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1. Introduction

For an open (i.e., noncompact) Riemann surface $R$ a compact Hausdorff space
$R^{*}$ containing $R$ as its dense subspace is said to be a compactification of $R$ . To
develope the function theory and also the potential theory efficiently on open
Riemann surfaces it is innevitable in many instances to have an ideal boundary
$R^{*}\backslash R$ of $R$ . To be able to react properly to various situations depending upon
the direction of the proposed study on Riemann surfaces we need to select an
appropriate compactification $R^{*}$ of $R$ and usually one of 7 typical compactifications
mentioned later is chosen. In selecting some suitable ideal boundary in such an
occasion primarily important recognotion is the relation among compactifications
of $R$ . We say that two compactifications of $R$ are related or there is a relation
between these two compactifications if there is a projection (i.e., a continuous
mapping fixing $R$ pointwise) from one of these two compactifications to another,
and otherwise, we say these two compactifications are not related or there is no
relation between these two compactifications. A complete list of relations among
7 main compactifications of any given open Riemann surface is given in the item
with heading “Ideal Boundaries” in the second edition [5] of Iwanami Dictionary
of Mathematics edited by the Mathematical Society of Japan (cf. also [6]) and
this item, slightly revised but with essentially identical content, is transplanted
to the fourth edition [7] of the above dictionary divided into two subitems “Ideal
Boundaries” and “Compactifications by Function Families” included in a large
item with heading “Analysis on Riemann Surfaces”. This dictionary is probably
the only place where such a list of relations among 7 compactifications mentioned
above can be found. Now we focus on one particular spot in the list: the situation
between Martin compactifications and Royden compactifications. The conclusion
there is that these two compactifications are not related. Actually the present
author was in charge of the above item “Ideal Boundaries” newly prepared at
that time for the second edition. He knew the above conclusion and its proof at
that time too although the result was not publicized in any form. Nevertheless he
dared to include the above conclusion in the manuscript due to his earnest desire to
make the list complete. Except for this part relations among 7 compactifications
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were either trivial or published in the book or paper forms by several authors.
He continued to have the intention to publicize the proof of the above conclusion
without realizing it by now. The primary purpose of this paper is, thus finally,
using this precious opportunity fully to achieve this intention: we will prove that
Martin and Royden compactifications are not related.

To make our motivation clearer we explain some general properties of compacti-
fications of Riemann surfaces related to potential theory such as Dirichlet problem,
harmonic measures and capacities on the ideal boundaries. Especially the com-
parison of various potential theoretic notions for two compactifications is very
important and gives many applications to function theoretic discussions. Keeping
these view points mentioned above in mind we will give a bird‘s-eye view of the 7
main ideal boundaries frequently used. The Alexandroff, Stoilow (i.e., Ker\’ekj\’art\’o-
Stoilow), and \v{C}ech compactifications are of purely topological in nature. The first
is just a one point compactification and the smallest among these 7 compactifica-
tions. The third is the largest in the sense that other 6 compactifications are some
quotient spaces of this. Viewing each ideal boundary component as one point we
obtain the Stoilow compactification. The rest 4 compactifications are of potential
theoretic in nature. The Martin (resp. Kuramochi) compactification is merely the
metric completion of $R$ with with respect to the metric induced by the relative
Green kernel called Martin kernel (resp. the Neumann kernel). These are the most
adequate to develope the kernel potential theory. The Royden compactification
was given birth to by Royden in 1953. These determine and also are determined
by the quasiconformal structures of open Riemann surfaces. The supporting idea
of this compactification is the Dirichlet principle. The Wiener compactification
is the newest among 7 compactifications mainly developed by Japanese people
such as Kusunoki, S. Mori, and K. Hayashi around 1961 on one hand and the
term Wiener compactification was coined by Constantinescu-Cornea as well as
they contributed in the essential way to clarify important properties of it such
as its connection with the Martin compactification on the other hand. Classical
function theory is of course discussed on Riemann surfaces which are subregions
of the complex sphere $\hat{\mathbb{C}}$ . The most natural compactification of such $R$ is the
closure $\overline{R}$ of $R$ in $\hat{\mathbb{C}}$ , which is occasionally called the Euclidean compactification
of $R$ . The relation of each of 7 compactifications of the plane region $R$ to its Eu-
clidean compactification $\overline{R}$ is of course an important theme to investigate in view
of the applications of compactffication theory to the classical function theory. The
most frequently considered is about the relation of the Martin compactification to
the Euclidean compactification not only for plane regions $R$ but also for higher
dimensional Euclidean space case as well. Since the Martin and Kuramochi com-
pactifications are identical with the Euclidean compactifications for e.g. smooth
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plane regions $R$ , one often says that these two compactifications are the most pre-
farable. However, in general, the Martin (resp. Kuramochi) compactifications and
the Euclidean ones of plane regions are not related while each of the other 5 are
always related to Euclidean one. Nevertheless these charming topics will not be
touched even slightly in this paper.

