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ABSTRACT. The Phragm\’en-Lindel\"of theorem is established for $L^{p}$-viscosity
solutions of fully nonlinear second order elliptic partial differential equa-
tions with unbounded ingredients.

1. INTRODUCTION

The notion of $I\nearrow$-viscosity solutions was introduced in [5] to study fully
nonlinear second order elliptic partial differential equations (PDEs for short)
with unbounded inhomogeneous terms. We refer to [3] (see also [4]) as
a pioneering work for the regularity theory of viscosity solutions of fully
nonlinear PDEs.

It turned out that the Aleksandrov-Bakelman-Pucci (ABP for short) max-
imum principle can be extended to L-viscosity solutions for fully nonlinear
second order elliptic PDEs with unbounded coefficients and inhomogeneous
terms in [15]. See also [18] for a generalization.

As an application of the ABP maximum principle in [15], it is known
that the (boundary) weak Harnack inequality for $IP$-viscosity solutions of
the associated extremal PDEs in [16] holds, which implies H\"older continuity
for $L^{p}$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded
ingredients. We also refer to [20] for H\"older continuity estimates on IP-
viscosity solutions by a different approach.

On the other hand, qualitative properties of viscosity solutions of fully
nonlinear elliptic PDEs have been investigated as generalizations for clas-
sical elliptic PDE theory. For instance, the ABP maximum principle in
unbounded domains in [7] and [16], the Liouville property in [11, 6], the
Hadamard principle in [6], and the Phragm\’en-Lindel\"of theorem in [8, 14].
We refer to references in [8, 11, 6] for these qualitative properties of strong/classical
solutions.

Our aim here is to give a sharp estimates of the Phragm\’en-Lindel\"of the-
orem in [14] when PDEs have unbounded coefficients (i.e. $b$ in this paper).
In view of the boundary weak Harnack inequality in [16], it is natural to
relax the hypotheses on coefficients and inhomogeneous terms. However, for
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the weak Harnack inequality, we need to suppose that the coefficient to the
first derivatives is small enough in $L^{n}$-norm. When we work in bounded
domains, this is not a restriction. Since we are concerned with unbounded
domains, we will need a bit more delicate analysis than those in [8].

Our paper is organized as follows: section 2 is devoted to showing the def-
initions and known results. In section 3, we present the ABP type estimates
on $L^{p}$-viscosity subsolutions of fully nonlinear PDEs with unbounded in-
gredients under appropriate geometric conditions. We show the Phragm\’en-
Lindel\"of theorem in our setting in section 4.

2. PRELIMINARIES
We consider next fully nonlinear second order PDEs in unbounded do-

mains $\Omega\subset \mathbb{R}^{n}$ :
$G(x, u, Du, D^{2}u)=f(x)$ in $\Omega$ , (2.1)

where $G$ : $\Omega\cross \mathbb{R}\cross \mathbb{R}^{n}\cross S^{n}arrow \mathbb{R}$ and $f$ : $\Omegaarrow \mathbb{R}$ are given measurable
functions. We also suppose that $(r,p, M)\in \mathbb{R}\cross \mathbb{R}^{n}\cross S^{n}arrow G(x, r,p, M)$ is
continuous for almost all $x\in\Omega$ . Here, $S^{n}$ denotes the set of $n\cross n$ symmetric
matrices with the standard order.

We will use the standard notation from [13]. We denote by $L_{+}^{p}(\Omega)$ the set
of all nonnegative functions in $L^{p}(\Omega)$ .

Throughout this paper, we assume that

$p> \frac{n}{2}$ .

We note that if $u\in W_{1oc}^{2,p}(\Omega)$ for $p>n/2$ , then we may identify $u$ with
a continuous function in $\Omega$ , and $u(x)$ is twice differentiable for almost all
$x\in\Omega$ .

At first, we denote the definition of $IP$-viscosity solutions of (2.1).

