THE PHRAGMÉN－LINDELÖF THEOREM FOR L^{p}－VISCOSITY SOLUTIONS

KAZUSHIGE NAKAGAWA（中川 和重）
TOHOKU UNIVERSITY（東北大学）

Abstract

The Phragmén－Lindelöf theorem is established for L^{p}－viscosity solutions of fully nonlinear second order elliptic partial differential equa－ tions with unbounded ingredients．

1．Introduction

The notion of L^{p}－viscosity solutions was introduced in［5］to study fully nonlinear second order elliptic partial differential equations（PDEs for short） with unbounded inhomogeneous terms．We refer to［3］（see also［4］）as a pioneering work for the regularity theory of viscosity solutions of fully nonlinear PDEs．

It turned out that the Aleksandrov－Bakelman－Pucci（ABP for short）max－ imum principle can be extended to L^{p}－viscosity solutions for fully nonlinear second order elliptic PDEs with unbounded coefficients and inhomogeneous terms in［15］．See also［18］for a generalization．

As an application of the ABP maximum principle in［15］，it is known that the（boundary）weak Harnack inequality for L^{p}－viscosity solutions of the associated extremal PDEs in［16］holds，which implies Hölder continuity for L^{p}－viscosity solutions of fully nonlinear elliptic PDEs with unbounded ingredients．We also refer to［20］for Hölder continuity estimates on $L^{p_{-}}$ viscosity solutions by a different approach．

On the other hand，qualitative properties of viscosity solutions of fully nonlinear elliptic PDEs have been investigated as generalizations for clas－ sical elliptic PDE theory．For instance，the ABP maximum principle in unbounded domains in［7］and［16］，the Liouville property in［11，6］，the Hadamard principle in［6］，and the Phragmén－Lindelöf theorem in［8，14］． We refer to references in $[8,11,6]$ for these qualitative properties of strong／classical solutions．

Our aim here is to give a sharp estimates of the Phragmén－Lindelöf the－ orem in［14］when PDEs have unbounded coefficients（i．e．b in this paper）． In view of the boundary weak Harnack inequality in［16］，it is natural to relax the hypotheses on coefficients and inhomogeneous terms．However，for

2000 Mathematics Subject Classification．35B53，35D40，35B50．
Key words and phrases．Phragmén－Lindelöf theorem；L^{p}－viscosity solution；weak Har－ nack inequality．
the weak Harnack inequality, we need to suppose that the coefficient to the first derivatives is small enough in L^{n}-norm. When we work in bounded domains, this is not a restriction. Since we are concerned with unbounded domains, we will need a bit more delicate analysis than those in [8].

Our paper is organized as follows: section 2 is devoted to showing the definitions and known results. In section 3, we present the ABP type estimates on L^{p}-viscosity subsolutions of fully nonlinear PDEs with unbounded ingredients under appropriate geometric conditions. We show the PhragménLindelöf theorem in our setting in section 4.

2. Preliminaries

We consider next fully nonlinear second order PDEs in unbounded domains $\Omega \subset \mathbb{R}^{n}$:

$$
\begin{equation*}
G\left(x, u, D u, D^{2} u\right)=f(x) \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

where $G: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \times S^{n} \rightarrow \mathbb{R}$ and $f: \Omega \rightarrow \mathbb{R}$ are given measurable functions. We also suppose that $(r, p, M) \in \mathbb{R} \times \mathbb{R}^{n} \times S^{n} \rightarrow G(x, r, p, M)$ is continuous for almost all $x \in \Omega$. Here, S^{n} denotes the set of $n \times n$ symmetric matrices with the standard order.

We will use the standard notation from [13]. We denote by $L_{+}^{p}(\Omega)$ the set of all nonnegative functions in $L^{p}(\Omega)$.

Throughout this paper, we assume that

$$
p>\frac{n}{2}
$$

We note that if $u \in W_{\text {loc }}^{2, p}(\Omega)$ for $p>n / 2$, then we may identify u with a continuous function in Ω, and $u(x)$ is twice differentiable for almost all $x \in \Omega$.

At first, we denote the definition of L^{p}-viscosity solutions of (2.1).
Definition 2.1. We call $u \in C(\Omega)$ an L^{p}-viscosity subsolution (resp., supersolution) of (2.1) if

$$
\begin{gathered}
\text { ess. } \liminf _{x \rightarrow x_{0}}\left\{G\left(x, u(x), D \phi(x), D^{2} \phi(x)\right)-f(x)\right\} \leq 0 \\
\left(\text { resp., } \underset{x \rightarrow x_{0}}{\text { ess. }} \lim _{x \rightarrow 0} \sup \left\{G\left(x, u(x), D \phi(x), D^{2} \phi(x)\right)-f(x)\right\} \geq 0\right)
\end{gathered}
$$

whenever $\phi \in W_{\text {loc }}^{2, p}(\Omega)$ and $x_{0} \in \Omega$ is a local maximum (resp., minimum) point of $u-\phi$. A function $u \in C(\Omega)$ is called an L^{p}-viscosity solution of (2.1) if it is both an L^{p}-viscosity subsolution and an L^{p}-viscosity supersolution of (2.1).

