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1 Introduction

All spaces are assumed nonempty separable metric spaces and all maps are continuous
functions. Let N be the set of all natural numbers, i.e., N = {1,2,3,---}. For a (separable
metric) space X, dim X denotes the topological dimension of X. Let P(f) be the set of
all periodic points of map f: X — X, i.e.,

P(f) = {z € X| fi(z) = z for some j € N}.

Let f : X — X be a fixed-point free closed map of a separable metric space X.
In this paper, we assume that all maps are closed maps. A subset C of X is called a
color (see [10]) of f provided that f(C) N C = 0. Note that f(C) N C = 0 if and only
if CN f~(C) =10. We say a cover C of X is a coloring of f if each element C of C is a
color of f. The minimal cardinality C(f) of closed (or open) colorings of f is called the
coloring number of f. Many mathematicians have investigated the coloring number C(f)
(see [1-4], [6] and [8-10]).

Theorem 1.1. (Aarts, Fokkink and Vermeer [1]) Let f : X — X be a fized-point free
involution of a (separable) metric space X with dim X =n < co. Then C(f) < n+2.

Theorem 1.2. (Aarts, Fokkink and Vermeer [1]) Let f : X — X be a fized-point free
homeomorphism of a (separable) metric space X with dimX = n < oco. Then C(f) <
n+ 3.

Now, we will define more general notion of color. Let f : X — X be a fixed-point
free map of a space X and p € N. A subset C of X is eventually colored within p of f
if (E_o f7(C) = 0. It is easy to see that C is a color of f if and only if C is eventually
colored within 1. Then we have the following proposition.
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Proposition 1.3. Let f : X = X be a fized-point free map of a separable metric space
X and p € N. Then the followings hold.

(1) A subset C of X is eventually colored within p of f if and only if each point z € C
wanders off C within p, i.e., for each z € C, f(z) ¢ C with some i < p.

(2) If a subset C of X satisfies the condition (Yo_y f*(C) = 0, then C is eventually colored
within p of f.

(8) If f is an injective map, then a subset C of X is eventually colored within p of f if
and only if C satisfies the condition (Yo, f(C) = 0.

Remark. In general, the converse assertion of (2) in the proposition above is not true.
Let X = {a,b,c} be a set consisting three points and let f : X — X be the map defined
by f(a) =b,f(b) =c, f(c) =b. Then C = {a,b} is eventually colored within 2 of f, but
(B0 £(C) #8 (p € N).

Next, we define the eventual coloring number C(f,p) as follows. A cover C of X is
called an eventual coloring within p if each element C of C is eventually colored within
p. The minimal cardinality C(f,p) of all closed (or open) eventual colorings within p is
called the eventual coloring number of f within p. Note that C(f,1) = C(f). If there
is some p € N with C(f,p) < oo, we say that f is eventually colored. Similarly, we can
consider the index C*+(f,p) defined by

P
min{|C|; C is a closed (open) cover of X such that for each C € C, n fi(C)=0}.

=0

By the definitions, we see that C(f,p) < C*(f,p). In section 3, we show that C(f,p) =
C*(f,p) if X is compact.

In this paper, we need the following notions. A finite cover C of X is a closed partition of
X provided that each element C of C is closed, int(C) # 0 and CNC’ = bd(C)Nbd(C") for
any C,C’ € C. Let B be a collection of subsets of a space X with dim X = n < co. Then
we say that B is in general position in X (see [7]) provided that if S C B with [S| < n+1,
then dim((N{S| S € S}) < n—|S|. By a swelling of a family {A,}ses of subsets of a space
X, we mean any family {B;}scs of subsets of X such that A; C B, (s € S) and for every
finite set of indices s, S, ..., Sm € S,

ﬁAsi # () if and only if ﬁBs,. # 0.
i=1

i=1

Conversely, for any cover {B;}ses of X, a cover {A;}ses of X is a shrinking of {B,}ses if
A; C B (s € S). The following facts are well-known;

(1) for any locally finite collection F of closed subsets of a space X, F has a swelling
consisting of open subsets of X (e.g., see [10, Proposition 3.2.1]) and

(2) for any open cover U of X, U has a closed shrinking cover of X (e.g., see [10,
Proposition A.7.1]).
Hence we see that if f : X — X is a closed map and a closed finite cover B of X is an
eventual coloring of f, then we can find an open swelling C of B which is an eventual
coloring of f.



2 Two indices which evaluate eventual coloring num-
bers

In this section, we will define indices @, (k) and 7,(k). First, for each n = 0,1,2, ...,
and each k = 0,1,2,...,n + 1, we define the index @, (k) as follows: Put ¢,(0) = 1. For
each k =1,2,...,n + 1, by induction on k£ we define the index ¢, (k) by

¢n(k) = 2¢n(k — 1) +[n/(n+2 - k)] - (pn(k — 1) + 1),
where [z] = max{m € NU {0}| m < z} for z € [0,00). Next, we will consider another
index 7,(k) defined by
To(k) =k(2n+1)+1

for each n = 0,1,2,..., and each k¥ = 0,1,2,...,n + 1. Thus, we obtain following main
theorem in this paper.