2. Compactffications and ideal boundaries

For a given topological space $X$ we denote by, as usual, $C(X)$ the totality of real
valued continuous functions on $X$ , i.e., continuous mappings of $X$ to $\mathbb{R}$ , the real
number field, and set $C_{b}(X)$ $:= \{f\in C(X) : \sup_{X}|f|<+\infty\}$ . We also denote
by $C(X : R)$ the totality of continuous mappings of $X$ to $\mathbb{R}$

へ

$:=\mathbb{R}\cup$ $\{- 00,$ $+\infty\}$ ,
the extended real line. Take an open (i.e., noncompact) Riemann surface $R$ . In
addition to $C(R),$ $C_{b}(R)$ , and $C(R;\mathbb{R})$へ, we consider the function space $H(R)$ , the
linear space of real valued harmonic functions on $R$ , which plays the central role
in the sequel. A compact Hausdorff space $R^{*}$ is said to be a compactification of
$R$ if $R^{*}$ contains $R$ as its dense subspace and $\gamma$ $:=R^{*}\backslash R$ is an ideal boundary
of $R$ relative to the compactification $R^{*}$ . It is seen that $\gamma$ is compact, or equiv-
alently, $R$ is open in $R^{*}$ . Consider two compactifications $R_{1}^{*}$ and $R_{2}^{*}$ of an open
Riemann surface $R$ . We say that $R_{1}^{*}$ lies over $R_{2}^{*}$ , or, $R_{1}^{*}$ is greater than $R_{2}^{*}$ , if the
identity mapping $I$ : $Rarrow R$ can be continued to a unique continuous mapping
$I^{*}$ : $R_{1}^{*}arrow R_{2}^{*}$ . In such a case we write as $R_{1}^{*}arrow R_{2}^{*}$ to indicate the fact $R_{1}^{*}$ lying
over $R_{2}^{*}$ . The negation of $R_{1}^{*}arrow R_{2}^{*}$ , i.e., $R_{1}^{*}$ does not lie over $R_{2}^{*}$ , is indicated by
$R_{1}^{*}\star R_{2}^{*}$ . If either $R_{1}^{*}arrow R_{2}^{*}$ or $R_{2}^{*}arrow R_{1}^{*}$ , then we say that $R_{1}^{*}$ is related to $R_{2}^{*}$ , or
equivalently, there is a relation between $R_{1}^{*}$ and $R_{2}^{*}$ .

It is not always the case that if the boundary of a subregion $S$ of a compactifica-
tion $R^{*}$ relative to $R^{*}$ is contained in $R$ , then $S\backslash \gamma$ is still connected so that $S\backslash \gamma$

is still a subregion of $R^{*}$ . But if this is always the case for a compactification $R^{*}$

for every choice of subregion $S$ in $R^{*}$ , then the compactification $R^{*}$ is said to be of
Stoilow type. This naming comes from the fact that the Stoilow compactification of
an open Riemann surface $R$ explained later is the smallest compactification among
those of $R$ of Stoilow type and every compactification of $R$ lying over the Stoilow
compactification of $R$ is of $StO\dot{1}low$ type. A potential $p$ on an open Riemann surface
$R$ is a nonnegative superharmonic function on $R$ , the graetest harmonic minorant
of which is zero on $R$ . The subset $\delta$ of $\gamma$ consisting of points $\zeta$ in $\gamma$ satisfying

(2.1)
$\lim_{z\in Rz},\inf_{arrow\zeta}p(z)=0$

for every potential $p$ on $R$ is referred to as the harmonic boundary of $R$ relative
to the compactification $R^{*}$ of $R$ . The subset $\delta$ of $\gamma$ is a compact subset of $R^{*}$ .
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For any compact subset $K$ of $\gamma\backslash \delta$ we can find a potential $p_{K}$ on $R$ such that
$p_{K}(R)\subset \mathbb{R}^{+}:=\{t\in \mathbb{R}:t\geqq 0\}$ and

(2.2) $\lim_{z\in R,zarrow\zeta}p_{K}(z)=+\infty$

for every $\zeta\in K$ . In the case $\delta\neq\emptyset$ , whether $p_{K}$ can be chosen in $H(R)$ is not
only important but also quite interesting problem (cf. [11]). This function $p_{K}$

is an important auxiliary function in studying various properties concerning the
harmonic boundary $\delta$ , i.e., $p_{K}$ is conveniently used to show many important roles
played by $\delta$ . As an illustration of its use we prove the maximum principle in its
most simple form: let $u\in H(R)$ be bounded from above on $R$ and suppose there
is a constant $C\in \mathbb{R}$ such that $\lim\sup_{z\in R,zarrow\zeta}u(z)\leqq C$ for every $\zeta\in\delta$ , then $u\leqq C$

on $R$ . In fact, for any number $\epsilon>0$ the compactness of $\delta$ assures the existence of
a compact subset $K$ of $\gamma$ such that $\lim\sup_{z\in R,zarrow(}u(z)\leqq C+\epsilon$ for every $\zeta\in\gamma\backslash K$ .
Then pick the above auxiliary function $p_{K}$ and consider the subharmonic function
$s_{n}$ $:=u-(C+\epsilon)-(1/n)p_{K}$ on $R$ for every fixed $n\in N$ , the set of positive integers,
which is bounded from above along with $u$ . Observe that $\lim\sup_{z\in R,zarrow\zeta}s_{n}(z)\leqq 0$

for every $\zeta\in\gamma$ , which assures that $s_{n}\leqq 0$ on $R$ by the usual maximum principle,
i.e., $u(z)\leqq C+\epsilon+(1/n)p_{K}(z)$ for every $z\in R,$ $\epsilon>0$ , and $n\in$ N. On letting
$\epsilon\downarrow 0$ and then $n\uparrow+\infty$ , we deduce $u\leqq C$ on $R$ .

