, Y) \in \mathbf{R}^{2}, X x+Y y+1=0\right.\right. \text { is a tangent of } \\
F(1, x, y)=0\} .
\end{gathered}
$$

By this result, the boundary of the numerical range $W(A)$ lies on the dual curve of the algebraic curve $F(1, x, y)=0$ when $W(A)$ is strictly convex.

The form $F_{A}(t, x, y)$ satisfies (i) $F_{A}(1,0,0)>0$ and (ii) For every $\left(x_{0}, y_{0}\right) \in$ \mathbf{R}^{2}, the equation $F_{A}\left(t, x_{0}, y_{0}\right)=0$ in t has n real solutions couting the multiplicities of the solutions. In 1981, Fiedler [11] conjectured: If $F(t, x, y)$ is a real ternary form of degree n and satisfies (i) $F(1,0,0)=c>0$ and (ii) For every $\left(x_{0}, y_{0}\right) \in \mathbf{R}^{2}$, the equation $F\left(t, x_{0}, y_{0}\right)=0$ in t has n real solutions couting the multiplicities of the solutions, then there exists an $n \times n$ complex matrix A with

$$
\begin{equation*}
F(t, x, y)=c \operatorname{det}\left(t I_{n}+x / 2\left(A+A^{*}\right)-y i / 2\left(A-A^{*}\right)\right) . \tag{1.5}
\end{equation*}
$$

If a ternary form $F(t, x, y)$ satisfies the above conditions (i) and (ii), then the form is said to be hyperbolic with respect to $(1,0,0)([1])$. Before Fiedler's formulation, Lax [16] conjectured more strong result in 1958: the above conditions (i), (ii) for F implies the existence of a pair of real symmetric matrices H, K satisfying

$$
\begin{equation*}
F(t, x, y)=c \operatorname{det}\left(t I_{n}+x H+y K\right) . \tag{1.6}
\end{equation*}
$$

In 2007, Helton and Vinnikov [13] showed thar the Lax conjecture is true (cf. [17]). Hence the Filedler conjecture is true.

We shall consider the determinantal representations of a homogeneous polynomial. Whether a complex homogeneous polynomial $F\left(x_{1}, x_{2}, \ldots, x_{m}\right)(m \geq$ 2) with Degree n in m indeterminates x_{1}, \ldots, x_{m} can be represented as

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}\right) \tag{1.7}
\end{equation*}
$$

for some $n \times n$ complex matrices $A_{1}, A_{2}, \ldots, A_{n}$ or not?
In the case $m=2$, the form F is expressed as

$$
\prod_{j=1}^{n}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)
$$

Hence the diagonal matrices $A_{1}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), A_{2}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)$ satisfy (1.7). The following results are known.

Theorem [A. C. Dixon, 1901, [9]] For every (non-zero) complex ternary form $F(t, x, y)$ of degree n, there are $n \times n$ complex symmetric matrices A_{1}, A_{2}, A_{3} satisfying

$$
F(t, x, y)=\operatorname{det}\left(t A_{1}+x A_{2}+y A_{3}\right) .
$$

Theorem [L. E. Dickson, 1920, [10]] A generic homogeneous polynomials in m variables of degree n has a representation

$$
\operatorname{det}\left(x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{m} A_{m}\right)=0
$$

by $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{m}$ if and only if

1. $m=3$ (curves),
2. $m=4$ and $n=2,3$ (surfaces),
3. $m=4$ and $n=2$ (threefolds).

Theorem [V. Vinnikov, 1993. [21]] An irreducible real algebraic curve $F(t, x, y)=0$ has a representation

$$
\begin{equation*}
\operatorname{det}\left(t H_{1}+x H_{2}+y H_{3}\right)=0, \tag{1.8}
\end{equation*}
$$

by Hermitian matrices H_{1}, H_{2}, H_{3}.
We remark that if H_{1} in (1.8) is positive definite, then the real ternary form $\operatorname{det}\left(t H_{1}+x H_{2}+y H_{3}\right)$ has the property (i) and (ii) mentioned in the above. In such a case, we have the equation
$\operatorname{det}\left(t H_{1}+x H_{2}+y H_{3}\right)=\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(t I+x H_{1}^{-1 / 2} H_{2} H_{1}^{-1 / 2}+y H_{1}^{-1 / 2} H_{3} H_{1}^{-1 / 2}\right)$.

