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Abstract

This note is a survey on Whitney preserving maps. In particular
we introduce next results.

(1) Let $X$ be a continuum such that $X$ contains a dense arc com-
ponent and let $D$ be a dendrite with a closed set of branch points. If
$f$ : $Xarrow D$ is a Whitney preserving map, then $f$ is a homeomorphism.

(2) For each dendrite $D$‘ with a dense set of branch points there
exist a continuum $X’$ containing a dense arc component and a Whitney
preseiving map $f^{l}$ : $X^{l}arrow D’$ such that $f^{l}$ is not a homeomorphism.

1 Introduction

In this note, all spaces are separable metrizable spaces and maps are
continuous. We denote the interval $[0,1]$ by $I$ . A compact metric space is
called a compactum and continuum means a connected compactum. If $X$

is a continuum $C(X)$ denotes the space of all subcontinua of $X$ with the
topology generated by the Hausdorff metric.

In this note we study maps called Whitney preserving maps. If $f$ :
$x_{\wedge}arrow Y$ is a map between continua, then define a map $\hat{f}:C(X)arrow C(Y)$ by
$f(A)=f(A)$ for each $A\in C(X)$ . A map $f$ : $Xarrow Y$ is called a Whitney
preserving map if there exist Whitney maps (see p105 of [12]) $\mu$ : $C(X)arrow I$

and $\nu$ : $C(Y)arrow I$ such that for each $s\in[0, \mu(X)],\hat{f}(\mu^{-1}(s))=\nu^{-1}(t)$ for
some $t\in[0, \nu(Y)]$ . In this case, we say that $f$ is $\mu$ , v-Whitney preserving.
Let $f$ : $Xarrow Y$ be a $\mu,$ $\nu$-Whitney preserving map. Then it is easy to see
that if $s,$ $s\in[0, \mu(X)]$ and $t,$ $t’\in[0, \iota$ノ $(Y)]$ satisfy $s\leq s’,\hat{f}(\mu^{-1}(s))=\iota \text{ノ^{}-1}(t)$

and $\hat{f}(\mu^{-1}(s’))=\nu^{-1}(t’)$ , then $t\leq t’$ .
The notion of a Whitney preserving map is introduced by Espinoza (see

[1] and [2] $)$ . In this article we study these maps.
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2Whitney preserving maps onto dendrites
At first we give an example of a Whitney preserving map.

Example 2.1 (Example 2 of [1]) let $f$ : $[0, \pi]arrow S^{1}$ be a map defined by
$f(t)=e^{4ti}$ . Then $f$ is Whitney preserving. But $f$ is not a homeomorphism.

In [1] Espinoza proved the following result.

Theorem 2.2 (Theorem 16 of [1]) Let $X$ be a continuum such that $X$ con-
tains a dense arc component. If $f$ : $Xarrow I$ is a Whitney preserving map,
then $f$ is a homeomorphism.

A Peano continuum is called a dendrite if it contains no simple closed curve.
Let $D$ be a dendrite. A point $e\in D$ is called an end point of $D$ if $D\backslash \{e\}$

is connected. A point $b\in D$ is called a branch point of $D$ if there exists a
neighbourhood $U$ of $b$ such that for each neighbourhood $V$ of $b$ with $V\subset U$ ,

$|$ Bd$(V)|\geq 3$ . We denote the set of all end points in $D$ by $E(D)$ . Also we
denote the set of all branch points of $D$ by $B(D)$ .

Recently the author proved the next theorem ([9], see also [8]).

Theorem 2.3 Let $X$ be a continuum such that $X$ contains a dense arc com-
ponent and let $D$ be a dendrite with the closed set of bmnch points. Then a
map $f$ : $Xarrow D$ is a Whitney preserving map if and only if $f$ is a homeo-
morphism.

Corollary 2.4 Let $X$ be a continuum such that $X$ contains a dense arc com-
ponent and let $T$ be a tree. Then a map $f$ : $Xarrow T$ is a Whitney preserving
map if and only if $f$ is a homeomorphism.

Generally, Theorem 2.3 does not hold when $D$ is a graph by Example 2.1.

Remark. For every l-dimensional continuum $M$ there exists a l-dimensional
continuum $\hat{M}$ (other than $M$) such that there is a Whitney preserving map
$f$ : $\hat{M}arrow M$ by Theorem 2.9 of [2].

It is natural to ask that whether Theorem 2.3 holds when $D$ is any den-
drite. In fact, this does not hold.