An open Riemann surface $R$ is referred to as being hyperbolic (resp. parabolic)
if $R$ carries (resp. does not carry) the Green kernel on $R$ and we denote by $\mathcal{O}_{G}$ the
class of parabolic Riemann surfaces $R$ . Then suppose $R\not\in \mathcal{O}_{G}$ and consider real
valued function $\varphi$ on $\gamma$ . We can formulate the usual PWB (i.e., Perron-Wiener-
Brelot) procedure to solve the Dirichlet problem on $R$ for the boundary $\gamma=R^{*}\backslash R$ .
If the PWB solution $H_{\varphi}^{R}$ is found for a boundary data $\varphi$ on $\gamma$ , then as usual $\varphi$ is
said to be resolutive. It can happen that every $\varphi\in C(\gamma)$ is resolutive and in such
a case the compactification $R^{*}$ of $R$ is said to be resolutive. In this case a point
$\zeta\in\gamma$ is said to be regular if $\lim_{z\in R},{}_{zarrow\zeta}H_{\varphi}^{R}(z)=\varphi(\zeta)$ holds for every $\varphi\in C(\gamma)$ . It
is seen that the set of regular points in $\gamma$ is contained in the harmonic boundary
$\delta$ and actually these two sets coincide with each other when considered in the
Wiener and Royden compactifications mentioned later. The typical example of
resolutive compactification is, as mentioned above, the Wiener compactffication
and, moreover, the Wiener compactffication is the largest compactification among
every resolutive compactifications and a compactification $R^{*}$ is resolutive if and
only if the Wiener compactification lies over $R^{*}$ .

Suppose $R\not\in \mathcal{O}_{G}$ and fix a point $a\in R$ and a compactification $R^{*}$ of $R$ . For a
compact subset $K\subset\gamma=R^{*}\backslash R$ we now define the harmonic measure hm$(K)=$

$hm_{R^{*}}(K)$ evaluated at the reference point $a\in R$ as follows. Let $S$ be the family
of nonnegative superharmonic functions $s$ on $R$ such that there exists an open

4



neighborhood $U_{s}$ of $K$ in $R^{*}$ with $s|U_{s}\cap R\geqq 1$ . Then we set

(2.3) hm$(K)=hm_{a}(K)=hm_{R^{*},a}(K)$ $:= \inf_{s\in S}s(a)$ ,

which is the harmonic measure of $K\subset\gamma$ inducing a regular Borel measure hm
on $\gamma$ called the harmonic measure on $\gamma$ . In case $R$ is resolutive, the functional
$\varphiarrow H_{\varphi}^{R}$ is linear and continuous on $C(\gamma)$ so that it is a regular Borel measure on

$\gamma$ , which is seen to be the above harmonic measure hm on $\gamma$ :

(2.4) $H_{\varphi}^{R}(a)= \int\varphi dhm$

for every $\varphi\in C(\gamma)$ . Now consider two compactifications $R_{j}^{*}(j=1,2)$ of a general
hyperbolic Riemann surface $R$ . Suppose $R_{1}^{*}$ lies over $R_{2}^{*}$ and let $\pi$ : $R_{1}^{*}arrow R_{2}^{*}$ be the
projection, i.e., $\pi$ is the continuous mapping of $R_{1}^{*}$ onto $R_{2}^{*}$ such that $\pi|R=id$ . (i.e.,
the identity mapping of $R$ onto itself). Then we obtain the following implication:

(2.5) $hm_{R_{1}^{*}}(K)>0\Rightarrow hm_{R_{2}^{*}}(\pi(K))>0$

for every compact subset $K\subset\gamma_{1}$ $:=R_{1}^{*}\backslash R$, or equivalently,

(2.6) hm$R_{2}^{*}(K)=0\Rightarrow hm_{R_{1}^{*}}(\pi^{-1}(K))=0$

for every compact subset $K\subset\gamma_{2}$ $:=R_{2}^{*}\backslash R$ . Besides the measurement the harmonic
measure hm$(K)$ of a compact subset $K\subset\gamma$ we also have another measurement
the capacity cap$(K)$ for $K$ . This time we take a closed parametric disc $\overline{V}$ of any
open Riemann surface $R$ and consider a compactification $R^{*}$ of $R$ and a compact
subset $K\subset\gamma$ $:=R^{*}\backslash R$ . Recall tht a Dirichlet function $f$ on $R$ is a real valued
function belonging to the local Sobolev space $W_{1oc}^{1,2}(R)$ such that the Dirichlet
integral $D(f;R);= \int_{R}df\wedge*df$ of $f$ taken over $R$ is finite and the Dirichlet space
$L^{1,2}(R)$ is the totality of Dirichlet functions on $R$ . Let $F$ be a family of continuous
Dirichlet functions $f\in L^{1,2}(R)\cap C(R)$ such that there is an open neighborhood
$U_{f}$ of $K$ in $R^{*}$ with $f|U_{f}\cap R\geqq 1$ and $f|\overline{V}=0$ . Then we call

(2.7) cap $(K)= cap_{\overline{V}}(K)=cap_{R^{*},\overline{V}}(K):=\inf_{f\in F}D(f;R)$

the capacity (or more precisely variational 2-capacity) of $K$ . We also have the
counter pasrts of (2.5) and (2.6) for capacities as well. There is a constant $\kappa\in$

$[1, +\infty)$ such that

(2.8) hm $(K)\leqq\kappa$ . cap $(K)$

for every compact subset $K\subset\gamma=R^{*}\backslash R$ . However we will not use the capacity
in this paper for our later purposes.