To make easier recalling the right inequality, we will often say that u is an L^{p}-viscosity solution of

$$
\begin{gathered}
G\left(x, u, D u, D^{2} u\right) \leq f(x) \\
\left(\text { resp., } G\left(x, u, D u, D^{2} u\right) \geq f(x)\right)
\end{gathered}
$$

if it is an L^{p}-viscosity subsolution (resp., supersolution) of (2.1).
In what follows, instead of (2.1), we mainly consider PDEs which do not depend on u-variable:

$$
\begin{equation*}
F\left(x, D u, D^{2} u\right)=f(x) \quad \text { in } \Omega \tag{2.2}
\end{equation*}
$$

We will assume that F is (degenerate) elliptic:

$$
\begin{gather*}
\qquad F(x, p, M) \leq F(x, p, N) \\
\text { for all }(x, p, M, N) \in \Omega \times \mathbb{R}^{n} \times S^{n} \times S^{n} \text { provided } M \geq N \tag{2.3}
\end{gather*}
$$

For fixed ellipticity constants $0<\lambda \leq \Lambda$, we also assume that there exists $b \in L_{+}^{q}(\Omega)$ such that

$$
\begin{equation*}
\mathcal{P}^{-}(M)-b(x)|p| \leq F(x, p, M) \quad \text { for }(x, p, M) \in \Omega \times \mathbb{R}^{n} \times S^{n} \tag{2.4}
\end{equation*}
$$

where the Pucci operators $\mathcal{P}^{ \pm}: S^{n} \rightarrow \mathbb{R}$ are defined by

$$
\begin{gather*}
\mathcal{P}^{-}(M)=\min \left\{-\operatorname{trace}(A M): A \in S^{n}: \lambda I \leq M \leq \Lambda I\right\} \\
\text { and } \mathcal{P}^{+}(M)=\max \left\{-\operatorname{trace}(A M): A \in S^{n}: \lambda I \leq M \leq \Lambda I\right\} \tag{2.5}
\end{gather*}
$$

We will use the Escauriaza's constant $p_{0}=p_{0}(n, \lambda, \Lambda) \in[n / 2, n)$, for which we refer to [12]. It is known that for $p>p_{0}$, and $f \in L^{p}\left(B_{r}(z)\right)$, where $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}$, there exists a strong solution $u \in C\left(\bar{B}_{r}(z)\right) \cap W_{\mathrm{loc}}^{2, p}\left(B_{r}(z)\right)$ of

$$
\mathcal{P}^{-}\left(D^{2} v(x)\right)=f(x) \quad \text { a.e. in } B_{r}(z)
$$

under $v(x)=0$ for $x \in \partial B_{r}(z)$ with estimates:

$$
-C\left\|f^{-}\right\|_{L^{p}\left(B_{r}(z)\right)} \leq v(x) \leq C\left\|f^{+}\right\|_{L^{p}\left(B_{r}(z)\right)} \quad \text { in } B_{r}(z)
$$

and

$$
\|v\|_{W_{\mathrm{loc}}^{2, p}\left(B_{r}(z)\right)} \leq C^{\prime}\|f\|_{L^{p}\left(B_{r}(z)\right)}
$$

where $C=C(n, \lambda, \Lambda, p)>0$ and $C^{\prime}=C^{\prime}(n, \lambda, \Lambda, p, r)>0$ are positive constants.

We remark that to prove the ABP maximum principle [15, Theorem 2.9], which implies the boundary weak Harnack inequality [16, Theorem 6.1], it suffices to obtain the existence of strong solutions of the above extremal equation only in balls although this fact is not clearly mentioned in [15, 16]. In fact, this existence result holds with local $W^{2, p}$-estimates for more general domains satisfying the uniform exterior cone property but the $p_{0} \in\left[\frac{n}{2}, n\right)$ associated with general domains might be bigger than the above. We also notice that we may replace cubes by balls in the (boundary) weak Harnack inequality in [16] by Cabré's covering argument.

Fix $R>0$ and $z \in \mathbb{R}^{n}$. Let $T, T^{\prime} \subset B_{R}(z)$ be domains such that

$$
\bar{T} \subset T^{\prime}, \quad \text { and } \quad \theta_{0} \leq \frac{|T|}{\left|T^{\prime}\right|} \leq 1 \quad \text { for some } \theta_{0}>0
$$

When we apply our weak Harnack inequality below, our choice of T and T^{\prime} always satisfies the above condition.