If $X$ and $Y$ be compacta, then $C(X, Y)$ denotes the set of all continuous
maps from $X$ to $Y$ endowed with $\sup$ metric. Also $S(X, Y)$ denotes the
set of all surjective maps in $C(X, Y)$ . If $v,$ $w\in X$ , then we denote the set
$\{f\in C(X, Y)|f(v)=f(w)\}$ by $C_{(v,w)}(X, Y)$ . Also we denote the set $\{f\in$
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$S(X, Y)|f(v)=f(w)\}$ by $S_{(v,w)}(X, Y)$ . It is easy to see that $C_{(v,w)}(X, Y)$ and
$S_{(v,w)}(X, Y)$ are closed subsets of $C(X, Y)$ . Let $N\subset X$ . Then we denote the
set $\{f\in C(X,$ $Y)|f^{-1}(f(x))=\{x\}$ for each $x\in N\}$ by $A_{N}(X, Y)$ . If $N$ is a
one point set $\{a\}$ , then we denote the set $A_{N}(X, Y)$ by $A_{a}(X, Y)$ . Let $x\in X$

and $r>0$ . Then we denote the set $\{f\in C(X,$ $Y)|$diam $f^{-1}(f(x))<r\}$ by
$A_{x,r}(X, Y)$ .

Finally, we denote the identity map on a space $S$ by $id_{S}$ .

A surjective map $e$ from $I$ onto a graph $G$ is called an Eulerian path
if $e$ satisfies; (i) $e(O)=e(1)$ , (ii) $|$ {$y\in G|e^{-1}(y)$ is nondegenerate } $|<\infty$

and (iii) each fiber of $e$ is finite. In [3] Espinoza and Illanes proved the next
result.

Theorem 2.5 ([3]) For each graph $G$ which admits an Eulerian path, there
exist a continuum $X_{G}$ containing a dense arc component and a Whitney
preseiving map $f$ : $X_{G}arrow G$ such that $f$ is not a homeomorphism.

In [9] the author showed that this result holds when $G$ is a superdendrite.
A dendrite $D$ is called a superdendrite if $E(D)$ is dense in $D$ . It is known
that a dendrite $D$ is a superdendrite if and only if $B(D)$ is dense in $D$

Lemma 2.6 ([9]) Let $X$ be a compactum and let $D$ be a superdendrite. If
$v,$ $w$ and $a$ are points in $X$ such that $a\not\in\{v, w\}$ , then $C_{(v,w)}(X, D)\cap A_{a}(X, D)$

is a dense $G_{\delta}$ -subset in $C_{(v,w)}(X, D)$ .

Lemma 2.7 ([9]) Let $X$ be a nondegenemte continuum and let $D$ be a su-
perdendrite. If $v,$ $w$ and $a$ are points in $X$ such that $a$ $\not\in\{v, w\}$ , then
$S_{(v,w)}(X, D)\cap A_{a}(X, D)$ is a dense $G_{\delta}$ -subset in $S_{(v,w)}(X, D)$ .

By Lemma 2.7 and Baire Category Theorem, we get the next corollary.

Corollary 2.8 ([9]) Let $X$ be a nondegenemte continuum, $N$ a countable
subset of $X$ and $D$ a superdendrite. If $v,$ $w$ are points in $X$ such that $N\cap$

$\{v, w\}=\emptyset$ , then $S_{(v,w)}(X, D)\cap A_{N}(X, D)$ is a dense $G_{\delta}$ -subset in $S_{(v,w)}(X, D)$ .

By using Corollary 2.8 and arguments in [3], we can prove the following
result.

Theorem 2.9 ([9]) For each superdendrite $D$ , there exist a continuum $X_{D}$

containing a dense arc component and a Whitney preseiving map $f$ : $X_{D}arrow$

$D$ such that $f$ is not a homeomorphism.

Recently the author generalized this result.
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Theorem 2.10 ([10]) For each l-dimensional locally connected continuum
without free arcs $P$ , there exist a continuum $X_{P}$ containing a dense arc com-
ponent and a Whitney preseiving map $f$ : $X_{P}arrow P$ such that $f$ is not a
homeomorphism.

Theorem 2.11 ([10]) For each $n\geq 2$ and an n-dimensional manifold $M$ ,
there exist a continuum $X_{M}$ containing a dense arc component and a Whitney
preseiving map $f$ : $X_{M}arrow M$ such that $f$ is not a homeomorphism.

3 Other topics related to Whitney preserving
maps

A subcontinuum $T$ of a continuum X is terminal, if every subcontinuum of
X which intersects both $T$ and its complement must contain $T$.

