Whitney preserving maps onto dendrites

Eiichi Matsuhashi

Department of Mathematics, Faculty of Engineering, Shimane University, Matsue, Shimane 690-8504, Japan

Abstract

This note is a survey on Whitney preserving maps. In particular we introduce next results.

(1) Let X be a continuum such that X contains a dense arc component and let D be a dendrite with a closed set of branch points. If $f: X \to D$ is a Whitney preserving map, then f is a homeomorphism.

(2) For each dendrite D' with a dense set of branch points there exist a continuum X' containing a dense arc component and a Whitney preseiving map $f': X' \to D'$ such that f' is not a homeomorphism.

1 Introduction

In this note, all spaces are separable metrizable spaces and maps are continuous. We denote the interval [0, 1] by I. A compact metric space is called a *compactum* and *continuum* means a connected compactum. If X is a continuum C(X) denotes the space of all subcontinua of X with the topology generated by the Hausdorff metric.

In this note we study maps called Whitney preserving maps. If $f: X \to Y$ is a map between continua, then define a map $\hat{f}: C(X) \to C(Y)$ by $\hat{f}(A) = f(A)$ for each $A \in C(X)$. A map $f: X \to Y$ is called a Whitney preserving map if there exist Whitney maps (see p105 of [12]) $\mu: C(X) \to I$ and $\nu: C(Y) \to I$ such that for each $s \in [0, \mu(X)], \hat{f}(\mu^{-1}(s)) = \nu^{-1}(t)$ for some $t \in [0, \nu(Y)]$. In this case, we say that f is μ, ν -Whitney preserving. Let $f: X \to Y$ be a μ, ν -Whitney preserving map. Then it is easy to see that if $s, s' \in [0, \mu(X)]$ and $t, t' \in [0, \nu(Y)]$ satisfy $s \leq s', \hat{f}(\mu^{-1}(s)) = \nu^{-1}(t)$ and $\hat{f}(\mu^{-1}(s')) = \nu^{-1}(t')$, then $t \leq t'$.

The notion of a Whitney preserving map is introduced by Espinoza (see [1] and [2]). In this article we study these maps.

¹AMS Subject Classification: Primary 54C05, 54C10; Secondary 54F15, 54F45.

²Key words and phrases: Whitney preserving map. terminal continuum, hyperspace.

2 Whitney preserving maps onto dendrites

At first we give an example of a Whitney preserving map.

Example 2.1 (Example 2 of [1]) let $f : [0, \pi] \to S^1$ be a map defined by $f(t) = e^{4ti}$. Then f is Whitney preserving. But f is not a homeomorphism.

In [1] Espinoza proved the following result.

Theorem 2.2 (Theorem 16 of [1]) Let X be a continuum such that X contains a dense arc component. If $f : X \to I$ is a Whitney preserving map, then f is a homeomorphism.

A Peano continuum is called a *dendrite* if it contains no simple closed curve. Let D be a dendrite. A point $e \in D$ is called an *end point of* D if $D \setminus \{e\}$ is connected. A point $b \in D$ is called a *branch point of* D if there exists a neighbourhood U of b such that for each neighbourhood V of b with $V \subset U$, $|Bd(V)| \geq 3$. We denote the set of all end points in D by E(D). Also we denote the set of all branch points of D by B(D).

Recently the author proved the next theorem ([9], see also [8]).

Theorem 2.3 Let X be a continuum such that X contains a dense arc component and let D be a dendrite with the closed set of branch points. Then a map $f: X \to D$ is a Whitney preserving map if and only if f is a homeomorphism.

Corollary 2.4 Let X be a continuum such that X contains a dense arc component and let T be a tree. Then a map $f: X \to T$ is a Whitney preserving map if and only if f is a homeomorphism.

Generally, Theorem 2.3 does not hold when D is a graph by Example 2.1.

Remark. For every 1-dimensional continuum M there exists a 1-dimensional continuum \hat{M} (other than M) such that there is a Whitney preserving map $f: \hat{M} \to M$ by Theorem 2.9 of [2].

It is natural to ask that whether Theorem 2.3 holds when D is any dendrite. In fact, this does not hold.

If X and Y be compacta, then C(X, Y) denotes the set of all continuous maps from X to Y endowed with sup metric. Also S(X, Y) denotes the set of all surjective maps in C(X, Y). If $v, w \in X$, then we denote the set $\{f \in C(X, Y) | f(v) = f(w)\}$ by $C_{(v,w)}(X, Y)$. Also we denote the set $\{f \in$ $S(X,Y)|f(v) = f(w)\}$ by $S_{(v,w)}(X,Y)$. It is easy to see that $C_{(v,w)}(X,Y)$ and $S_{(v,w)}(X,Y)$ are closed subsets of C(X,Y). Let $N \subset X$. Then we denote the set $\{f \in C(X,Y)|f^{-1}(f(x)) = \{x\}$ for each $x \in N\}$ by $A_N(X,Y)$. If N is a one point set $\{a\}$, then we denote the set $A_N(X,Y)$ by $A_a(X,Y)$. Let $x \in X$ and r > 0. Then we denote the set $\{f \in C(X,Y)|$ diam $f^{-1}(f(x)) < r\}$ by $A_{x,r}(X,Y)$.