For a given domain $A \subset \mathbb{R}^{n}$ and a function $v \in C(A)$, we define v_{m}^{-}on $T^{\prime} \cup A$ by

$$
v_{m}^{-}(x)= \begin{cases}\min \{v(x), m\} & \text { if } x \in A \\ m & \text { if } x \in T^{\prime} \backslash A\end{cases}
$$

where

$$
m=\liminf _{x \rightarrow T^{\prime} \cap \partial A} v(x)
$$

We note that if $T^{\prime} \cap \partial A \neq \emptyset$, then v_{m}^{-}is a real-valued function and that if $T^{\prime} \cap \partial A \neq \emptyset, v$ is a nonnegative L^{p}-viscosity supersolution of (2.2) and $f \leq 0$ in $T^{\prime} \cap A$, then v_{m}^{-}is a nonnegative L^{p}-viscosity supersolution of (2.2) in T^{\prime}.

Next, we recall the boundary weak Harnack inequality when PDEs have unbounded coefficients and inhomogeneous terms.

Lemma 2.2 ([16, Theorem 6.1]). Let T, T^{\prime}, A be as above. Assume that $T \cap A \neq \emptyset$ and $T^{\prime} \backslash A \neq \emptyset$ and that

$$
\begin{equation*}
q>n, \quad q \geq p>p_{0} \tag{2.6}
\end{equation*}
$$

Then, there exist constants $\varepsilon_{0}=\varepsilon_{0}(n, \lambda, \Lambda)>0, r=r(n, \lambda, \Lambda, p, q)>0$ and $C_{0}=C_{0}(n, \lambda, \Lambda, p, q)>0$ satisfying the following property: if $b \in L_{+}^{q}\left(T^{\prime} \cap A\right)$, $f \in L_{+}^{p}\left(T^{\prime} \cap A\right)$, a nonnegative L^{p}-viscosity solution $w \in C\left(T^{\prime} \cap A\right)$ of

$$
\mathcal{P}^{+}\left(D^{2} w\right)+b(x)|D w| \geq-f(x) \quad \text { in } T^{\prime} \cap A
$$

and

$$
\begin{equation*}
\|b\|_{L^{n}\left(T^{\prime} \cap A\right)} \leq \varepsilon_{0} \tag{2.7}
\end{equation*}
$$

then it follows that

$$
\left(\frac{1}{|T|} \int_{T}\left(w_{T^{\prime}, A}\right)^{r} d x\right)^{1 / r} \leq C_{0}\left(\inf _{T} w_{T^{\prime}, A}^{-}+R\|f\|_{L^{n}\left(T^{\prime} \cap A\right)}\right)
$$

provided that $q>n$ and $q \geq p \geq n$, and

$$
\begin{aligned}
& \left(\frac{1}{|T|} \int_{T}\left(w_{T^{\prime}, A}^{-}\right)^{r} d x\right)^{1 / r} \\
& \leq C_{0}\left(\inf _{T} w_{T^{\prime}, A}^{-}+R^{2-\frac{n}{p}}\|f\|_{L^{p}\left(T^{\prime} \cap A\right)} \sum_{k=0}^{M} R^{\left(1-\frac{n}{q}\right) k}\|\mu\|_{L^{q}\left(T^{\prime} \cap A\right)}^{k}\right)
\end{aligned}
$$

provided that $q>n>p>p_{0}$, where $M=M(n, p, q) \geq 1$ is an integer.
In the next section, we will establish some local and global ABP type estimates on L^{p}-viscosity subsolutions for (2.2). Finally, we recall the notations concerning the shape of domains from [8].

Definition 2.3 (Local geometric condition). Let $\sigma, \tau \in(0,1)$. We call $y \in \Omega$ a $G_{\sigma, \tau}$ point of Ω if there exist $R=R_{y}>0$ and $z=z_{y} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
y \in B_{R}(z), \quad \text { and } \quad\left|B_{R}(z) \backslash \Omega_{y, B_{R}(z), \tau}\right| \geq \sigma\left|B_{R}(z)\right| \tag{2.8}
\end{equation*}
$$

where $\Omega_{y, B_{R}(z), \tau}$ is the connected component of $B_{\frac{R}{\tau}}(z) \cap \Omega$ containing y. For $\sigma, \tau \in(0,1)$, and $R_{0}>0, \eta \geq 0$, we call $y \in \Omega$ a $G_{\sigma, \tau}^{R_{0}, \eta}$ point in Ω if y is a $G_{\sigma, \tau}$ point in Ω with $R=R_{y}>0$ and $z=z_{y}$ satisfying

$$
\begin{equation*}
R \leq R_{0}+\eta|y| \tag{2.9}
\end{equation*}
$$

Definition 2.4 (Global geometric condition). We call Ω a weak- G domain if any $y \in \Omega$ is a $G_{\sigma, \tau}^{R_{0}, \eta}$ point in Ω.
Remark 2.5. For the sake of simplicity of notations, for a $G_{\sigma, \tau}$ point $y \in \Omega$, we will write B_{y} for $B_{\frac{R_{y}}{\tau}}\left(z_{y}\right)$, where $R_{y}>0$ and $z_{y} \in \mathbb{R}^{n}$ are from Definition 2.3.

