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Abstract. 本稿では、可分距離空間上における不動点を持たない同相写像の力学的な
性質の幾つかを扱う。与えられた周期点の集合が零次元である不動点を持たない同相写
像 $f$ : $Xarrow X$ と、 任意の自然数 $p$ に対して、 coloring number を一般化した eventual
coloring number $C(f,p)$ を定義しその性質を調べる。特に、空間 $X$ が有限次元である場
合、 $X$が 2つの閉集合 $C_{1}$ と $C_{2}$ に分割でき、 $X$ のすべての元が $f$ を $p$ 回施す間に $C_{1}$ と $C_{2}$

の間を行き来するような $X$ の次元に依存した自然数 $p$が存在することを紹介する。

1 Introduction
All spaces are assumed nonempty separable metric spaces and all maps are continuous

functions. Let $N$ be the set of all natural numbers, i.e., $\mathbb{N}=\{1,2,3, \cdots\}$ . For a (separable
metric) space $X,$ $\dim X$ denotes the topological dimension of $X$ . Let $P(f)$ be the set of
all periodic points of map $f$ : $Xarrow X$ , i.e.,

$P(f)=\{x\in X|f^{j}(x)=x$ for some $j\in \mathbb{N}\}$ .

Let $f$ : $Xarrow X$ be a fixed-point free closed map of a separable metric space $X$ .
In this paper, we assume that all maps are closed maps. A subset $C$ of $X$ is called a
color (see [10]) of $f$ provided that $f(C)\cap C=\emptyset$ . Note that $f(C)\cap C=\emptyset$ if and only
if $C\cap f^{-1}(C)=\emptyset$ . We say a cover $C$ of $X$ is a coloring of $f$ if each element $C$ of $C$ is a
color of $f$ . The minimal cardinality $C(f)$ of closed (or open) colorings of $f$ is called the
coloring number of $f$ . Many mathematicians have investigated the coloring number $C(f)$

(see [1-4], [6] and [8-10]).

Theorem 1.1. (Aarts, Fokkink and Vermeer [1]) Let $f$ : $Xarrow X$ be a fixed-point free
involution of a (separable) metric space $X$ with $\dim X=n<\infty$ . Then $C(f)\leq n+2$ .

Theorem 1.2. (Aarts, Fokkink and Vermeer [1]) Let $f$ : $Xarrow X$ be a fixed-point free
homeomorphism of a (separable) metric space $X$ with $\dim X=n<\infty$ . Then $C(f)\leq$

$n+3$ .

Now, we will define more general notion of color. Let $f$ : $Xarrow X$ be a fixed-point
free map of a space $X$ and $p\in \mathbb{N}$ . A subset $C$ of $X$ is eventually colored within $p$ of $f$

if $\bigcap_{i=0}^{p}f^{-i}(C)=\emptyset$ . It is easy to see that $C$ is a color of $f$ if and only if $C$ is eventually
colored within 1. Then we have the following proposition.
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Proposition 1.3. Let $f$ : $Xarrow X$ be a fixed-point free map of a sepamble metric space
$X$ and $p\in \mathbb{N}$ . Then the followings hold.
(1) A subset $C$ of $X$ is eventually colored within $p$ of $f$ if and only if each point $x\in C$

wanders off $C$ within $p_{f}$ i. e., for each $x\in C_{f}f^{i}(x)\not\in C$ with some $i\leq p$ .
(2) If a subset $C$ of $X$ satisfies the $\omega ndition\bigcap_{i=0}^{p}f^{i}(C)=\emptyset_{f}$ then $C$ is eventually colored
within $p$ of $f$ .
(3) If $f$ is an injective map, then a subset $C$ of $X$ is eventually colored within $p$ of $f$ if
and only if $C$ satisfies the condition $\bigcap_{i=0}^{p}f^{i}(C)=\emptyset$ .

Remark. In general, the converse assertion of (2) in the proposition above is not true.
Let $X=\{a, b, c\}$ be a set consisting three points and let $f$ : $Xarrow X$ be the map defined
by $f(a)=b,$ $f(b)=c,$ $f(c)=b$. Then $C=\{a, b\}$ is eventually colored within 2 of $f$ , but
$\bigcap_{i=0}^{p}f^{i}(C)\neq\emptyset(p\in N)$ .

Next, we define the eventual coloring number $C(f,p)$ as follows. A cover $C$ of $X$ is
called an eventual coloring within $p$ if each element $C$ of $C$ is eventually colored within
$p$ . The minimal cardinality $C(f,p)$ of all closed (or open) eventual colorings within $p$ is
called the eventual coloring number of $f$ within $p$ . Note that $C(f, 1)=C(f)$ . If there
is some $p\in N$ with $C(f,p)<\infty$ , we say that $f$ is eventually colored. Similarly, we can
consider the index $C^{+}(f,p)$ defined by

$\min${ $|C|;C$ is a closed (open) cover of $X$ such that for each $C \in C,\bigcap_{i=0}^{p}f^{i}(C)=\emptyset$}.