5



3. $Q$ compactifications

Take an arbitrary open Riemann surface $R$ and consider any subclass $Q=Q(R)$ of
$C(R)$ . We denote by $R_{Q}^{*}$ the unique compactification of $R$ satisfying the following
two more additional conditions: first, each $f\in Q$ is continued to $R_{Q}^{*}$ so as to be
a $\mathbb{R}$

へ

valued continuous function on $R_{Q}^{*}$ which is denoted also by the same letter $f$ ;
second, $Q$ separates points in the ideal boundary $\gamma_{Q}$ $:=R_{Q}^{*}\backslash R$ of $R$ relative to $R_{Q}^{*}$ ,
i.e., for any two distinct points $\zeta_{1}$ and $\zeta_{2}$ in $\gamma_{Q}$ there is an $f\in Q$ such that $f(\zeta_{1})\neq$

$f(\zeta_{2})$ . This compactffication $R_{Q}^{*}$ of $R$ is referred to as the $Q$ compactification of
$R$ and $\gamma_{Q}$ the $Q$ ideal boundaw, or rather simply, $Q$ boundary of $R$ . These $Q$

compactifications are nothing special in the class of compactifications as being
compactifications. Actually any compactification $R^{*}$ is a $Q$ compactification for
a suitable family $Q$ . In fact, we only have to choose as a $Q$ the set $Q=\{f|R$ :
$f\in C(R^{*};\mathbb{R}),$ $f(R)$

へ

$\subset \mathbb{R}\}$ so as to have $R^{*}=R_{Q}^{*}$ . Let $\{Q\}$ be the family of
every subset $Q\subset C(R)$ and $\{R^{*}\}$ be the family of every compactification $R^{*}$ of
$R$ . Then the mapping $\psi$ : $\{Q\}arrow\{R^{*}\}$ defined by $\psi(Q)=R_{Q}^{*}$ is surjective as
we saw above but not injective at all and actually $\psi^{-1}(R_{Q}^{*})$ contains infinitely
many subfamilies of $C(R)$ . In fact, let $C_{0}^{\infty}(R)$ be as usual the family of every
$C^{\infty}$ function on $R$ with compact support in $R$ . Then clearly $\psi(Q\cup C_{0}^{\infty})=\psi(Q)$ ,
which implies the above statement. Therefore it is always essentially important to
choose “nice subfamily” $Q$ to investigate a given compactification $R^{*}$ of $R$ from
the view point of the $Q$ compactification $R^{*}=R_{Q}^{*}$ . If $Q$ forms some normed ring
(i.e., a commutative real Banach algebra with multiplicative unit), then $R_{Q}^{*}$ can
be grasped as the maximal ideal space of $Q$ and various applications of the corpus
of abundant knowledges in that theory of functional analysis are well expected.
Thus the choice of $Q$ with algebra stmcture is a candidate of “nice families“. The
notion of $Q$ compactffication was introduced by Constantinescu-Cornea in their
celebrated monograph [2]. As for the existence of $R_{Q}^{*}$ for any given $Q$ , there can
be many constructions but the one proposed by Constantinescu-Cornea may be
the simplest. We set $I_{f}=\mathbb{R}$

へ

for every $f\in Q$ and consider the topological product

(3.1)
$\prod_{f\in Q\cup C_{0}^{\infty}}I_{f}$

,

which is a compact Hausdorff space due to the Tychonoff theorem since $I_{f}=\hat{\mathbb{R}}=$

$[- 00,$ $+\infty]$ is compact. The mapping $\phi$ of $R$ to the above product space (3.1) given
by

(3.2) $\phi(\zeta)$

$:= \prod_{f\in Q\cup C_{0}^{\infty}}f(\zeta)$

for every $\zeta\in R$ . Then it is seen that $R_{Q}^{*}$
$:=\overline{\phi(R)}$, the closure of the set $\phi(R)$ in
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the above space (3.1) is the required $Q$ compactification of $R$ . By specifying $Q$ we
will obtain the following 7 typical $Q$ compactifications of any given open Riemann
surface $R$ . They are:

$\{\begin{array}{ll}\text{\v{C}} ech compactffication R_{c}^{*}Wiener compactification R_{\mathcal{W}}^{*}Royden compactification R_{\mathcal{R}}^{*}\end{array}$(3.3) Martin compactification $R_{\Lambda\Lambda}^{*}$

Kuramochi compactification $R_{\mathcal{K}}^{*}$

Stoilow compactification $R_{S}^{*}$

Alexandroff compactification $R_{A}^{*}$

We will explain the above 7 compactifications one by one about their definitions,
fields for which they are conveniently or efficiently made use of, important or well
known results obtained due to the use of them, and the like.