Now we give a notation. If $f$ : $Xarrow Y$ is a map, let $\mathcal{A}_{f}=\{f^{-1}(y)|y\in Y\}$

and $\mathcal{A}_{f}’=$ { $C|C$ is a component of a fiber of $f$}.
Let $f$ : $Xarrow Y$ be a Whitney preserving map. Then $\mathcal{A}_{f}$ need not be a

continuous decomposition of $X$ . For example let $f$ : $[0, \pi]arrow S^{1}$ be a map
defined by $f(t)=e^{4ti}$ . Then $f$ is Whitney preserving (cf. Example 2 of [1]).
But $f$ is not an open map.

In [7] the author proved next results.

Proposition 3.1 ([7]) Let $f$ : $Xarrow Y$ be a $\mu,$ $\nu$-Whitney preserving map.
Then $\mathcal{A}_{f}’$ is a continuous decomposition of $X$ and each element of $\mathcal{A}_{f}’$ is
terminal in $X$.

A map $f$ : $Xarrow Y$ between continua is called an atomic map if $f^{-1}(f(A))=$
$A$ for each $A\in C(X)$ such that $f(A)$ is nondegenerate. It is known that a
map $f$ of a continuum $X$ onto a continuum $Y$ is atomic if and only if every
fiber of $f$ is a terminal continuum of $X$ .

A map $f$ : $Xarrow Y$ between compacta is called a Krasinkiewicz map if
any continuum in $X$ either contains a component of a fiber of $f$ or is contained
in a fiber of $f$ (cf. [6]). These maps are related to Whitney preserving maps.

Proposition 3.2 ([7]) Let $f$ : $Xarrow Y$ be a map such that $\mathcal{A}_{f}’$ does not
contain $a$ one point set. Then the following conditions are equivalent.

(1) $\mathcal{A}_{f}’$ is a continuous decomposition of $X$ and each element of $\mathcal{A}_{f}’$ is
terminal in $X$.

(2) $\mathcal{A}_{f}^{l}$ is a continuous decomposition of $X$ and $f$ is a Krasinkiewicz map.

By using Proposition 3.2 the author proved next results.
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Theorem 3.3 ([8]) Let $X$ be a continuum such that $X$ contains a dense arc
component. If $f$ : $Xarrow f(X)$ is a Whitney preserving map such that $f$ is
not a constant map, then $f$ is a light map.

Theorem 3.4 ([7]) Let $X,$ $Y$ be continua and let $f$ : $Xarrow Y$ be a monotone
map such that $f^{-1}(y)$ is a nondegenemte continuum in X. Then the following
conditions are equivalent.

(1) $f$ is an open map and each fiber of $f$ is terminal in $X$.
(2) $f$ is an open Krasinkiewicz map.
(3) $f$ is a Whitney preserving map.

As an application of Theorem 3.4 we obtain next results.

Theorem 3.5 ([8]) There exists a l-dimensional continuum $T\subset I^{2}$ , a Whit-
ney map $\mu$ : $C(T)arrow I$ and $s_{0},$ $s_{1}\in I$ such that

(1) $0<s_{0}<s_{1}<\mu(T)$ ,
(2) $\dim\mu^{-1}(s)=1$ for each $s\in[0, s_{0})$ ,
(3) $\dim\mu^{-1}(s_{0})=2$ , and
(4) $\dim\mu^{-1}(s)=\infty$ for each $s\in(s_{0}, s_{1}]$ .

Theorem 3.6 ([8]) There exists a l-dimensional continuum $T\subset I^{2}$ such
that

(1) $\dim C(T)=\infty$ , and
(2) for each Whitney map $w:C(T)arrow I$ there exists $a_{0}\in(0, w(T))$ such

that $\dim w^{-1}(s)=1$ for each $s\in[0, a_{0}]$ .

At last we give some results related to Whitney preserving maps.

Proposition 3.7 ([8]) Let $f:Xarrow Y$ be a monotone $\mu$ , u-Whitney preserv-
ing map and let $s_{0}= \max\{s\in I|\hat{f}(\mu^{-1}(s))=\nu^{-1}(0)\}$ . Then $f|_{\mu^{-1}([s_{0},\mu(X)])}$ :
$\mu^{-1}([s_{0},$ $\mu(X)])arrow C(Y)$ is a homeomorphism. Hence $\mu^{-1}(s)$ is homeomor-
phic to $f(\mu^{-1}(s))$ for each $s\in[s_{0}, \mu(X)]$ .

A topological property $P$ is said to be a Whitney property provided that
if a continuum $X$ has property $P$ , so does $\mu^{-1}(t)$ for each Whitney map $\mu$

for $C(X)$ and for each $t\in[0, \mu(X)]$ . As a corollary of Proposition 3.7 we get
the next result.

Corollary 3.8 ([8]) Let $f$ : $Xarrow Y$ be a monotone Whitney preserving map.
If $X$ has a topological property $P$ which is a Whitney property, then so does
Y.
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