An analogous object of $W(A)$ for a linear operator in an indefinite space satisfies some convexity property (cf. [2], [3], [19]).

We shall consider the joint numerical range of Hermitian matrices. Suupose that $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ is an ordered m-ple of $n \times n$ Hermitian matrices. The joint numerical range $W\left(H_{1}, H_{2}, \ldots, H_{m}\right)$ is defined as

$$
\begin{equation*}
W\left(H_{1}, H_{2}, \ldots, H_{m}\right)=\left\{\left(\xi^{*} H_{1} \xi, \xi^{*} H_{2} \xi, \ldots, \xi^{*} H_{m} \xi\right): \xi \in \mathbf{C}^{n}, \xi^{*} \xi=1\right\} . \tag{1.9}
\end{equation*}
$$

If $m=3, n \geq 3$, the set $W\left(H_{1}, H_{2}, H_{3}\right) \subset \mathbf{R}^{3}$ is convex. In the case $H_{3}=$ $H_{1}^{2}+H_{2}^{2}+i\left(H_{1} H_{2}-H_{2} H_{1}\right)$, the joint numerical range $W\left(H_{1}, H_{2}, H_{3}\right)$ is known as the Davis-Wielandt shell of a matrix $A=H_{1}+i H_{2}$. By using the convexity
of the joint numerical range $W\left(H_{1}, H_{2},\left(H_{1}+i H_{2}\right)^{*}\left(H_{1}+i H_{2}\right)\right)$ for $n \geq 3$, we can prove the convexity of the generalized numerical range

$$
W_{q}(A)=\left\{\eta^{*} A \xi: \xi, \eta \in \mathbf{C}^{n}, \xi^{*} \xi=1, \eta^{*} \eta=1, \eta^{*} \xi=q\right\}
$$

for an $n \times n$ matrix A and a real number $0 \leq q \leq 1$ (cf. [18], [5], [6]). In the case $q=1$, the range $W_{q}(A)$ coincides with the numerical range $W(A)$. The set $W\left(H_{1}, H_{2}, H_{3}, H_{4}\right)$ is not necessarily convex.

Example Let

$$
\begin{aligned}
& H_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), H_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& H_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), H_{4}=\left(\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and let

$$
\Pi=\left\{(1, x, y, z):(x, y, z) \in \mathbf{R}^{3}\right\}
$$

Then we have

$$
W\left(H_{1}, H_{2}, H_{3}, H_{4}\right)=\left\{(1, x, y, z): x^{2}+y^{2}+z^{2}=1\right\} .
$$

Suppose that $\Delta=\operatorname{Conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)$ contains $(0,0, \ldots, 0)$ as an interior point. Then the set

$$
\begin{gathered}
\hat{\Delta}=\left\{\left(X_{1}, X_{2}, \ldots, X_{m}\right) \in \mathbf{R}^{m}, X_{1} x_{1}+X_{2} x_{2}+\ldots+X_{m} x_{m}+1 \geq 0,\right. \text { for } \\
\left.\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right\}
\end{gathered}
$$

is a compact convex set. Its boundary point $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ satisfies

$$
\operatorname{det}\left(I_{n}+X_{1} H_{1}+X_{2} H_{2}+\cdots+X_{m} H_{m}\right)=0, \quad \operatorname{det}\left(I_{n}+t\left[X_{1} H_{1}+X_{2} H_{2}+\cdots+X_{m} H_{m}\right]\right)>0
$$

for $0 \leq t<1$. The coonnected compotent of the set

$$
\begin{equation*}
\left\{\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) \in \mathbf{R}^{m}: \operatorname{det}\left(I_{m}+Y_{1} H_{1}+Y_{2} H_{2}+\ldots+Y_{m} H_{m}\right) \neq 0\right\} \tag{1.10}
\end{equation*}
$$