3.1. The \v{C}ech compactification. Set $C=C(R)=C(R)$ so that $C$ is the largest
subfamily of $C(R)$ which is nothing but the total family $C(R)$ itself. We call each
function $f\in C$ a \v{C}ech function on $R$ so that $f$ is a \v{C}ech function on $R$ if and only
if $f$ is continuous on $R$ . Then the $C$ compactification (i.e., $Q$ compactification with
$Q=C)R_{c}^{*}$ is called as the \v{C}ech compactification of $R$ . The \v{C}ech compactification
$R_{c}^{*}$ of any $R$ is always of Stoilow type but $R_{c}^{*}$ of any $R\not\in \mathcal{O}_{G}$ is not resolutive. This
latter fact is explained to come from that the \v{C}ech boundary $\gamma_{C}$ $:=R_{C}^{*}\backslash R$ contains
too many points, which suffocate the full developement of the potential theory. It
is very convenient that any continuous function on $R$ is automatically continuous
on $R_{c}^{*}$ and especially at each point of the \v{C}ech boundary $\gamma_{C}$ . Full use of this
convenient fact produced a very simple proof for the following Riemann surface
version of the Evans-Selberg theorem: an open Riemann surface $R$ is parabolic,
i.e., $R\in \mathcal{O}_{G}$ , if and only if there exists an Evans-Selberg potential $E(z, \zeta)$ on $R$ ,
i.e., $E(\cdot, \zeta)\in H(R\backslash \{\zeta\});E(z, \zeta)-\log|z-\zeta|=\mathcal{O}(1)(zarrow\zeta)$ ; for any $n\in \mathbb{N}$

there is a compact subset $K_{n}$ of $R$ such that $E(\cdot, \zeta)>n$ on $R\backslash K_{n}$ (see [12]). The
following characterization of $\gamma_{C}$ in $R_{c}^{*}$ is useful: a point $\zeta\in R_{C}^{*}$ belongs to $R$ (resp.
$\gamma_{C})$ if and only if the first countability axiom is valid (resp. does not valid) at $\zeta$ .
In particular the \v{C}ech compactification $R_{c}^{*}$ of any open Riemann surface is not
metrizable.

3.2. The Wiener compactification. We introduce the function family $\mathcal{W}=$

$\mathcal{W}(R)\subset C(R)$ consisting of functions $f$ on $R$ called Wiener functions on $R$ . To
begin with, if an open Riemann surface $R\in \mathcal{O}_{G}$ , then we set $\mathcal{W}(R)=C(R)$ .
Next suppose that $R\not\in \mathcal{O}_{G}$ . Then a function $f\in \mathcal{W}(R)$ if and only if a continuous
function $f$ on $R$ satsfies the following two conditions: first, $|f|$ has a superharmonic
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majorant $s_{f}$ on $R$ , i.e. there is a nonnegative superharmonic function $s_{f}$ on $R$ such
that $|f|\leqq s_{f}$ on $R$ ; second, there exists a unique $h_{f}^{R}\in H(R)$ such that

(3.2.1) $h_{f}^{R}= \lim_{narrow\infty}H_{f}^{R_{n}}$

locally uniformly on $R$ for every regular exhaustion $(R_{n})_{n\in N}$ of $R$ , where $H_{f}^{R_{\eta}}$

indicates the harmonic function on $R_{\eta}$ with boundary values $f|\partial R_{m}$ on $\partial R_{m}$ . The
above second property is said to be the harmonizability of $f$ on $R$ , so that, the
second condition may be rephrased as that $f$ is harmonizable on $R$ . A function $f\in$

$\mathcal{W}(R)$ is said to be a Wiener potential on $R$ if $h_{f}^{R}\equiv 0$ on $R$ . The fact $h_{f}^{R}=0$ on $R$

is equivalent to the existence of genuine potential $p_{f}$ on $R$ such that $|f|\leqq PJ$ on $R$ .
We denote by $\mathcal{W}_{0}(R)$ the subset of $\mathcal{W}(R)$ consisting of Wiener potentials on $R$ so
that $W_{0}(R)=\{f\in \mathcal{W}(R) : h_{f}^{R}=0\}=$ { $f\in \mathcal{W}(R)$ : $|f|\leqq p_{f}$ : a potential on $R$}.
Then the following direct sum decomposition is a generalized Riesz decomposition
theorem with $HP(R)$ the linear subspace generated by $H(R)^{+}=\{u\in H(R)$ : $u\geqq$

$0$ on $R\}$ $(i.e., HP(R)=H(R)^{+}\ominus H(R)^{+})$ :

(3.2.2) $\mathcal{W}(R)=HP(R)\oplus \mathcal{W}_{0}(R)$ .

Then the $\mathcal{W}$ compactification $R_{\mathcal{W}}^{*}$ is referred to as the Wiener compactification of
$R$ . By the very definition of families of $\mathcal{W}$ and $C,$ $R_{\mathcal{W}}^{*}=R_{c}^{*}$ as topological spaces
if $R\in \mathcal{O}_{G}$ . For hyperbolic Riemann surface $R,$ $R_{\mathcal{W}}^{*}$ is not only of Stoilow type but
also resolutive. Actually $R_{\mathcal{W}}^{*}$ is the largest resolutive compactification of $R$, i.e.,
if $R_{\mathcal{W}}^{*}arrow R^{*}$ , then the compactification $R^{*}$ of $R$ is resolutive. Thus the potential
theory can be sufficiently and freely discussed on any compactification $R^{*}$ of $R$ over
which $R_{\mathcal{W}}^{*}$ lies. Similarly to the case of $R_{c}^{*}$ , a point $\zeta\in R_{\mathcal{W}}^{*}$ belongs to the Wiener
boundary $\gamma_{\mathcal{W}}$ $:=R_{\mathcal{W}}^{*}\backslash R$ if and only if $\{\zeta\}$ is a $G_{\delta}$ set, i.e., $\{\zeta\}$ is the intersection of
countable number of open neighborhoods of $\zeta$ , or equivalently the first countability
axiom is valid at $\zeta$ . Hence in particular the Wiener compactification $R_{\mathcal{W}}^{*}$ of $R$ is
not metrizable. The Wiener harmonic boundary $\delta=\delta_{\mathcal{W}}$ is seen to be identical
with

(3.2.3) $\delta_{\mathcal{W}}=\{\zeta\in\gamma_{\mathcal{W}}$ : $f(\zeta)=0$ for every $f\in \mathcal{W}_{0}(R)\}$ .