We refer the reader to [21] and [8] for examples of weak- G domains Ω. We also refer to [1] for a generalization.

3. ABP TYPE ESTIMATES

In this section, we first present pointwise estimates on L^{p}-viscosity subsolutions of (2.2), which is often referred as the Krylov-Safonov growth lemma. For simplisity, throughout this paper, we assume that $p \geq n$. In what follows, we fix $\sigma, \tau \in(0,1)$ and $R_{0}>0$. Let $y \in \Omega$ be a $G_{\sigma, \tau}^{R_{0}, \eta}$ point with $\eta \geq 0$. It is possible to apply our weak Harnack inequality in B_{y}, which is from Definition 2.3, if $\|b\|_{L^{n}\left(B_{y} \cap \Omega\right)} \leq \varepsilon_{0}$. Here and later, $\varepsilon_{0}>0$ is the constant from Lemma 2.2.

Even if $\|b\|_{L^{n}\left(B_{y} \cap \Omega\right)}>\varepsilon_{0}$, we may use Cabré's covering argument; we divide B_{y} into small pieces so that we may apply the weak Harnack inequality in each piece. We then obtain the weak Harnack inequality in B_{y} by combining all the inequalities for small pieces.

However, since we need the estimates uniform in $y \in \Omega$, this argument does not work immediately because of unboundedness of $\left\{R_{y}\right\}_{y \in \Omega}$ when $\eta>0$.

To avoid this difficulty, we will suppose a decay rate of b : for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\sup _{R>1} \int_{E} R^{n} b(R x)^{n} d x<\varepsilon \quad \text { for } E \subset A,|E|<\delta \tag{3.1}
\end{equation*}
$$

where $A=\Omega \cap\left\{x \in \mathbb{R}^{n}\left|\frac{1}{4} \min \left\{1 /(1+\eta),(\sigma / 4)^{1 / n}\right\}<|x|<2+1 / \tau\right\}\right.$.
Lemma 3.1 (pointwise estimate). Assume that (2.3), (2.6) and (2.4) hold with $b \in L_{+}^{q}(\Omega)$. Let $\eta>0$ and $y \in \Omega$ be a $G_{\sigma, \tau}^{R_{0}, \eta}$ point in Ω with $R=R_{y}>0$ and $z=z_{y} \in \mathbb{R}^{n}$. Then, there exist $\kappa=\kappa\left(n, \lambda, \Lambda, \sigma, \tau, R_{0}, \eta\right) \in(0,1)$ and $\varepsilon=\varepsilon(n, \sigma, \eta)>0$ satisfying the following property: if $w \in C(\Omega)$ is an L^{p} viscosity subsolution of (2.2) with $f \in L_{+}^{p}(\Omega)$, then we have the following properties: (i) If $|y| \leq R_{0}$ and $p \geq n$, then

$$
w(y) \leq \kappa \sup _{B_{y} \cap \Omega} w^{+}+(1-\kappa) \limsup _{x \rightarrow B_{y} \cap \partial \Omega} w^{+}+R_{0}\|f\|_{L^{n}\left(B_{y} \cap \Omega\right)}
$$

(ii) Assume that (3.1) is satisfied and that $|y|>R_{0}$. If $p \geq n$, then

$$
w(y) \leq \kappa \sup _{B_{y} \cap \Omega} w^{+}+(1-\kappa) \lim _{x \rightarrow B_{y} \cap \partial \Omega} w^{+}+R\|f\|_{L^{n}\left(B_{y} \cap \Omega \backslash B_{\varepsilon R}(0)\right)}
$$

Remark 3.2. To get the weak maximum principle (Lemma 4.1 below), it is important to have the term $\|f\|_{L^{p}\left(B_{y} \cap \Omega \backslash B_{\varepsilon R}(0)\right)}$ instead of $\|f\|_{L^{p}\left(B_{y} \cap \Omega\right)}$ in the estimates of the assertion (ii) above.
Proof. First of all, we shall omit giving the proof in the case of $\|b\|_{L^{q}(\Omega)}=0$ because it is easy to do it, and we suppose that $\|b\|_{L^{q}(\Omega)}>0$.