Finally, we denote the identity map on a space S by id_S .

A surjective map e from I onto a graph G is called an *Eulerian path* if e satisfies; (i) e(0) = e(1), (ii) $|\{y \in G | e^{-1}(y) \text{ is nondegenerate }\}| < \infty$ and (iii) each fiber of e is finite. In [3] Espinoza and Illanes proved the next result.

Theorem 2.5 ([3]) For each graph G which admits an Eulerian path, there exist a continuum X_G containing a dense arc component and a Whitney preseiving map $f: X_G \to G$ such that f is not a homeomorphism.

In [9] the author showed that this result holds when G is a superdendrite. A dendrite D is called a *superdendrite* if E(D) is dense in D. It is known that a dendrite D is a superdendrite if and only if B(D) is dense in D

Lemma 2.6 ([9]) Let X be a compactum and let D be a superdendrite. If v, w and a are points in X such that $a \notin \{v, w\}$, then $C_{(v,w)}(X, D) \cap A_a(X, D)$ is a dense G_{δ} -subset in $C_{(v,w)}(X, D)$.

Lemma 2.7 ([9]) Let X be a nondegenerate continuum and let D be a superdendrite. If v, w and a are points in X such that $a \notin \{v, w\}$, then $S_{(v,w)}(X,D) \cap A_a(X,D)$ is a dense G_{δ} -subset in $S_{(v,w)}(X,D)$.

By Lemma 2.7 and Baire Category Theorem, we get the next corollary.

Corollary 2.8 ([9]) Let X be a nondegenerate continuum, N a countable subset of X and D a superdendrite. If v, w are points in X such that $N \cap$ $\{v, w\} = \emptyset$, then $S_{(v,w)}(X, D) \cap A_N(X, D)$ is a dense G_{δ} -subset in $S_{(v,w)}(X, D)$.

By using Corollary 2.8 and arguments in [3], we can prove the following result.

Theorem 2.9 ([9]) For each superdendrite D, there exist a continuum X_D containing a dense arc component and a Whitney preseiving map $f: X_D \rightarrow D$ such that f is not a homeomorphism.

Recently the author generalized this result.

Theorem 2.10 ([10]) For each 1-dimensional locally connected continuum without free arcs P, there exist a continuum X_P containing a dense arc component and a Whitney preseiving map $f : X_P \to P$ such that f is not a homeomorphism.

Theorem 2.11 ([10]) For each $n \ge 2$ and an n-dimensional manifold M, there exist a continuum X_M containing a dense arc component and a Whitney preseiving map $f: X_M \to M$ such that f is not a homeomorphism.

3 Other topics related to Whitney preserving maps

A subcontinuum T of a continuum X is *terminal*, if every subcontinuum of X which intersects both T and its complement must contain T.

Now we give a notation. If $f: X \to Y$ is a map, let $\mathcal{A}_f = \{f^{-1}(y) | y \in Y\}$ and $\mathcal{A}'_f = \{C | C \text{ is a component of a fiber of } f\}.$

Let $f: X \to Y$ be a Whitney preserving map. Then \mathcal{A}_f need not be a continuous decomposition of X. For example let $f: [0, \pi] \to S^1$ be a map defined by $f(t) = e^{4ti}$. Then f is Whitney preserving (cf. Example 2 of [1]). But f is not an open map.

In [7] the author proved next results.

Proposition 3.1 ([7]) Let $f : X \to Y$ be a μ, ν -Whitney preserving map. Then \mathcal{A}'_f is a continuous decomposition of X and each element of \mathcal{A}'_f is terminal in X.

A map $f: X \to Y$ between continua is called an *atomic map* if $f^{-1}(f(A)) = A$ for each $A \in C(X)$ such that f(A) is nondegenerate. It is known that a map f of a continuum X onto a continuum Y is atomic if and only if every fiber of f is a terminal continuum of X.

A map $f: X \to Y$ between compact is called a *Krasinkiewicz map* if any continuum in X either contains a component of a fiber of f or is contained in a fiber of f (cf. [6]). These maps are related to Whitney preserving maps.

Proposition 3.2 ([7]) Let $f : X \to Y$ be a map such that \mathcal{A}'_f does not contain a one point set. Then the following conditions are equivalent.