Theorem 2.1. ([5, Theorem 2.3, Theorem 2.6]) Let f : X — X be a fized-point free
homeomorphism of a separable metric space X with dimX = n < oo. If dim P(f) <0,
then
C(f,min{p.(k), (k)}) <n+3-k
foreach k=0,1,2,...,n+1.
Remark. If we do not assume dim P(f) < 0, the above theorem is not true. Let
f :S™ — S™ be the antipodal map of the n-dimensional sphere S™. Note that P(f) = S™

and C(f,p) = C(f,1) =n+2 for any p € N.
In fact we have the following tables of values of two indices.

©n (k)
k 011(2] 3 4 5 6
n
0 112]-1-1-17 -] -
1 1(2171 - - - -
2 1127130 - - -
3 11217122113 - -
4 112|722 90 | 544 -
5 112(7]22| 69 | 278 | 1951
Tn (k)
k
01|12 |3j4|5]|6
n
0 T2z -1-1-1-1-
1 147 --1-]-
2 16 |11]16]| - - -
3 18 |15]22(29]| - | -
4 1110|1928 37146 -
5 111223 |34 |45 |56 |67
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The way of the construction of 7,,(k) is similar to way of p,(k). This way is repainting
a color one by one. Thus, we expect that repainting many colors all at once will bring a
better index than 7,,(k) and ¢, (k) to us. But this way is very complicated.

Now we have the following general problem for eventual coloring numbers.

Problem 2.2. For eachn > 0 and each 1 < k < n+ 1, determine the minimal number
tn(k) of natural numbers p satisfying the condition; if f : X — X is any fized-point free
homeomorphism of a separable metric space X such that dim X = n and dim P(f) <0,
then C(f,p) <n+3—k.

By comparing two indices ¢, (k) and 7,(k), we have a partial answer to the above
problem.

Corollary 2.3. Suppose that f : X — X is a fized-point free homeomorphism of a
separable metric space X and dim P(f) <0.

(1) If dim X =0, then C(f,2) = 2.

(2) If dim X =1, then C(f,7) = 2.

(8) If dim X =2, then C(f,16) = 2.

(4) If dim X = 3, then C(f,29) = 2.

(5) If dim X = 4, then C(f,46) = 2.

In other words, pug(1) = 2, u1(2) < 7, u2(3) < 16, u3(4) < 29 and p4(5) < 46.

In addition, we have the following result which is the case C(f,p) = 2.

Corollary 2.4. Let f : X — X be a fized-point free homeomorphism of a separable
metric space X with dimX = n < oco. If dim P(f) < 0, then there is some p € N with
p < min{p,(n + 1), (n + 1)} such that

C(f,p) =2

In other words, X can be divided into two closed subsets Cy,C; (i.e., X = C; UCy) and
there is some p € N such that if z € C; (i € {1,2}), there is a strictly increasing sequence
{nz(k)}, of natural numbers such that 1 < ngy(1) < p, ne(k + 1) — nz(k) < p and if
Jj € {1,2} with j # i, then

f®(z) € C; - Ci (k:odd), ™= (z) € C; — C; (k-even).

3 Eventual coloring numbers on compact metric spaces

In this section, we consider eventual coloring numbers of fixed-point free maps of
compact metric spaces. Let X be a compact metric space and let f : X — X be a map.
Consider the inverse limit (X, f) of f, i.e.

(%, ) = (@320l 31 € X, F() = 211 for § € N} € X2 = [ X,

j=0



Then we have the shift homeomorphism f: (X, f) = (X, f) of f and the natural projec-
tion p; : (X, f) = X; = X (j > 0) defined by

Fl@:)2) = (F@:)Z0, p3((2:)20) = ;5.

Note that p;- f = f-p;. We see that if f: X — X is a fixed-point free map of a compact
metric space X, then f: (X, f) = (X, f) is a fixed-point free homeomorphism. By a
modification of the proof of [1, Theorem 6], we have the following theorem which is a
more precise result than [1, Theorem 6].

Theorem 3.1. Let f : X — X be a fized-point free map of a compact metric space X
and let f : (X, f) = (X, f) be the shift homeomorphism of f. Then for p € N,

C(f,p) = C*(f,p) = C(f,p).

Corollary 3.2. (cf. [1, Theorem 6]) Let f : X — X be a fized-point free map of a
compact metric space X with dim X =n < co. If dim P(f) < 0, then there is p € N with
p < min{p,(k), m,(k)} such that

for each k=0,1,2,....,.n+ 1.

Example. There are a (zero-dimensional) separable metric space X and a fixed-point
free map f : X — X such that dim P(f) < 0 and
(1) f is closed,
(2) f is finite-to-one, and
(3) f cannot be eventually colored within any p € N.

Remark. In the statement of Theorem 1.2, "a separable metric space X” can be
replaced with ”a paracompact space X” (see [M. A. van Hartskamp and J. Vermeer, On
colorings of maps, Topology and its Applications 73 (1996), 181-190]). Hence Theorem
2.1 is also true for the case that X is a paracompact space.
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