It is enough to show the assertion when $\hat{C}:=\lim \sup _{x \rightarrow B_{y} \cap \partial \Omega} w^{+}(x)=0$. In fact, after having established the assertion when $\hat{C}=0$, we may apply the result to $w-\hat{C}$ to prove the assertion in the general case.

Due to (2.4), w is an L^{p}-viscosity solution of

$$
\mathcal{P}^{-}\left(D^{2} w\right)-b(x)|D w| \leq f(x) \quad \text { in } \Omega
$$

Setting $C_{w}=\sup _{B_{y} \cap \Omega} w^{+}$, we immediately see that $v(x):=C_{w}-w(x)$ is an L^{p}-viscosity solution of

$$
\mathcal{P}^{+}\left(D^{2} v\right)+b(x)|D v| \geq-f(x) \quad \text { in } \Omega
$$

We shall first prove (ii).
Case (ii) $|y|>R_{0}$:
Taking $\varepsilon=\frac{1}{4} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{\frac{1}{n}}\right\} \in\left(0, \frac{1}{2} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{\frac{1}{n}}\right\}\right)$. Note that $2 \varepsilon<$ $1 /(1+\eta)$ and $(2 \varepsilon)^{n}<\sigma / 4$. We set $T=B_{R}(z) \backslash \bar{B}_{2 \varepsilon R}(0)$ and $T^{\prime}=B_{y} \backslash \bar{B}_{\varepsilon R}(0)$. Observe that

$$
2 \varepsilon R<\frac{R}{1+\eta} \leq \frac{R_{0}+\eta|y|}{1+\eta}<|y|
$$

and consequently $y \in T=B_{R}(z) \backslash \bar{B}_{2 \varepsilon R}(0)$. Let A be the connected component of $T^{\prime} \cap \Omega$ which contains y. We have

$$
\begin{aligned}
|T \backslash A| & \geq\left|T \backslash \Omega_{y, B_{R}(z), \tau}\right| \\
& \geq\left|B_{R}(z) \backslash \Omega_{y, B_{R}(z), \tau}\right|-\left|B_{2 \varepsilon R}(0)\right| \\
& \geq \sigma\left|B_{R}(0)\right|-(2 \varepsilon)^{n}\left|B_{R}(0)\right| \\
& \geq \frac{\sigma}{2}\left|B_{R}(0)\right| \\
& \geq \frac{\sigma}{2}|T|
\end{aligned}
$$

Since

$$
\begin{equation*}
T^{\prime} \cap \partial A \subset T^{\prime} \cap \partial\left(T^{\prime} \cap \Omega\right) \subset T^{\prime} \cap\left(\partial T^{\prime} \cup \partial \Omega\right)=T^{\prime} \cap \partial \Omega \tag{3.2}
\end{equation*}
$$

in view of $\hat{C} \leq 0$, we have

$$
\begin{equation*}
\liminf _{x \rightarrow T^{\prime} \cap \partial A} v(x)=C_{w}-\limsup _{x \rightarrow T^{\prime} \cap \partial A} w(x) \geq C_{w} \tag{3.3}
\end{equation*}
$$

Now, we verify (2.7). By (3.1), if $\|R b(R \cdot)\|_{L^{n}(A)} \leq \varepsilon_{0}$, we see that

$$
\|b\|_{L^{n}\left(T^{\prime} \cap A\right)} \leq\|R b(R \cdot)\|_{L^{n}(A)} \leq \varepsilon_{0}
$$

Setting $m=\liminf _{x \rightarrow T^{\prime} \cap \partial A} v(x)$, we use (3.3) to show for any $r>0$,

$$
\left(\frac{\sigma}{2}\right)^{1 / r} C_{w} \leq\left(\frac{|T \backslash A|}{|T|}\right)^{1 / r} C_{w} \leq\left(\frac{1}{|T|} \int_{T \backslash A} m^{r} d x\right)^{1 / r} \leq\left(\frac{1}{|T|} \int_{T}\left(v_{m}^{-}\right)^{r} d x\right)^{1 / r} .
$$

Since $y \in A$, we have

$$
\begin{equation*}
\inf _{T} v_{m}^{-} \leq v(y)=C_{w}-w(y) . \tag{3.4}
\end{equation*}
$$

Thus, letting $r>0$ be the constant from Lemma 2.2, we have

$$
\left(\frac{\sigma}{2}\right)^{1 / r} C_{w} \leq C_{0}\left(\inf _{T} v_{m}^{-}+R\|f\|_{L^{n}\left(T^{\prime} \cap A\right)}\right) \leq C_{0}\left(C_{w}-w(y)+R\|f\|_{L^{n}\left(T^{\prime} \cap\right)}\right) .
$$

Therefore, we conclude that the assertion (ii) holds with $\kappa=1-\left(\frac{\sigma}{2}\right)^{1 / r} \min \left\{C_{0}^{-1}, 1\right\}>$ 0 in the case where $\|R b(R \cdot)\|_{L^{n}(A)} \leq \varepsilon_{0}$.