containing $(0,0, \ldots, 0)$ corresponds to the cross section of the positive cone

$$
\begin{equation*}
\left\{K=\left(a_{i j}\right) \in M_{n}(\mathbf{C}): K=K^{*}, \xi^{*} K \xi>0 \text { for } \xi \in \mathbf{C}^{n}, \xi \neq 0\right\} \tag{1.11}
\end{equation*}
$$

with the affine plane

$$
\begin{equation*}
\left\{I_{n}+Y_{1} H_{1}+Y_{2} H_{2}+\ldots+Y_{m} H_{m}:\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) \in \mathbf{R}^{m}\right\} \tag{1.12}
\end{equation*}
$$

Are there an m-ple of Hermitian matrices $H_{1}, H_{2}, \ldots, H_{m}$ and a constant c satisfying

$$
\begin{equation*}
F\left(x_{0}, x_{1}, x_{2}, \ldots, x_{m}\right)=c \operatorname{det}\left(x_{0} I_{n}+x_{1} H_{1}+x_{2} H_{2}+\ldots+x_{m} H_{m}\right), \tag{1.13}
\end{equation*}
$$

if F is a form of degree n hyperbolic with respect to $(1,0, \ldots, 0)$?
Example 1 Suppose that

$$
F\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=t^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) .
$$

Then the form F is hyperbolic with respect to ($1,0,0,0,0$). There is no ordered set ($H_{2}, H_{2}, H_{3}, H_{4}$) of 2×2 Hermian matrices satifying

$$
t^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)=\operatorname{det}\left(t I_{2}+x_{1} H_{1}+x_{2} H_{2}+x_{3} H_{3}+x_{4} H_{4}\right) .
$$

In fact we asume that there exist such Hermitian matrices $H_{1}, H_{2}, H_{3}, H_{4}$. For every point ($x_{1}, x_{2}, x_{3}, x_{4}$), we have
$x_{0}^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)=\left(x_{0}+\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}\right)\left(x_{0}-\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}\right)=0$
and hence $\operatorname{tr}\left(x_{1} H_{1}+x_{2} H_{2}+x_{3} H_{3}+x_{4} H_{4}\right)=0$. Thus the Hermitian matrix $x_{1} H_{1}+x_{2} H_{2}+x_{3} H_{3}+x_{4} H_{4}$ is expressed as
$L_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)+L_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+L_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$,
where $L_{j}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)(j=1,2,3)$ are linear functionals. We should have
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=L_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{2}+L_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{2}+L_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{2}$.
However this equation is impossible since the rank of the quadratic form in the right-hand side is less than or equal to 3 and the rank of the quadratic form in the lect-hand side is 4 . Thus the expression as (1.9) is impossible.

Example 2 Suppose that

$$
F\left(t, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=t^{3}-t\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}\right) .
$$

Then the form F is hyperbolic with respect to $(1,0,0,0,0,0)$. The form $F\left(t, x_{1}, x_{2}, x_{3}, x_{4}, 0\right)$ is realized as

$$
\operatorname{det}\left(\left(\begin{array}{ccc}
t & x_{1}+i x_{2} & x_{3}+i x_{4} \\
x_{1}-i x_{2} & t & 0 \\
x_{3}-i x_{4} & 0 & t
\end{array}\right)\right.
$$

Probably the form F itself can not be realized as $\operatorname{det}\left(t I_{3}+x_{1} H_{1}+x_{2} H_{2}+x_{3} H_{3}+\right.$ $x_{4} H_{4}+x_{5} H_{5}$) by 3×3 Hermitian matrices $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$. I can not so far prove such a non existence.