Definition 2.1. We call $u\in C(\Omega)$ an $IP$-viscosity subsolution (resp., su-
persolution) of (2.1) if

$ess_{x}\lim_{arrow x0}\inf\{G(x, u(x), D\phi(x), D^{2}\phi(x))-f(x)\}\leq 0$

$(resp.,$ $ess.\lim_{xarrow x_{0}}\sup\{G(x, u(x), D\phi(x), D^{2}\phi(x))-f(x)\}\geq 0)$

whenever $\phi\in W_{1oc}^{2,p}(\Omega)$ and $x_{0}\in\Omega$ is a local maximum (resp., minimum)
point of $u-\phi$ . A function $u\in C(\Omega)$ is called an $L^{p}$-viscosity solution of (2.1)
if it is both an $L^{p}$-viscosity subsolution and an $L^{p}$-viscosity supersolution of
(2.1).

To make easier recalling the right inequality, we will often say that $u$ is
an $IP$-viscosity solution of

$G(x, u, Du, D^{2}u)\leq f(x)$

$($resp., $G(x,$ $u,$ $Du,$ $D^{2}u)\geq f(x))$ ,
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if it is an $IP$-viscosity subsolution (resp., supersolution) of (2.1).
In what follows, instead of (2.1), we mainly consider PDEs which do not

depend on u-variable:
$F(x, Du, D^{2}u)=f(x)$ in $\Omega$ . (2.2)

We will assume that $F$ is (degenerate) elliptic:
$F(x,p, M)\leq F(x,p, N)$

(2.3)
for all $(x,p, M, N)\in\Omega\cross \mathbb{R}^{n}\cross S^{n}\cross S^{n}$ provided $M\geq N$.

For fixed ellipticity constants $0<\lambda\leq\Lambda$ , we also assume that
there exists $b\in L_{+}^{q}(\Omega)$ such that

(2.4)
$\mathcal{P}^{-}(M)-b(x)|p|\leq F(x,p, M)$ for $(x,p, M)\in\Omega\cross \mathbb{R}^{n}\cross S^{n}$ ,

where the Pucci operators $\mathcal{P}^{\pm}:S^{n}arrow \mathbb{R}$ are defined by
$\mathcal{P}^{-}(M)=\min\{$ -trace(AM) : $A\in S^{n}:\lambda I\leq M\leq\Lambda I\}$ ,

(2.5)
and $\mathcal{P}^{+}(M)=\max\{$-trace(AM) : $A\in S^{n}:\lambda I\leq M\leq\Lambda I\}$ .

We will use the Escauriaza’s constant $p_{0}=p_{0}(n, \lambda, \Lambda)\in[n/2, n)$ , for
which we refer to [12]. It is known that for $p>p_{0}$ , and $f\in L^{p}(B_{r}(z))$ ,
where $B_{r}(x)=\{y\in \mathbb{R}^{n} : |x-y|<r\}$ , there exists a strong solution
$u\in C(\overline{B}_{r}(z))\cap W_{1oc}^{2,p}(B_{r}(z))$ of

$\mathcal{P}^{-}(D^{2}v(x))=f(x)$ a.e. in $B_{r}(z)$

under $v(x)=0$ for $x\in\partial B_{r}(z)$ with estimates:
$-C\Vert f^{-}\Vert_{L^{p}(B_{r}(z))}\leq v(x)\leq C\Vert f^{+}\Vert_{L(B_{r}(z))}p$ in $B_{r}(z)$

and
$\Vert v\Vert_{W_{1oc}^{2,p}(B_{r}(z))}\leq C’\Vert f\Vert_{LP(B_{r}(z))}$ ,

where $C=C(n, \lambda, \Lambda,p)>0$ and $C’=C’(n, \lambda, \Lambda,p, r)>0$ are positive
constants.

We remark that to prove the ABP maximum principle [15, Theorem 2.9],
which implies the boundary weak Harnack inequality [16, Theorem 6.1], it
suffices to obtain the existence of strong solutions of the above extremal
equation only in balls although this fact is not clearly mentioned in [15, 16].
In fact, this existence result holds with local $W^{2,p}$-estimates for more general
domains satisfying the uniform exterior cone property but the $p_{0} \in[\frac{n}{2}, n)$

associated with general domains might be bigger than the above. We also
notice that we may replace cubes by balls in the (boundary) weak Harnack
inequality in [16] by Cabr\’e $s$ covering argument.