Next assume that $\|R b(R \cdot)\|_{L^{n}(A)}>\varepsilon_{0}$. In this case, we can show that using a Cabré's covering argument.

Case (i) $|y| \leq R_{0}$:
Since we have $R \leq(1+\eta) R_{0}$ in this case, we may regard Ω as a bounded domain. Thus, we can use the standard covering argument by Cabré without using (3.1). Setting $T=B_{R}(z), T^{\prime}=B_{\frac{R}{T}}(z)$ and $A=\Omega_{y, B_{R}(z), \tau}$, we have

$$
|T \backslash A|=\left|B_{R}(z) \backslash \Omega_{y, B_{R}(z), \tau}\right| \geq \sigma\left|B_{R}(z)\right| \geq \frac{\sigma}{2}|T| .
$$

We shall only give a proof when $\|b\|_{L^{n}\left(T^{\prime} \cap A\right)} \leq \varepsilon_{0}$.
Following the same argument as in case (ii) with the above inequality, and new A, T, T^{\prime}, we have

$$
\begin{aligned}
\left(\frac{\sigma}{2}\right)^{1 / r} C_{w} & \leq C_{0}\left(\inf _{T} v_{m}^{-}+R_{0}\|f\|_{L^{n}\left(B_{y} \cap \Omega\right)}\right) \\
& \leq C_{0}\left(C_{w}-w(y)+R_{0}\|f\|_{L^{n}\left(B_{y} \cap \Omega\right)}\right) .
\end{aligned}
$$

Therefore, we conclude that the assertion holds with the same $\kappa \in(0,1)$ as in case (ii).

When $\Omega \subset \mathbb{R}^{n}$ is a weeak- G domain, we derive the ABP maximum principle for L^{p}-viscosity subsolutions bounded from above of (2.2).
Theorem 3.3 (ABP maximum principle in unbounded domains). Assume (2.6), (2.3) and (2.4) with $b \in L_{+}^{q}(\Omega)$ satisfying (3.1). Let $\eta>0$ and $\Omega \subset \mathbb{R}^{n}$ be a weak-G domain. Assume also

$$
\begin{equation*}
\sup _{y \in \Omega,|y|>R_{0}} R_{y}\|f\|_{L^{n}\left(A_{y} \cap \Omega\right)}<\infty \tag{3.5}
\end{equation*}
$$

Let $\frac{1}{4} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{1 / n}\right\} \leq \varepsilon<\min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{1 / n}\right\}$. Then, there exists

$$
C=C\left(n, \lambda, \Lambda, p, q, \varepsilon, \sigma, \tau, R_{0}, \eta\right)>0
$$

satisfying the following properties: if $w \in C(\Omega)$ is an L^{p}-viscosity subsolution bounded from above of (2.2) with $f \in L_{+}^{p}(\Omega)$, then it follows that

$$
\begin{align*}
\sup _{\Omega} w \leq & \limsup _{x \rightarrow \partial \Omega} w^{+}(x)+C \sup _{y \in \Omega,|y|>R_{0}} R_{y}\|f\|_{L^{n}\left(A_{y} \cap \Omega\right)} \tag{3.6}\\
& +C R_{0} \sup _{y \in \Omega,|y| \leq R_{0}}\|f\|_{L^{n}\left(B_{y} \cap \Omega\right)} .
\end{align*}
$$

Here, $A_{y}=B_{\frac{R_{y}}{\tau}}\left(z_{y}\right) \backslash B_{\varepsilon R_{y}}(0)$ and $B_{y}=B_{\frac{R_{y}}{\tau}}\left(z_{y}\right)$.
Proof. We take the supremum over $y \in \Omega$ with the estimates in Lemma 3.1 to conclude the inequalities (3.6).