2. Henrion's method using Bezoutians

Consider the two polynomials in s, there are coefficients α_{j}, β_{j} so that

$$
\begin{align*}
& \phi_{1}(s)=\sum_{j=0}^{m} \alpha_{j} s^{j}, \tag{2.1}\\
& \phi_{2}(s)=\sum_{j=0}^{m} \beta_{j} s^{j} . \tag{2.2}
\end{align*}
$$

The Bezoutian matrix of (2.1) and (2.2) is the $m \times m$ matrix

$$
\left.\mathrm{Bez}=\left(g_{i, j}\right), 1 \leq i, j \leq m\right)
$$

where

$$
\begin{equation*}
g_{i, j}=\sum_{0 \leq k \leq \min (i-1, j-1)}\left(\alpha_{i+j-1-k} \beta_{k}-\alpha_{k} \beta_{i+j-1-k}\right) . \tag{2.3}
\end{equation*}
$$

The entries $g_{i, j}$ are characterized as

$$
\frac{\phi_{1}(s) \phi_{2}(t)-\phi_{2}(s) \phi_{1}(t)}{s-t}=\sum_{i, j=1}^{m} g_{i, j} s^{i-1} t^{j-1}
$$

For example, when $m=4$, the 4×4 Bezoutian matrix

$$
\begin{equation*}
\mathrm{Bez}=\left\{\left(g_{i j}\right), 1 \leq i, j \leq 4\right\} \tag{2.4}
\end{equation*}
$$

is symmetric with entries

$$
\begin{aligned}
& g_{11}=\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}, \quad g_{12}=\alpha_{2} \beta_{0}-\alpha_{0} \beta_{2}, \\
& g_{13}=\alpha_{3} \beta_{0}-\alpha_{0} \beta_{3}, \quad g_{14}=\alpha_{4} \beta_{0}-\alpha_{0} \beta_{4}, \\
& g_{22}=\alpha_{3} \beta_{0}+\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}-\alpha_{0} \beta_{3}, \quad g_{23}=\alpha_{4} \beta_{0}+\alpha_{3} \beta_{1}-\alpha_{1} \beta_{3}-\alpha_{0} \beta_{4}, \\
& g_{24}=\alpha_{4} \beta_{1}-\alpha_{1} \beta_{4}, \quad g_{33}=\alpha_{4} \beta_{1}+\alpha_{3} \beta_{2}-\alpha_{2} \beta_{3}-\alpha_{1} \beta_{4} \\
& g_{34}=\alpha_{4} \beta_{2}-\alpha_{2} \beta_{4}, \quad g_{44}=\alpha_{4} \beta_{3}-\alpha_{3} \beta_{4}
\end{aligned}
$$

The two polynomials $\phi_{1}(s), \phi_{2}(s)$ have a non-constant common divisor $\psi(s)$ if and only if $\operatorname{det}(\mathrm{Bez})=0$.

Henrion [12] provided a more elementary method in the case $F(t, x, y)=0$ is a rational curve. Henrion started from a parametrized form

$$
\begin{equation*}
x=\phi(s), \quad y=\psi(s) \tag{2.1}
\end{equation*}
$$

of the rational curve $F(1, x, y)=0$ by real rational functions in s.
We express the rational functions $\phi(s), \psi(s)$

$$
\begin{equation*}
\phi(s)=\frac{f(s)}{h(s)} \quad \psi(s)=\frac{g(s)}{h(s)}, \tag{2.2}
\end{equation*}
$$

by real polynomials $f(s), g(s), h(s)$
We have

$$
\begin{align*}
& L_{1}(s)=h(s) x-f(s)=0, \tag{2.3}\\
& L_{2}(s)=h(s) y-g(s)=0 . \tag{2.4}
\end{align*}
$$

By these equations, he constructed real symmetric matrices H_{1}, H_{2}, H_{3} satisfying

$$
F(t, x, y)=\operatorname{det}\left(t H_{1}+x H_{2}+y H_{3}\right)
$$

by using Bezoutians.
We shall treat the rational curve $F(1, x, y)=0$ given as the graph of a trigonometric polynomial

$$
\begin{equation*}
z(\theta)=c_{-n} \exp (-i n \theta)+\ldots+c_{0}+\cdots+c_{n} \exp (i n \theta)=\sum_{j=-n}^{n} c_{j} \exp (\sqrt{-1} j \theta) \tag{2.5}
\end{equation*}
$$