Fix $R>0$ and $z\in \mathbb{R}^{n}$ . Let $T,$ $T’\subset B_{R}(z)$ be domains such that

$\overline{T}\subset T’$ , and $\theta_{0}\leq\frac{|T|}{|T|}\leq 1$ for some $\theta_{0}>0$ .

When we apply our weak Harnack inequality below, our choice of $T$ and $T’$

always satisfies the above condition.
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For a given domain $A\subset \mathbb{R}^{n}$ and a function $v\in C(A)$ , we define $v_{\overline{m}}$ on
$T’\cup A$ by

$v_{\overline{m}}(x)=\{\begin{array}{ll}\min\{v(x), m\} if x\in A,m if x\in T’\backslash A,\end{array}$

where

$m= \lim_{xarrow T},\inf_{\cap\partial A}v(x)$ .

We note that if $T’\cap\partial A\neq\emptyset$ , then $v_{\overline{m}}$ is a real-valued function and that if
$T’\cap\partial A\neq\emptyset,$ $v$ is a nonnegative $IP$-viscosity supersolution of (2.2) and $f\leq 0$

in $T’\cap A$ , then $v_{\overline{m}}$ is a nonnegative $IP$-viscosity supersolution of (2.2) in $T’$ .
Next, we recall the boundary weak Harnack inequality when PDEs have

unbounded coefficients and inhomogeneous terms.

Lemma 2.2 ([16, Theorem 6.1]). Let $T,$ $T’,$ $A$ be as above. Assume that
$T\cap A\neq\emptyset$ and $T’\backslash A\neq\emptyset$ and that

$q>n$ , $q\geq p>p_{0}$ . (2.6)

Then, there exist constants $\epsilon_{0}=\epsilon_{0}(n, \lambda, \Lambda)>0,$ $r=r(n, \lambda, \Lambda,p, q)>0$ and
$C_{0}=C_{0}(n, \lambda, \Lambda,p, q)>0$ satisfying the following property: if $b\in L_{+}^{q}(T’\cap A)$ ,
$f\in L_{+}^{p}(T’\cap A)_{f}$ a nonnegative $L^{p}$ -viscosity solution $w\in C(T’\cap A)$ of

$\mathcal{P}^{+}(D^{2}w)+b(x)|Dw|\geq-f(x)$ in $T’\cap A$ ,

and
$\Vert b\Vert_{L^{n}(T’\cap A)}\leq\epsilon_{0}$ , (2.7)

then it follows that

$( \frac{1}{|T|}\int_{T}(w_{T,A}^{-})^{r}dx)^{1/r}\leq C_{0}(\inf_{T}w_{T,A}^{-}+R\Vert$fll $L^{n}(T’\cap A))$

provided that $q>n$ and $q\geq p\geq n$ , and

$( \frac{1}{|T|}\int_{T}(w_{T’,A}^{-})^{r}dx)^{1/r}$

$\leq C_{0}(\inf_{T}w_{T’,A}^{-}+R^{2-\frac{n}{p}}\Vert f\Vert_{L^{p}(T’\cap A)}\sum_{k=0}^{M}R^{(1-\frac{n}{q})k}\Vert\mu\Vert_{L^{q}(T’\cap A)}^{k})$

provided that $q>n>p>p_{0}$ , where $M=M(n,p, q)\geq 1$ is an integer.

In the next section, we will establish some local and global ABP type esti-
mates on $IP$-viscosity subsolutions for (2.2). Finally, we recall the notations
concerning the shape of domains from [8].