From this, it follows that $\delta_{\mathcal{W}}$ is identical with the set of regular points in $\gamma_{\mathcal{W}}$ . It is
also seen that $R\in \mathcal{O}_{G}$ if and only if $\delta_{\mathcal{W}}=\emptyset$. This compactification is particularly
convenient to study the class $HB(R)$ $:= \{u\in H(R):\sup_{R}|u|<+\infty\}$ of bounded
harmonic functions on $R$ in the frame of the classification theory of Riemann
surfaces. In the remarkable study of harmonic and holomorphic Hardy spaces of
exponent $1\leqq p\leqq\infty$ on Riemann surfaces in the UCLA thesis [3] of M. Hayashi,
we can find a powerful role played by the Wiener compactifications. The basic
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idea of this compactification $R_{\mathcal{W}}^{*}$ comes from the Wiener procedure to solve the
Dirichlet problem and also the harmonic version of normal family argument.

3.3. The Royden compactification. We set $\mathcal{R}=\mathcal{R}(R);=L^{1,2}(R)\cap C(R)$ and
let us call each $f\in \mathcal{R}$ a Royden function on $R$ . The Royden-Brelot decomposition
theorem says that if $R\in \mathcal{O}_{G}$ , then $\mathcal{R}(R)=\overline{C_{0}^{\infty}(R)}$ in the sense that for every $f\in$

$\mathcal{R}(R)$ there is a sequence $(f_{n})_{n\in N}$ in $C_{0}^{\infty}(R)$ such that $(f_{n})_{n\in N}$ is locally bounded
on $R,$ $f_{n}arrow fa.e$ . in every parametric disc on $R$ , and $D(f-f_{n};R)arrow 0(narrow\infty)$ ;
if $R\not\in \mathcal{O}_{G}$ , then $\mathcal{R}(R)\subset \mathcal{W}(R)$ and if we set $\mathcal{R}_{0}(R)$ $:=\mathcal{R}(R)\cap \mathcal{W}_{0}(R)$ , then the
Royden-Brelot decomposition is

(3.3.1) $\mathcal{R}(R)=HD(R)\oplus \mathcal{R}_{0}$ ,

where $HD(R)$ $:=\{u\in H(R) : D(u;R)<\infty\}$ . Actually (3.3.1) is a special case
of (3.2.2) so that if $f\in \mathcal{R}(R)$ is decomposed as $f=h_{f}+g_{f}$ in (3.2.2), then $h_{f}$

originally in $HP(R)$ belongs to $HD(R)$ if $f\in \mathcal{R}(R)$ and $g_{f}\in \mathcal{R}_{0}$ $:=\mathcal{R}(R)\cap \mathcal{W}_{0}(R)$ .
In particular we have the Dirichlet principle

(3.3.2) $D(f;R)=D(h_{f};R)+D(g_{f};R)$ , $D(h_{f}, g_{f};R)$ $:= \int_{R}dh_{f}\wedge*dg_{f}=0$ .

Similar to $\mathcal{W}_{0}(R)$ , we have $\mathcal{R}_{0}(R)=\{f\in \mathcal{R}(R) : h_{f}=0\}=\{f\in \mathcal{R}(R)$ :
$|f|\leqq p_{f}$ : a potential on $R$}. Each function $f\in \mathcal{R}_{0}(R)$ is referred to as a Royden
potential, or rather in more frequently used term Dirichlet potential on $R$ . Moreover
the following characterization is extremely important:

(3.3.3) $\mathcal{R}_{0}(R)=\overline{C_{0}^{\infty}(R)}$

in the sense that each function $f\in \mathcal{R}_{0}(R)$ is the limit of a locally bounded se-
quence $(f_{n})_{n\in N}$ in $C_{0}^{\infty}(R)$ in two ways: $f_{n}arrow fa.e$ . in each parametric disc of $R$ ;
$D(f-f_{n};R)arrow 0$ . The $\mathcal{R}$ conpactification $R_{\mathcal{R}}^{*}$ is referred to as the Royden com-
pactification of $R$ and $\gamma_{\mathcal{R}}$ $:=R_{\mathcal{R}}^{*}\backslash R$ the Royden boundary (Royden ideal boundary)
of $R$ . The Royden harmonic boundary $\delta_{\mathcal{R}}$ is seen to be identical with

(3.3.4) $\delta_{\mathcal{R}}=\{\zeta\in\gamma_{\mathcal{R}}$ : $f(\zeta)=0$ for every $f\in \mathcal{W}_{0}(R)\}$ .