$(n=1,2, \ldots)$

Then we can obtain a real ternary form $F(t, x, y)$ of degree $2 n$ satisfying

$$
F(1, \Re(z(\theta)), \Im(z(\theta)))=0
$$

$(0 \leq \theta \leq 2 \pi)$. One method to obtain the non-homogeneous $f(x, y)=F(1, x, y)$ is given as the following. We set $z=x+i y$ and $w=x-i y$ and $u=\exp (i \theta)$. We have

$$
\begin{aligned}
& M_{1}(u)=-z u^{m}+c_{m} u^{2 m}+\cdots+c_{0} u^{m}+\cdots+c_{-m}=0, \\
& M_{2}(u)=-w u^{m}+\overline{c_{-m}} u^{2 m}+\cdots+\overline{c_{0}} u^{m}+\cdots+\overline{c_{m}}=0,
\end{aligned}
$$

By using Sylvester determinant, we can eliminate u from these equations and obtain the polynomial $f(x, y)$. However this method does not provide us a method to construct Hermitian matrices H_{1}, H_{2}, H_{3} satisfying (1.6).

We have another problem. When the form $F(t, x, y)$ assocated with the trigonometric polynomial (2.5) is hyperbolic with respect to ($1,0,0$) ? By the condition $F(1,0,0)>0$, the graph of the trigonometric polynomial does not pass through the origin 0 in the Gausian plane. In an early step, the author supposed the condition

$$
\left|c_{n}\right|>\sum_{j=-n}^{n-1}\left|c_{j}\right|
$$

for the form $F(t, x, y)$ to be hyperbolic with respect to ($1,0,0$).
In a letter to the author, Prof. T. Nakazi provided a general condition for the form $F(t, x, y)$ to be hyperbolic
under the condition

$$
\begin{gather*}
c_{n}>0, \tag{2.6}\\
\frac{d \operatorname{Arg}(z(\theta))}{d \theta}>0
\end{gather*}
$$

($0 \leq \theta \leq 2 \pi$).
Nakazi's condition: The equation

$$
\begin{equation*}
c_{n} z^{2 n}+\cdots+c_{0} z^{n}+\cdots+c_{-n}=c_{n} \prod_{j=1}^{2 n}\left(z-\alpha_{j}\right) \tag{2.7}
\end{equation*}
$$

holds for $\left|\alpha_{j}\right|<1(j=1,2, \ldots, 2 n)$. His condition is deduced from Rouché's theorem.

Theorem[8] If a trigonometric polynomial

$$
z(\theta)=\sum_{j=-n}^{n} c_{j} \exp (\sqrt{-1} j \theta)
$$

satisfies the condition

$$
\begin{equation*}
c_{n} z^{2 n}+\cdots+c_{0} z^{n}+\cdots+c_{-n}=c_{n} \prod_{j=1}^{2 n}\left(z-\alpha_{j}\right) \tag{2.7}
\end{equation*}
$$

for $\left|\alpha_{j}\right|<1$, then the rational curve obtained as the graph of $z(\theta)=x(\theta)+i y(\theta)$ is realized as

$$
\operatorname{det}\left(H_{1}+x H_{2}+y H_{3}\right)=0
$$

for some $2 n \times 2 n$ real symmetric matrices H_{2}, H_{3} and a positive definite real symmetric matrix H_{1}.

To prove the positivity of the Hermitian matrix H_{1}, Hermite's classical theorem on zeros of a polynomial plays an important role. Let

$$
p(z)=\sum_{j=0}^{n} \gamma_{j} z^{j}
$$

be a polynomial in z with the leading coefficient $\gamma_{n} \neq 0$. We define two polynomials $\phi_{1}(z)$ and $\phi_{2}(z)$ by

$$
\phi_{1}(z)=\sum_{j=0}^{n} \Re\left(\gamma_{j}\right) z^{j}, \quad \phi_{2}(z)=\sum_{j=0}^{n} \Im\left(\gamma_{j}\right) z^{j} .
$$

The Bezout matrix of $\phi_{2}(z)$ and $\phi_{1}(z)$ is positive definite if and only if the roots of $p(z)$ are contained in the upper half plane $\Im(z)>0$ (cf. [14], [22]). The graph
of a special trigonometric polynomial is treated in [7]. A special rational curve associated with a nilpotent Toeplitz matrix is treated in [4].