Definition 2.3 (Local geometric condition). Let $\sigma,$ $\tau\in(0,1)$ . We call $y\in\Omega$

a $G_{\sigma,\tau}$ point of $\Omega$ if there exist $R=R_{y}>0$ and $z=z_{y}\in \mathbb{R}^{n}$ such that
$y\in B_{R}(z)$ , and $|B_{R}(z)\backslash \Omega_{y,B_{R}(z),\tau}|\geq\sigma|B_{R}(z)|$ , (2.8)
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where $\Omega_{y,B_{R}(z),\tau}$ is the connected component of $B_{\frac{R}{\tau}}(z)\cap\Omega$ containing $y$ . For
$\sigma,$ $\tau\in(0,1)$ , and $R_{0}>0,$ $\eta\geq 0$ , we call $y\in\Omega$ a $G_{\sigma,\tau}^{R_{0},\eta}$ point in $\Omega$ if $y$ is a
$G_{\sigma,\tau}$ point in $\Omega$ with $R=\mathscr{F}>0$ and $z=z_{y}$ satisfying

$R\leq R_{0}+\eta|y|$ . (2.9)

Definition 2.4 (Global geometric condition). We call $\Omega$ a weak-G domain
if any $y\in\Omega$ is a $G_{\sigma,\tau}^{R_{0},\eta}$ point in $\Omega$ .

Remark 2.5. For the sake of simplicity of notations, for a $G_{\sigma,\tau}$ point $y\in\Omega$ ,
we will write $B_{y}$ for $B\mathscr{N}(z_{y})$ , where $\mathscr{F}>0$ and $z_{y}\in \mathbb{R}^{n}$ are from Definition
2.3.

We refer the reader to [21] and [8] for examples of weak-G domains $\Omega$ .
We also refer to [1] for a generalization.

3. ABP TYPE ESTIMATES

In this section, we first present pointwise estimates on $L^{p}$-viscosity subso-
lutions of (2.2), which is often referred as the Krylov-Safonov growth lemma.
For simplisity, throughout this paper, we assume that $p\geq n$ . In what fol-
lows, we fix $\sigma,$ $\tau\in(0,1)$ and $R_{4}>0$ . Let $y\in\Omega$ be a $G_{\sigma,\tau}^{R_{O},\eta}$ point with $\eta\geq 0$ .
It is possible to apply our weak Harnack inequality in $B_{y}$ , which is $hom$

Definition 2.3, if $\Vert b\Vert_{L^{n}(B_{y}\cap\Omega)}\leq\epsilon_{0}$ . Here and later, $\epsilon_{0}>0$ is the constant
from Lemma 2.2.

Even if $\Vert b\Vert_{L^{n}(B_{y}\cap\Omega)}>\epsilon_{0}$ , we may use Cabr\’e $s$ covering argument; we
divide $B_{y}$ into small pieces so that we may apply the weak Harnack inequal-
ity in each piece. We then obtain the weak Harnack inequality in $B_{y}$ by
combining all the inequalities for small pieces.

However, since we need the estimates uniform in $y\in\Omega$ , this argument
does not work immediately because of unboundedness of $\{\mathscr{F}\}_{y\in\Omega}$ when
$\eta>0$ .

To avoid this difficulty, we will suppose a decay rate of $b$ :
for any $\epsilon>0$ , there exists $\delta>0$ such that

$\sup_{R>1}\int_{E}R^{n}b(Rx)^{n}dx<\epsilon$ for $E\subset A,$ $|E|<\delta$, (3.1)

where $A= \Omega\cap\{x\in \mathbb{R}^{n}|\frac{1}{4}\min\{1/(1+\eta), (\sigma/4)^{1/n}\}<|x|<2+1/\tau\}$ .