4. Phragmén-Lindelöf theorem

In this section, we show that the weak maximum principle holds for PDEs with zero-order terms. As before, assuming that Ω is a weak- G domain, for each $y \in \Omega$, we use the notations $R_{y}>0$ and $z_{y} \in \mathbb{R}^{n}$. Also, B_{y} and A_{y}, respectively, denote $B_{\frac{R_{y}}{\tau}}\left(z_{y}\right)$ and $B_{\frac{R_{y}}{\tau}}\left(z_{y}\right) \backslash B_{\varepsilon R_{y}}(0)$ for $\varepsilon \in\left[\frac{1}{4} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{1 / n}\right\}, \frac{1}{2} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{1 / n}\right\}\right)$.
Lemma 4.1. Assume (2.3), (2.6) and (2.4) with $b \in L_{+}^{q}(\Omega)$ satisfying (3.1). Let $\eta>0$ and Ω be a weak- G domain. Then, there exists $c_{0}=$ $c_{0}\left(n, \lambda, \Lambda, p, q, \sigma, \tau, R_{0}, \eta\right)>0$ satisfying the following property: if $c \in L_{+}^{n}(\Omega), w \in C(\Omega)$ is an L^{p}-viscosity solution bounded from above of

$$
\begin{equation*}
F\left(x, D w, D^{2} w\right)-c(x) w^{+} \leq 0 \quad \text { in } \Omega \tag{4.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\limsup _{x \rightarrow \partial \Omega} w(x) \leq 0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{0}:=\max \left\{\sup _{y \in \Omega,|y|>R_{0}}\|\langle\cdot\rangle c(\cdot)\|_{L^{n}\left(A_{y} \cap \Omega\right)}, \sup _{y \in \Omega,|y| \leq R_{0}}\|c\|_{L^{n}\left(B_{y} \cap \Omega\right)}\right\} \leq c_{0} \tag{4.3}
\end{equation*}
$$

then $w \leq 0$ in Ω.
Proof. Note that by (2.4), w is an L^{n}-viscosity solution of

$$
\mathcal{P}^{-}\left(D^{2} w\right)-b(x)|D w|-c(x) w^{+} \leq 0
$$

We apply Theorem 3.3 with $f=c w^{+}$to obtain that when $|y| \leq R_{0}$,

$$
R_{0}\left\|c w^{+}\right\|_{L^{n}\left(B_{y} \cap \Omega\right)} \leq R_{0} \sup _{\Omega} w^{+}\|c\|_{L^{n}\left(B_{y} \cap \Omega\right)} \leq R_{0} K_{0} \sup _{\Omega} w^{+}
$$

On the other hand, when $|y|>R_{0}$, we have

$$
\begin{equation*}
R_{y}\left\|c w^{+}\right\|_{L^{n}\left(A_{y} \cap \Omega\right)} \leq \frac{R_{y}}{\sqrt{1+\left(\varepsilon R_{y}\right)^{2}}} \sup _{\Omega} w^{+}\|\langle\cdot\rangle c(\cdot)\|_{L^{n}\left(A_{y} \cap \Omega\right)} \leq \frac{K_{0}}{\varepsilon} \sup _{\Omega} w^{+} \tag{4.4}
\end{equation*}
$$

Choosing $\varepsilon_{1}=\frac{1}{4} \min \left\{\frac{1}{1+\eta},\left(\frac{\sigma}{4}\right)^{1 / n}\right\}$ for instance, we have

$$
\sup _{\Omega} w \leq C_{3} \max \left\{R_{0}, \frac{1}{\varepsilon_{1}}\right\} c_{0} \sup _{\Omega} w^{+}
$$

for some constant $C_{3}>0$. Taking $c_{0}<1 /\left(C_{3} \max \left\{R_{0}, 1 / \varepsilon_{1}\right\}\right)$, this end the proof.

Theorem 4.2 (Phragmén-Lindelöf theorem). Assume (2.3), (2.6) and (2.4) with $b \in L_{+}^{q}(\Omega)$ satisfying (3.1). Let $\eta>0$ and Ω be a weak- G domain. There exists a positive constant $\alpha>0$ such that if $w \in C(\Omega)$ is an L^{p}-viscosity solution of

$$
\begin{equation*}
F\left(x, D w, D^{2} w\right) \leq 0 \quad \text { in } \Omega \tag{4.5}
\end{equation*}
$$

with (4.2) holds and

$$
\begin{equation*}
w^{+}(x)=O\left(|x|^{\alpha}\right) \quad \text { as }|x| \rightarrow \infty, \tag{4.6}
\end{equation*}
$$

then $w \leq 0$ in Ω.
Proof of Theorem 4.2. Define a positive smooth function

$$
\xi(x)=\langle x\rangle^{\alpha},
$$

where $\alpha>0$ will be fixed later. Setting $u=w / \xi$, which is bounded from above. A straightforward calculation shows that

$$
\frac{|D \xi|}{\xi}(x) \leq \frac{\alpha}{\langle x\rangle}, \quad \frac{\left|D^{2} \xi\right|}{\xi}(x) \leq \frac{C_{4} \alpha}{\langle x\rangle^{2}}
$$

for some $C_{4}>0$. Thus, we see that u is an L^{n}-viscosity solution of

$$
\mathcal{P}^{-}\left(D^{2} u\right)-\gamma_{1}(x)|D u|-\alpha \gamma_{2}(x) u^{+} \leq 0 \quad \text { in } \Omega,
$$