Example We give an example to illustrate Hermite's theorem. Let $p(z)=$ $(z-2 i)(z-i)=z^{2}-3 i z-2, \phi_{2}(z)=0 \cdot z^{2}-3 z+0, \phi_{1}(z)=z^{2}+0 \cdot z-2$. Then the corresponding Bezoutian matrix is given by

$$
\left(\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right) .
$$

References

[1] M. F. Atiyah, R. Bott and L. Gårding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math., 124(1970), 109-189.
[2] N. Bebiano, H. Nakazato and J. da Providencia, Convexity of the Krein space tracial numerical range and Morse theory, Mathematical Reports, Academy Science Canada, 32(2010), 97-105.
[3] N. Bebiano, H. Nakazato, A. Nata and J. da Providencia, The boundary of the Krein space tracial numerical range, an algebraic approach and a numerical algorithm, Annali di Matematica Pura ed Applicata, 189(2010), 539-551.
[4] M. T. Chien and H. Nakazato, Boundary generating curve of the c numerical range, Linear Alg. Appl., 294(1999), 67-84.
[5] M. T. Chien and H. Nakazato, Perturbation of the q-numerical radius of a weighted shift operator, Journal of Mathematical Analysis and Applications, 345(2008), 954-963.
[6] M. T. Chien and H. Nakazato, The q-numerical range of 3-by-3 weighted shift matrices, Applied Mathematics Leters, 21(2008), 1199-1203.
[7] M. T. Chien and H. Nakazato, Numerical range for orbits under a central force, Math. Phys. Anal. Geom., 13(2010), 315-330.
[8] M. T. Chien and H. Nakazato, Construction of determinantal representation of trigonometric polynomials, Linear Alg. Appl., 435(2011), 1277-1284.
[9] A. C. Dixon, Note on the reduction of ternary quartic to a symmetric determinant, Proc. Cambridge Phil. Soc., 2(1900-1902), 350-351.
[10] L. E. Dickson, Determinant of all general homogeneous polynomials expressible as determinants with linear elements. Trans. Amer. Math. Soc. 22 (1921), 167-179.
[11] M. Fiedler, Geometry of the numerical range of matrices, Linear Algebra Appl., 37(1981), 81-96.
[12] D. Henrion, Detecting rigid convexity of bivariate polynomials, Linear Algebra Appl. 432(2010), 1218-1233.
[13] J. W. Helton and V. Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60(2007), 654-674.
[14] C. Hermite, Le nombre des racines d'une equation algébrique comprises entre des limites done, Crelle's Journal, 42(1856), 39-51; in "Evres de Charles Hermite", vol. 1, (pp. 397-414), Cambridge University Press, 2009.
[15] R. Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr., 6(1951), 193-228.
[16] P. D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math., 6(1958), 175-194.
[17] A. S. Lewis, P. A. Parrilo and M. V. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc., 133(2005), 2495-2499.
[18] C. K. Li and H. Nakazato, Some results on the q-numerical range, Linear and Multilinear Algebra, 43(1998), 385-409.
[19] H. Nakazato, N. Bebiano and J. da Providencia, The numerical range of 2-dimensional Krein space operators, Canadian Mathematical Bulletin, 51(2008), 86-99.
[20] H. Nakazato and P. Psarrakos, On the shape of numerical range of matrix polynomials, Linear Algebra Appl. 338(2001), 105-123.
[21] V. Vinnikov, Selfadjoint determinantal representations of real plane curves, Math. Ann. 296(1993), 453-479.
[22] N. J. Young, A simple proof of Hermite's theorem on the zeros of a polynomial, Glas. Math. J. 24 (1983), 125-128.