Lemma 3.1 (pointwise estimate). Assume that (2.3), (2.6) and (2.4) hold
with $b\in L_{+}^{q}(\Omega)$ . Let $\eta>0$ and $y\in\Omega$ be a $G_{\sigma,\tau}^{R_{0},\eta}$ point in $\Omega$ with $R=\mathscr{K}>0$

and $z=z_{y}\in \mathbb{R}^{n}$ . Then, there exist $\kappa=\kappa(n, \lambda, \Lambda, \sigma, \tau, R_{0}, \eta)\in(0,1)$ and
$\epsilon=\epsilon(n, \sigma, \eta)>0$ satisfying the following property: if $w\in C(\Omega)$ is an $Iy_{-}$

viscosity subsolution of (2.2) with $f\in L_{+}^{p}(\Omega)$ , then we have the following
properties: (i) If $|y|\leq R_{0}$ and $p\geq n$ , then

$w(y) \leq\kappa\sup_{B_{y}\cap\Omega}w^{+}+(1-\kappa)\lim_{xarrow B_{y}}\sup_{\cap\partial\Omega}w^{+}+R_{0}\Vert$fll $L^{n}(B_{y}\cap\Omega)$ .
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(ii) Assume that (3.1) is satisfied and that $|y|>R_{0}$ . If $p\geq n$ , then

$w(y) \leq\kappa\sup_{B_{y}\cap\Omega}w^{+}+(1-\kappa)\lim_{xarrow B_{y}}\sup_{\cap\Omega}w^{+}+R\Vert f\Vert_{L^{n}(B_{y}\cap\Omega\backslash B_{\text{\’{e}} R}(0))}$.

Remark 3.2. To get the weak maximum principle (Lemma 4.1 below), it
is important to have the term lfll $L^{p}(B_{y}\cap\Omega\backslash B_{\epsilon R}(0))$ instead of Ifll $L^{p}(B_{y}\cap\Omega)$ in
the estimates of the assertion (ii) above.

Proof. First of all, we shall omit giving the proof in the case of $\Vert b\Vert_{L^{q}(\Omega)}=0$

because it is easy to do it, and we suppose that $\Vert b\Vert_{L^{q}(\Omega)}>0$ .
It is enough to show the assertion when $\hat{C}$

$:= \lim\sup_{xarrow B_{y}\cap\partial\Omega}w^{+}(x)=0$ .
In fact, after $having\wedge$ established the assertion when $\hat{C}=0$ , we may apply
the result to $w-C$ to prove the assertion in the general case.

Due to (2.4), $w$ is an $L^{p}$-viscosity solution of
$\mathcal{P}^{-}(D^{2}w)-b(x)|Dw|\leq f(x)$ in $\Omega$ .

Setting $C_{w}= \sup_{B_{y}\cap\Omega}w^{+}$ , we immediately see that $v(x);=C_{w}-w(x)$ is
an $I\nearrow$-viscosity solution of

$\mathcal{P}^{+}(D^{2}v)+b(x)|Dv|\geq-f(x)$ in $\Omega$ .
We shall first prove (ii).
Case (ii) $|y|>R_{0}$ :

Taking $\epsilon=\frac{1}{4}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{\frac{1}{n}}\}\in(0, \frac{1}{2}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{\frac{1}{n}}\})$ . Note that $2\epsilon<$

$1/(1+\eta)$ and $(2\epsilon)^{n}<\sigma/4$ . We set $T=B_{R}(z)\backslash \overline{B}_{2\epsilon R}(0)$ and $T’=B_{y}\backslash \overline{B}_{\epsilon R}(0)$ .
Observe that

$2 \epsilon R<\frac{R}{1+\eta}\leq\frac{R_{0}+\eta|y|}{1+\eta}<|y|$

and consequently $y\in T=B_{R}(z)\backslash \overline{B}_{2\epsilon R}(0)$ . Let $A$ be the connected com-
ponent of $T’\cap\Omega$ which contains $y$ . We have

$|T\backslash A|\geq|T\backslash \Omega_{y,B_{R}(z),\tau}|$

$\geq|B_{R}(z)\backslash \Omega_{y,B_{R}(z),\tau}|-|B_{2\epsilon R}(0)|$

$\geq\sigma|B_{R}(0)|-(2\epsilon)^{n}|B_{R}(0)|$

$\geq\frac{\sigma}{2}|B_{R}(0)|$

$\geq\frac{\sigma}{2}|T|$ .