By the definitions, we see that $C(f,p)\leq C^{+}(f,p)$ . In section 3, we show that $C(f,p)=$
$C^{+}(f,p)$ if $X$ is compact.

In this paper, we need the following notions. A finite cover $C$ of $X$ is a closed partition of
$X$ provided that each element $C$ of $C$ is closed, int $(C)\neq\emptyset$ and $C\cap C’=bd(C)\cap bd(C’)$ for
any $C,$ $C^{l}\in C$ . Let $\mathcal{B}$ be a collection of subsets of a space $X$ with $\dim X=n<\infty$ . Then
we say that $\mathcal{B}$ is in general position in $X$ (see [7]) provided that if $S\subset \mathcal{B}$ with $|S|\leq n+1$ ,
then $\dim(\cap\{S|S\in S\})\leq n-|S|$ . By a swelling of a family $\{A_{S}\}_{s\in S}$ of subsets of a space
$X$ , we mean any family $\{B_{S}\}_{\epsilon\in S}$ of subsets of $X$ such that $A_{s}\subset B_{s}(s\in S)$ and for every
finite set of indices $s_{1},$ $s_{2},$

$\ldots,$
$s_{m}\in S$ ,

$\bigcap_{i=1}^{m}A_{s}:\neq\emptyset$ if and only if $\bigcap_{i=1}^{m}B_{s_{i}}\neq\emptyset$ .

Conversely, for any cover $\{B_{s}\}_{s\in S}$ of $X$ , a cover $\{A_{s}\}_{s\in S}$ of $X$ is a shrinking of $\{B_{s}\}_{\epsilon\in S}$ if
$A_{s}\subset B_{s}(s\in S)$ . The following facts are well-known;

(1) for any locally finite collection $\mathcal{F}$ of closed subsets of a space $X,$ $\mathcal{F}$ has a swelling
consisting of open subsets of $X$ (e.g., see [10, Proposition 3.2.1]) and

(2) for any open cover $\mathcal{U}$ of $X,$ $\mathcal{U}$ has a closed shrinking cover of $X$ (e.g., see [10,
Proposition A.7.1] $)$ .
Hence we see that if $f$ : $Xarrow X$ is a closed map and a closed finite cover $\mathcal{B}$ of $X$ is an
eventual coloring of $f$ , then we can find an open swelling $C$ of $\mathcal{B}$ which is an eventual
coloring of $f$ .
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2 Two indices which evaluate eventual coloring num-
bers

In this section, we will define indices $\varphi_{n}(k)$ and $\tau_{n}(k)$ . First, for each $n=0,1,2,$ $\ldots$ ,
and each $k=0,1,2,$ $\ldots,$ $n+1$ , we define the index $\varphi_{n}(k)$ as follows: Put $\varphi_{n}(0)=1$ . For
each $k=1,2,$

$\ldots,$
$n+1$ , by induction on $k$ we define the index $\varphi_{n}(k)$ by

$\varphi_{n}(k)=2\varphi_{n}(k-1)+[n/(n+2-k)]\cdot(\varphi_{n}(k-1)+1)$,

where $[x]= \max\{m\in NU\{0\}|m\leq x\}$ for $x\in[0, \infty)$ . Next, we will consider another
index $\tau_{n}(k)$ defined by

$\tau_{n}(k)=k(2n+1)+1$

for each $n=0,1,2,$ $\ldots$ , and each $k=0,1,2,$ $\ldots,$
$n+1$ . Thus, we obtain following main

theorem in this paper.

Theorem 2.1. ([5, Theorem 2.3, Theorem 2.6]) Let $f$ : $Xarrow X$ be a fixed-point free
homeomorphism of a sepamble metric space $X$ with $\dim X=n<\infty$ . If $\dim P(f)\leq 0$ ,
then

$C(f, \min\{\varphi_{n}(k), \tau_{n}(k)\})\leq n+3-k$

for each $k=0,1,2,$ $\ldots,$
$n+1$ .

Remark. If we do not assume $\dim P(f)\leq 0$ , the above theorem is not true. Let
$f$ : $S^{n}arrow S^{n}$ be the antipodal map of the n-dimensional sphere $S^{n}$ . Note that $P(f)=S^{n}$

and $C(f,p)=C(f, 1)=n+2$ for any $p\in \mathbb{N}$ .
In fact we have the following tables of values of two indices.

$\varphi_{n}(k)$

$\tau_{n}(k)$
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The way of the construction of $\tau_{n}(k)$ is similar to way of $\varphi_{n}(k)$ . This way is repainting
a color one by one. Thus, we expect that repainting many colors all at once will bring a
better index than $\tau_{n}(k)$ and $\varphi_{n}(k)$ to us. But this way is very complicated.

Now we have the following general problem for eventual coloring numbers.

Problem 2.2. For each $n\geq 0$ and each $1\leq k\leq n+1$ , determine the minimal number
$\mu_{n}(k)$ of natural numbers $p$ satisfying the condition; if $f$ : $Xarrow X$ is any fixed-point free
homeomorphism of a sepamble metric space $X$ such that $\dim X=n$ and $\dim P(f)\leq 0_{f}$

then $C(f,p)\leq n+3-k$ .