From this it follows that $\delta_{\mathcal{R}}$ is identical with the set of regular points in $\gamma_{\mathcal{R}}$ as was
so in the case of Wiener harmonic boundary. Similarly it is seen that $R\in \mathcal{O}_{G}$ if and
only if $\delta_{\mathcal{R}}=\emptyset$ . The Royden compactification $R_{\mathcal{R}}^{*}$ of any open Riemann surface $R$ is
of $St_{0\dot{1}}1ow$ type and the Royden compactification $R_{\mathcal{R}}^{*}$ of hyperbolic Riemann surface
$R$ is resolutive as in Wiener case. Similar to $R_{c}^{*}$ and $R_{\mathcal{W}}^{*}$ , a point $\zeta$ in $R_{\mathcal{R}}^{*}$ belongs
to the Royden boundary $\gamma_{\mathcal{R}}$ if and only if the first countability axiom is valid at $\zeta$ .
In particular like $R_{c}^{*}$ and $R_{w}^{*}$ , the Royden compactification $R_{\mathcal{R}}^{*}$ is not metrizable.
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This compactification $R_{R}^{*}$ is conveniently used in the classification problems related
to the class $HD(R)$ . Especially quasiconformal mappings behave nicely on $R_{\mathcal{R}}^{*}$ and
as a result the quasiconformal invariance of certain null classes of Riemann surfaces
can be very easily derived: the class $\mathcal{O}_{G}$ and $\mathcal{O}_{HD}$ are quasiconformally invariant,
i.e., if there is a quasiconformal mapping of a Riemann surface $R_{1}$ onto another
$R_{2}$ , then $R_{1}\in \mathcal{O}_{G}$ (resp. $\mathcal{O}_{HD}$ ) if and only if $R_{2}\in \mathcal{O}_{G}$ (resp. $\mathcal{O}_{HD}$ ), where $\mathcal{O}_{HD}$ is
the family of Riemann surfaces $R$ such that $HD(R)=\mathbb{R}$ . These comes from the
following conceptually important and also a beautiful result [8] (though its proof
is very simple and easy technically): two Riemann surfaces are quasiconformally
equivalent (i.e., there is a quasiconformal mapping from one Riemann surface
onto another Riemann surface) if and only if their Royden compactffications are
homeomorphic.

3.4. The Martin compactffication. Take any regular subregion $R_{0}$ of an open
Riemann surface $R$ . Then the relative boundary $\partial(R\backslash R_{0})$ of the open subset
$R\backslash \overline{R}_{0}$ of $R$ is identical with $\partial R_{0}$ as sets. First take an $f\in C(\partial R_{0})^{+}$ , the class
of nonnegative functions in $C(\partial R_{0})$ , and set $H_{f}^{R\backslash \overline{R}_{0}}$ $:= \inf u$ , where the infimum is
taken with respect to $u\in H(R\backslash \overline{R}_{0})\cap C(R\backslash R_{0})$ such that $u\geqq 0$ on $R\backslash \overline{R}_{0}$ and
$u|\partial R_{0}=f$ . Then for any $f\in C(\partial R_{0})$ we define $H_{J}^{R\backslash \overline{R}_{0}}$ $:=H_{J^{+}}^{R\backslash \overline{R}_{0}}-H_{J}^{R\underline{\backslash }\overline{R}0}$ where
$f=f^{+}-f^{-}$ with $f^{+}$ (rsp. $f^{-}$ ) the positive (resp. negative) part of $f$ . Then $H_{f}^{R\backslash \overline{R}_{0}}$

is the standard solution of the Dirichlet problem for the “outer region” $R\backslash \overline{R}_{0}$ with
the boundary data $f$ on $\partial R_{0}$ . We call an $f\in C(R)$ a Martin function on $R$ if
there exists a regular subregion $R_{f}$ of $R$ such that

(3.4.1) $f=H_{f}^{R\backslash \overline{R}_{f}}/H_{1}^{R\backslash \overline{R}_{f}}$

on $R\backslash \overline{R}_{f}$ . We denote by $M(R)$ the totality of Martin functions on $R$ . The
Martin compactification $R_{\lambda 4}^{*}$ of $R$ is defined as the $\mathcal{M}$ compactification of $R$ and
$\gamma_{\mathcal{M}}$ $:=R_{\mathcal{M}}^{*}\backslash R$ is the Martin boundary of $R$ . The Martin compactification $R_{\lambda 4}^{*}$ is
resolutive and of Stoilow type. When $R\in \mathcal{O}_{G}$ , it is usual to fix a closed parametric
disc $\overline{V}=\{|z|\leqq 1\}$ in $R$ whose interior is the open unit disc $V=\{|z|<1\}$ to
replace $R$ by $R\backslash \overline{V}\not\in \mathcal{O}_{G}$ . Then it is seen that

(3.4.2) $(R\backslash \overline{V})_{\lambda 4}^{*}=R_{\mathcal{M}}^{*}\backslash V$

so that the Martin boundary $\gamma_{\mathcal{M}}(R\backslash \overline{V})$ of $R\backslash \overline{V}$ consists of the union of the
Martin boundary $\gamma_{\mathcal{M}}(R)$ of $R$ and the circle $\partial V$ which is the border of the partly
bordered surface $R\backslash V$ , i.e.,

(3.4.3) $\gamma_{\mathcal{M}}(R\backslash \overline{V})=\gamma_{\mathcal{M}}(R)\cup\partial V$

In view of these two relations (3.4.2) and (3.4.3) above, we can restrict ourselves
to the case $R\not\in \mathcal{O}_{G}$ in studying many properties of the Martin compactffication
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$R_{\Lambda 4}^{*}$ of $R$ . When $R\not\in \mathcal{O}_{G}$ , we have the Green kernel $G(z, w)=G(z, w;R)$ on $R$ .
Fix a point $a\in R$ and consider the Martin kernel on $R$ as a function on $R\cross R$

given by

(3.4.4) $K(z, w)=G(z, w)/G(a, w)$ .