Since
$T’\cap\partial A\subset T’\cap\partial(T^{l}\cap\Omega)\subset T’\cap(\partial T^{l}\cup\partial\Omega)=T^{l}\cap\partial\Omega$ , (3.2)

in view of $\hat{C}\leq 0$ , we have

$\lim_{xarrow T},\inf_{\cap\partial A}v(x)=C_{w}-\lim_{xarrow T}\sup_{\cap\partial A}w(x)\geq C_{w}$ . (3.3)

Now, we verify (2.7). By (3.1), if I $Rb(R\cdot)\Vert_{L^{n}(A)}\leq\epsilon_{0}$ , we see that
$\Vert b\Vert_{L^{n}(T’\cap A)}\leq\Vert Rb(R\cdot)\Vert_{L^{n}(A)}\leq\epsilon_{0}$ .
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Setting $m= \lim\inf_{xarrow T^{l}\cap\partial A}v(x)$ , we use (3.3) to show for any $r>0$ ,

$( \frac{\sigma}{2})^{1/r}C_{w}\leq(\frac{|T\backslash A|}{|T|})^{1/r}C_{w}\leq(\frac{1}{|T|}\int_{T\backslash A}m^{r}dx)^{1/r}\leq(\frac{1}{|T|}\int_{T}(v_{m}^{-})^{r}dx)^{1/r}$

Since $y\in A$ , we have

$\inf_{T}v_{\overline{m}}\leq v(y)=C_{w}-w(y)$ . (3.4)

Thus, letting $r>0$ be the constant from Lemma 2.2, we have

$( \frac{\sigma}{2})^{1/r}C_{w}\leq C_{0}(\inf_{T}v_{\overline{m}}+R\Vert f\Vert_{L^{n}(T’\cap A))}\leq C_{0}(C_{w}-w(y)+R\Vert f\Vert_{L^{n}(T’\cap\Omega)})$ .

Therefore, we conclude that the assertion (ii) holds with $\kappa=1-(\frac{\sigma}{2})^{1/r}\min\{C_{0}^{-1},1\}>$

$0$ in the case where 1 $Rb(R\cdot)\Vert_{L^{n}(A)}\leq\epsilon_{0}$ .
Next assume that $\Vert Rb(R\cdot)\Vert_{L^{n}(A)}>\epsilon_{0}$ . In this case, we can show that

using a Cabr\’e’s covering argument.
Case (i) $|y|\leq R_{4}$ :

Since we have $R\leq(1+\eta)R_{0}$ in this case, we may regard $\Omega$ as a bounded
domain. Thus, we can use the standard covering argument by Cabr\’e without
using (3.1). Setting $T=B_{R}(z),$ $T^{l}=B_{\frac{R}{\tau}}(z)$ and $A=\Omega_{y,B_{R}(z),\tau}$ , we have

$|T \backslash A|=|B_{R}(z)\backslash \Omega_{y,B_{R}(z),\tau}|\geq\sigma|B_{R}(z)|\geq\frac{\sigma}{2}|T|$ .

We shall only give a proof when $\Vert b\Vert_{L^{n}(T’\cap A)}\leq\epsilon_{0}$ .
Following the same argument as in case (ii) with the above inequality,

and new $A,$ $T,$ $T’$ , we have

$( \frac{\sigma}{2})^{1/r}C_{w}\leq C_{0}(\inf_{T}v_{\overline{m}}+R_{0}$ IIfll $L^{n}(B_{y}\cap\Omega))$

$\leq C_{0}(C_{w}-w(y)+R_{0}\Vert f\Vert_{L^{n}(B_{y}\cap\Omega)})$ .

Therefore, we conclude that the assertion holds with the same $\kappa\in(0,1)$ as
in case (ii). $\square$

When $\Omega\subset \mathbb{R}^{n}$ is a weeak-G domain, we derive the ABP maximum prin-
ciple for If-viscosity subsolutions bounded from above of (2.2).