where

$$
\gamma_{1}(x)=\frac{C_{5} \alpha}{\langle x\rangle}+b(x), \quad \gamma_{2}(x)=\frac{C_{6}}{\langle x\rangle}\left(\frac{1}{\langle x\rangle}+b(x)\right)
$$

for some positive constants $C_{5}, C_{6}>0$. We easily see that γ_{1} satisfies (3.1).
We next show that (4.3) holds for γ_{2}. Direct calculation implies

$$
\begin{equation*}
\tilde{K}_{0}:=\max \left\{\sup _{y \in \Omega,|y|>R_{0}}\left\|\langle\cdot\rangle \gamma_{2}(\cdot)\right\|_{L^{n}\left(A_{y} \cap \Omega\right)}, \sup _{y \in \Omega,|y| \leq R_{0}}\left\|\gamma_{2}\right\|_{L^{n}\left(B_{y} \cap \Omega\right)}\right\}<+\infty \tag{4.7}
\end{equation*}
$$

is boounded. Thus, $K_{0}=\alpha \tilde{K}_{0}$ is small when $\alpha>0$ is small enough.
Therefore, using Lemma 4.1 with $b=\gamma_{1}$ and $c=\gamma_{2}$, we get $u \leq 0$. This imlies $w \leq 0$.

Acknowledgements. The author wishes to thank Professor's H. Ishii, S. Koike and A. Vitolo for several comments of this article.

References

[1] Amendola, M. E., L. Rossi and A. Vitolo; Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains, preprint.
[2] Cabré, X.; On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 48 (1995), 539-570.
[3] Caffarelli, L. A.; Interior a priori estimates for solutions of fully non-linear equations, Ann. Math., 130 (1989), 189-213.
[4] Caffarelli, L. A. and X. Cabré; Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, 1995.
[5] Caffarelli, L. A., M. G. Crandall, M. Kocan, and A. Świȩch; On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996), 365-397.
[6] Capuzzo Dolcetta, I and A. Cutrì; Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemporary Math., 5 (3) (2003), 435-448.
[7] Capuzzo Dolcetta, I., F. Leoni and A. Vitolo; The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains, Comm. Partial Differential Equations 30 (2005), 1863-1881.
[8] Capuzzo Dolcetta, I. and A. Vitolo; A qualitative Phragmén-Lindelöf theorem for fully nonlinear elliptic equations, J. Differential Equations 243(2) (2007), 578-592.
[9] Crandall, M. G., H. Ishii, and P.-L. Lions; User's Guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
[10] Crandall, M. G. and A. Świȩch; A note on generalized maximum principles for elliptic and parabolic PDE, Evolution equations, 121-127, Lecture Notes in Pure and Appl. Math., 234, Dekker, New York, 2003.
[11] Cutrì, A. and F. Leoni; On the Liouville property for fully nonlinear equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 17 (2) (220), 219-245.
[12] Escauriaza, L.; $W^{2, n}$ a priori estimates for solutions to fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423.
[13] Gilbarg, D. and N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, New York, 1983.
[14] Koike, S., and K. Nakagawa; Remarks on the Phragmen-Lindelof theorem for L^{p} viscosity solutions of fully nonlinear PDEs with unbounded ingredients, Electron. J. Differential Equations, 2009 (146) (2009), 1-14.
[15] Koike, S., and A. Świȩch; Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., 339 (2007), 461-484.
[16] Koike, S., and A. Świȩch; Weak Harnack inequality for L^{p}-viscosity solutions of fully nonlinear uniformly elliptic partial differential equations with unbounded ingredients, J. Math. Soc. Japan. 61 (3) (2009), 723-755.
[17] Koike, S. and A. Świȩch; Existence of strong solutions of Pucci extremal equations with superlinear growth in Du, J. Fixed Point Theory Appl., 5 (2) (2009), 291-304.
[18] Nakagawa, K.; Maximum principle for L^{p}-viscosity solutions of fully nonlinear equations with unbounded ingredients and superlinear growth terms, Adv. Math. Sci. Appl., 19 (1) (2009), 89-107.
[19] Protter, M. H. and H. F. Weinberger; Maximum principles in differential equations. Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.
[20] Sirakov, B.; Solvability of uniformly elliptic fully nonlinear PDE, to appear in Arch. Rational Mech. Anal.
[21] Vitolo, A.; On the Phragmén-Lindelöf principle for second-order elliptic equations, J. Math. Anal. Appl. 300 (2004), 244-259.

Kazushige nakagawa
Mathematical Institute, Tohoku University
6-3, Aоba, Aramaki, Aoba-ku, SENDAI 980-8578, JAPAN
E-mail address: knakagawa@math.tohoku.ac.jp