(1) \mathcal{A}'_f is a continuous decomposition of X and each element of \mathcal{A}'_f is terminal in X.

(2) \mathcal{A}'_{f} is a continuous decomposition of X and f is a Krasinkiewicz map.

By using Proposition 3.2 the author proved next results.

Theorem 3.3 ([8]) Let X be a continuum such that X contains a dense arc component. If $f: X \to f(X)$ is a Whitney preserving map such that f is not a constant map, then f is a light map.

Theorem 3.4 ([7]) Let X, Y be continua and let $f : X \to Y$ be a monotone map such that $f^{-1}(y)$ is a nondegenerate continuum in X. Then the following conditions are equivalent.

(1) f is an open map and each fiber of f is terminal in X.

(2) f is an open Krasinkiewicz map.

(3) f is a Whitney preserving map.

As an application of Theorem 3.4 we obtain next results.

Theorem 3.5 ([8]) There exists a 1-dimensional continuum $T \subset I^2$, a Whitney map $\mu : C(T) \to I$ and $s_0, s_1 \in I$ such that

(1) $0 < s_0 < s_1 < \mu(T)$,

(2) $\dim \mu^{-1}(s) = 1$ for each $s \in [0, s_0)$,

- (3) $\dim \mu^{-1}(s_0) = 2$, and
- (4) $\dim \mu^{-1}(s) = \infty$ for each $s \in (s_0, s_1]$.

Theorem 3.6 ([8]) There exists a 1-dimensional continuum $T \subset I^2$ such that

(1) $\dim C(T) = \infty$, and

(2) for each Whitney map $w : C(T) \to I$ there exists $a_0 \in (0, w(T))$ such that $\dim w^{-1}(s) = 1$ for each $s \in [0, a_0]$.

At last we give some results related to Whitney preserving maps.

Proposition 3.7 ([8]) Let $f: X \to Y$ be a monotone μ, ν -Whitney preserving map and let $s_0 = \max \{s \in I | \hat{f}(\mu^{-1}(s)) = \nu^{-1}(0)\}$. Then $\hat{f}|_{\mu^{-1}([s_0,\mu(X)])} :$ $\mu^{-1}([s_0,\mu(X)]) \to C(Y)$ is a homeomorphism. Hence $\mu^{-1}(s)$ is homeomorphic to $\hat{f}(\mu^{-1}(s))$ for each $s \in [s_0,\mu(X)]$.

A topological property P is said to be a *Whitney property* provided that if a continuum X has property P, so does $\mu^{-1}(t)$ for each Whitney map μ for C(X) and for each $t \in [0, \mu(X)]$. As a corollary of Proposition 3.7 we get the next result.

Corollary 3.8 ([8]) Let $f : X \to Y$ be a monotone Whitney preserving map. If X has a topological property P which is a Whitney property, then so does Y.

References

- B. Espinoza Reyes, Whitney preserving functions. Topology. Appl. 126 (2002), no.3, 351-358
- B. Espinoza, Whitney preserving maps onto decomposition spaces. Topology Proc. 29 (2005), no.1, 115-125
- [3] B. Espinoza Reyes and A. Illanes, Whitney preserving maps on finite graphs, Topology. Appl. 158 (2011), no.8, 1033-1044
- [4] A, Illanes and S.B. Nadler Jr, Hyperspaces: Fundamentals and Recent Advances, in: Pure Appl. Math. Ser., Vol. 216, Marcel Dekker, New York, (1999)
- [5] J. L. Kelley, Hyperspaces of a continuum. Trans. Amer. Math. Soc. 52, (1942). 22-36
- [6] E. Matsuhashi, Krasinkiewicz maps from compacta to polyhedra. Bull. Pol. Acad. Sci. math. 54 (2006), no.2, 137-146.
- [7] E. Matsuhashi, On applicatons of Bing-Krasinkiewicz-Lelek maps. Bull. Pol. Acad. Sci. Math. 55 (2007), no.3, 219-228.
- [8] E. Matsuhashi, Some remarks on Whitney preserving maps, Houston. J. Math. 36, (2010), no.3, 935-943
- [9] E. Matsuhashi, Whitney preserving maps onto dendrites, submitted.
- [10] E. Matsuhashi, Whitney preserving maps which are not homeomorphisms, preprint.
- [11] S.B. Nadler Jr, Continuum Theory: An Introduction, Marcel Dekker, New York, (1992)
- [12] S.B. Nadler Jr, Hyperspaces of sets, Marcel Dekker, New York, (1978)

Eiichi Matsuhashi Department of Mathematics Faculty of Engineering Shimane University Matsue, Shimane 690-8504 Japan, matsuhashi@riko.shimane-u.ac.jp