Theorem 3.3 (ABP maximum principle in unbounded domains). Assume
(2.6), (2.3) and (2.4) with $b\in L_{+}^{q}(\Omega)$ satisfying (3.1). Let $\eta>0$ and $\Omega\subset \mathbb{R}^{n}$

be a weak-G domain. Assume also

$\sup$ $\mathscr{K}\Vert f\Vert_{L^{n}(A_{y}\cap\Omega)}<\infty$ (3.5)
$y\in\Omega,|y|>R_{0}$

Let $\frac{1}{4}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{1/n}\}\leq\epsilon<\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{1/n}\}$ . Then, there exists

$C=C(n, \lambda, \Lambda,p, q,\epsilon, \sigma, \tau, R_{0}, \eta)>0$
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satisfying the following properties: $ifw\in C(\Omega)$ is an IP-viscosity subsolution
bounded from above of (2.2) with $f\in L_{+}^{p}(\Omega)$ , then it follows that

$\sup_{\Omega}w\leq\lim_{xarrow}\sup_{\partial\Omega}w^{+}(x)+C$ $\sup$ $R_{y}\Vert f\Vert_{L^{n}(A_{y}\cap\Omega)}$

$y\in\Omega,|y|>R_{0}$

(3.6)
$+CR_{0}$ $\sup$ $\Vert f\Vert_{L^{n}(B_{y}\cap\Omega)}$ .

$y\in\Omega,|y|\leq R_{0}$

Here, $A_{y}=B_{\underline{R}_{A}}\tau(z_{y})\backslash B_{\epsilon R_{4}}(0)$ and $B_{y}=B_{\underline{R}_{A}}\tau(z_{y})$ .

Proof. We take the supremum over $y\in\Omega$ with the estimates in Lemma 3.1
to conclude the inequalities (3.6). $\square$

4. $PHRAGM\text{\’{E}} N-LINDEL\ddot{O}F$ THEOREM

In this section, we show that the weak maximum principle holds for
PDEs with zero-order terms. As before, assuming that $\Omega$ is a weak-G
domain, for each $y\in\Omega$ , we use the notations $R_{y}>0$ and $z_{y}\in \mathbb{R}^{n}$ .
Also, $B_{y}$ and $A_{y}$ , respectively, denote $B_{\frac{R_{y}}{\tau}}(z_{y})$ and $B_{\frac{R_{y}}{\tau}}(z_{y})\backslash B_{\epsilon R_{y}}(0)$ for
$\epsilon\in[\frac{1}{4}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{1/n}\}, \frac{1}{2}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{1/n}\})$ .

Lemma 4.1. Assume (2.3), (2.6) and (2.4) with $b\in L_{+}^{q}(\Omega)$ satisfying
(3.1). Let $\eta>0$ and $\Omega$ be a weak-G domain. Then, there exists $c_{0}=$

$c_{0}(n, \lambda, \Lambda,p, q, \sigma, \tau, R_{0}, \eta)>0$ satisfying the following property:
if $c\in L_{+}^{n}(\Omega),$ $w\in C(\Omega)$ is an $L^{p}$-viscosity solution bounded from above of

$F(x, Dw, D^{2}w)-c(x)w^{+}\leq 0$ in $\Omega$ (4.1)

such that

lim $supw(x)\leq 0$ , (4.2)
$xarrow\partial\Omega$

and

$K_{0}:= \max\{\sup_{y\in\Omega,|y|>R_{0}}\Vert\{\cdot\}c(\cdot)\Vert_{L^{n}(A_{y}\cap\Omega)},\sup_{y\in\Omega,|y|\leq R_{0}}\Vert c\Vert_{L^{n}(B_{y}\cap\Omega)}\}\leq c_{0}$ ,

(4.3)

then $w\leq 0$ in $\Omega$ .
Proof. Note that by (2.4), $w$ is an $L^{n}$-viscosity solution of

$\mathcal{P}^{-}(D^{2}w)-b(x)$ I $Dw|-c(x)w^{+}\leq 0$ .
We apply Theorem 3.3 with $f=cw^{+}$ to obtain that when $|y|\leq R_{4}$ ,

$R_{0} \Vert cw^{+}\Vert_{L^{n}(B_{y}\cap\Omega)}\leq R_{0}\sup_{\Omega}w^{+}\Vert c\Vert_{L^{n}(B_{y}\cap\Omega)}\leq R_{0}K_{0}\sup_{\Omega}w^{+}$ .