By comparing two indices $\varphi_{n}(k)$ and $\tau_{n}(k)$ , we have a partial answer to the above
problem.

Corollary 2.3. Suppose that $f$ : $Xarrow X$ is a fixed-point free homeomorphism of a
sepamble metric space $X$ and $\dim P(f)\leq 0$ .
(1) If $\dim X=0$ , then $C(f, 2)=2$ .
(2) If $\dim X=1_{f}$ then $C(f, 7)=2$ .
(3) If $\dim X=2$ , then $C(f, 16)=2$ .
(4) If $\dim X=3$ , then $C(f, 29)=2$ .
(5) If $\dim X=4_{f}$ then $C(f, 46)=2$ .
In other words, $\mu_{0}(1)=2,$ $\mu_{1}(2)\leq 7,$ $\mu_{2}(3)\leq 16,$ $\mu_{3}(4)\leq 29$ and $\mu_{4}(5)\leq 46$ .

In addition, we have the following result which is the case $C(f,p)=2$.

Corollary 2.4. Let $f$ : $Xarrow X$ be a fixed-point free homeomorphism of a sepamble
metric space $X$ with $\dim X=n<\infty$ . If $\dim P(f)\leq 0$ , then there is some $p\in N$ with
$p \leq\min\{\varphi_{n}(n+1), \tau_{n}(n+1)\}$ such that

$C(f,p)=2$ .

In other words, $X$ can be divided into two closed subsets $C_{1},$ $C_{2}(i.e., X=C_{1}\cup C_{2})$ and
there is some $p\in \mathbb{N}$ such that if $x\in C_{i}(i\in\{1,2\})$ , there is a strictly increasing sequence
$\{n_{x}(k)\}_{k=1}^{\infty}$ of natuml numbers such that $1\leq n_{x}(1)\leq p,$ $n_{x}(k+1)-n_{x}(k)\leq p$ and if
$j\in\{1,2\}$ with $j\neq i$ , then

$f^{n_{x}(k)}(x)\in C_{j}-C_{i}(k:odd),$ $f^{n_{x}(k)}(x)\in C_{i}-C_{j}(k.\cdot even)$.

3 Eventual coloring numbers on compact metric spaces
In this section, we consider eventual coloring numbers of fixed-point free maps of

compact metric spaces. Let $X$ be a compact metric space and let $f$ : $Xarrow X$ be a map.
Consider the inverse limit $(X, f)$ of $f$ , i.e.

$(X, f)=\{(x_{i})_{i=0}^{\infty}|x_{i}\in X,$ $f(x_{i})=x_{i-1}$ for $i \in N\}\subset X^{\infty}=\prod_{j=0}^{\infty}X_{j}$ .
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Then we have the shift homeomorphism $\tilde{f}:(X, f)arrow(X, f)$ of $f$ and the natural projec-
tion $p_{j}$ : $(X, f)arrow X_{j}=X(j\geq 0)$ defined by

$\tilde{f}((x_{i})_{i=0}^{\infty})=(f(x_{i}))_{i=0}^{\infty},$ $p_{j}((x_{i})_{i=0}^{\infty})=x_{j}$ .

Note that $p_{j}\cdot\tilde{f}=f\cdot p_{j_{-}}$. We see that if $f$ : $Xarrow X$ is a fixed-point free map of a compact
metric space $X$ , then $f$ : $(X, f)arrow(X, f)$ is a fixed-point free homeomorphism. By a
modification of the proof of [1, Theorem 6], we have the following theorem which is a
more precise result than [1, Theorem 6].

$Theorem\sim 3.1$ . Let $f$ : $Xarrow X$ be a fixed-point free map of a compact metric space $X$

and let $f$ : $(X, f)arrow(X, f)$ be the shift homeomorphism of $f$ . Then for $p\in \mathbb{N}$,

$C(f,p)=C^{+}(f,p)=C(\tilde{f,}p)$ .

Corollary 3.2. (cf. [1, Theorem 6]) Let $f$ : $Xarrow X$ be a fixed-point free map of a
compact metric space $X$ with $\dim X=n<\infty$ . If $\dim P(f)\leq 0$ , then there is $p\in N$ with

$p \leq\min\{\varphi_{n}(k), \tau_{n}(k)\}$ such that

$C(f,p)\leq n+3-k$

for each $k=0,1,2,$ $\ldots,$
$n+1$ .

Example. There are a (zero-dimensional) separable metric space $X$ and a fixed-point
free map $f$ : $Xarrow X$ such that $\dim P(f)\leq 0$ and
(1) $f$ is closed,
(2) $f$ is finite-to-one, and
(3) $f$ cannot be eventually colored within any $p\in$ N.

Remark. In the statement of Theorem 1.2, “a separable metric space $X$“ can be
replaced with “a paracompact space $X$” (see [M. A. van Hartskamp and J. Vermeer, On
colorings of maps, Topology and its Applications 73 (1996), 181-190] $)$ . Hence Theorem
2.1 is also true for the case that $X$ is a paracompact space.
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