On the other hand, when $|y|>R_{0}$ , we have

$R_{y} \Vert cw^{+}\Vert_{L^{n}(A_{y}\cap\Omega)}\leq\frac{R_{y}}{\sqrt{1+(\epsilon \mathscr{F})^{2}}}\sup_{\Omega}w^{+}\Vert\{\cdot\}c(\cdot)\Vert_{L^{n}(A_{y}\cap\Omega)}\leq\frac{K_{0}}{\epsilon}\sup_{\Omega}w^{+}$.

(4.4)
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Choosing $\epsilon_{1}=\frac{1}{4}\min\{\frac{1}{1+\eta}, (\frac{\sigma}{4})^{1/n}\}$ for instance, we have

$\sup_{\Omega}w\leq C_{3}\max\{R_{0},$ $\frac{1}{\epsilon_{1}}\}c_{0}\sup_{\Omega}w^{+}$

for some constant $C_{3}>0$ . Taking $c_{0}<1/(C_{3} \max\{R_{0},1/\epsilon_{1}\})$ , this end the
proof. $\square$

Theorem 4.2 (Phragm\’en-Lindel\"of theorem). Assume (2.3), (2.6) and (2.4)
with $b\in L_{+}^{q}(\Omega)$ satisfying (3.1). Let $\eta>0$ and $\Omega$ be a weak-G domain. There
exists a positive constant $\alpha>0$ such that if $w\in C(\Omega)$ is an If-viscosity
solution of

$F(x, Dw, D^{2}w)\leq 0$ in $\Omega$ (4.5)

with (4.2) holds and

$w^{+}(x)=O(|x|^{\alpha})$ a$s$ $|x|arrow\infty$ , (4.6)

then $w\leq 0$ in $\Omega$ .

Proof of Theorem 4.2. Define a positive smooth function
$\xi(x)=\{x\}^{\alpha}$ ,

where $\alpha>0$ will be fixed later. Setting $u=w/\xi$ , which is bounded ffom
above. A straightforward calculation shows that

$\frac{|D\xi|}{\xi}(x)\leq\frac{\alpha}{\langle x\}}$ , $\frac{|D^{2}\xi|}{\xi}(x)\leq\frac{C_{4}\alpha}{\{x\}^{2}}$

for some $C_{4}>0$ . Thus, we see that $u$ is an $L^{n}$-viscosity solution of
$\mathcal{P}^{-}(D^{2}u)-\gamma_{1}(x)|Du|-\alpha\gamma_{2}(x)u^{+}\leq 0$ in $\Omega$ ,

where

$\gamma_{1}(x)=\frac{C_{5}\alpha}{\{x\rangle}+b(x)$ , $\gamma_{2}(x)=\frac{C_{6}}{\{x\}}(\frac{1}{\langle x\rangle}+b(x))$

for some positive constants $C_{5},$ $C_{6}>0$ . We easily see that $\gamma_{1}$ satisfies (3.1).
We next show that (4.3) holds for $\gamma_{2}$ . Direct calculation implies

$\tilde{K}_{0}:=\max\{ \sup \Vert\langle\cdot\}\gamma_{2}(\cdot)\Vert_{L^{n}(A_{y}\cap\Omega)}$ , $\sup$ $\Vert\gamma_{2}\Vert_{L^{n}(B_{y}\cap\Omega)}\}<+\infty$

$y\in\Omega,|y|>R_{4}$ $y\in\Omega,|y|\leq R_{0}$

(4.7)

is boounded. Thus, $K_{0}=\alpha\tilde{K}_{0}$ is small when $\alpha>0$ is small enough.
Therefore, using Lemma 4.1 with $b=\gamma_{1}$ and $c=\gamma_{2}$ , we get $u\leq 0$ . This

imlies $w\leq 0$ . $\square$
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