Fix a countable dense subset $\{z_{n} : n\in N\}$ in $R$ and consider the metric $d$ on $R$

given by

(3.4.5) $d(w_{1}, w_{2}):= \sum_{n\in N}\frac{1}{2^{n}}\cdot\frac{|K(z_{n},w_{1})-K(z_{n},w_{2})|}{1+|K(z_{n},w_{1})-K(z_{n},w_{2})|}$

for any couple $(w_{1}, w_{2})$ of points $w_{1}$ and $w_{2}$ in $R$ . Then $(R, d)$ is a metric space
homeomorphic to $R$ with the original Riemann surface topology of $R$ and the
completion of this metric space is seen to be homeomorphic to $R_{\mathcal{M}}^{*}$ . Then the
Martin kernel $K(z, \zeta)$ is extended to $(z, \zeta)\in R\cross R_{\Lambda t}^{*}$ continuously and the metric
$d(\zeta_{1}, \zeta_{2})$ to $(\zeta_{1}, \zeta_{2})\in R_{\mathcal{M}}^{*}\cross R_{\Lambda\Lambda}^{*}$ in a natural fashion and (3.4.5) is still valid even
for any couple $(w_{1}, w_{2})$ of points $w_{1}$ and $w_{2}$ in $R_{\mathcal{M}}^{*}$ . Thus we see that the Martin
compactification $R_{\mathcal{M}}^{*}$ is metrizable. For the extension of the potential and the
function theory on the unit disc $D$ to general hyperbolic Riemann surface $R$ , the
Martin compactffication $R_{\mathcal{M}}^{*}$ is considered to be the most adequate since $D_{\Lambda t}^{*}=\overline{D}$ ,
the closure in the complex plane $\mathbb{C}$

へ

or the Euclidean compactification so to speak.
We will give two examples testifying the above statement, especially one for later
use. The first is the Poisson representation. We denote by $E$ the set of points
$\zeta\in\gamma_{\mathcal{M}}$ such that the Martin kernel $K(\cdot, \zeta)$ is an extreme point of the convex set
$\{u\in H(R)^{+}:u(a)=1\}$ . Then $E$ is a $G_{\delta}$ subset of $\gamma_{\Lambda\not\in}$ and there is a bijective
correspondence $urightarrow\mu$ between the space $\{u\in H(R)^{+}:u(a)=1\}$ and the space
$M(E)^{+}$ of probability measures $\mu$ on $E$ given by

(3.4.6) $u= \int_{E}K(., \zeta)d\mu(\zeta)$ .

This is the Martin representation theorem of positive harmonic functions which
is the generalization of the Poisson representation on $D$ , to obtain which was the
motivation for Martin to introduce the compactification now bearing his name.
The second is the Fatou theorem and the F. and M. Riesz theorem conceming the
boundary behaviors of bounded holomorphic functions on D. Let $f$ be a bounded
holomorphic function on a hyperbolic Riemann surface $R$ . Using the fine limit
$\hat{f}(\zeta)$ of $f$ at $\zeta\in\gamma_{\mathcal{M}}$ and the harmonic measure $hm_{\mathcal{M}}$ on the Martin boundary $\gamma_{\mathcal{M}}$

of $R$ , the following results are stated:

THE FATOU THEOREM: For any bounded holomorphic function $f$ on $R$, the fine
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limit $f$ exists $hm_{\Lambda 4}a.e$ . on $\gamma_{\mathcal{M}}$ ;

THE F. AND M. RIESZ THEOREM: For any bounded holomorphic function $f$ on
$R$ , the condition $hm_{\lambda 4}(\{\zeta\in\gamma_{\mathcal{M}}$ : $f(\zeta)=c\})>0$ for a constant $c$ implies that
$f\equiv c$ on $R$ .

Many authors like Naim, Kuramochi, Doob, and Constantinescu-Comea published
results from which the above results follow. As the compactification $R_{\mathcal{M}}^{*}$ itself the
following result of Constantinescu-Cornea [2] is very important (cf. \S 4 below):

(3.4.7) $\mathcal{M}(R)\subset \mathcal{W}(R)$

for any open Riemann surface $R$ , and, actually, every continuous function on the
Martin compactification $R_{\Lambda 4}^{*}$ of $R$ is a Wiener function on $R$ (cf. \S 4 below).

3.5. The Kuramochi compactification. Let $R_{0}$ be a regular subregion of an
open Riemann surface $R$ . For any $f\in L^{1,2}(R)\cap C(R)$ we consider the class $F$ of
functions $u\in L^{1,2}(R\backslash \overline{R}_{0})\cap C(R\backslash R_{0})$ such that $u|\partial R_{0}=f$ and $u\in H(R\backslash \overline{R}_{0})$ .
Then the extremal problem $\inf_{u\in F}D(u;R\backslash \overline{R}_{0})$ can be solved by a unique function
$f^{D}=f_{R\backslash \overline{R}_{0}}^{D}\in F$ such that

(3.5.1) $\inf_{u\in F}D(u;R\backslash \overline{R}_{0})=D(f_{R\backslash \overline{R}_{0}}^{D};R\backslash \overline{R}_{0})$ .

We say that a function $f\in L^{1,2}(R)\cap C(R)$ is a Kummochi function on $R$ if there
exists a regular subregion $R_{f}$ of $R$ such that $f=f_{R\backslash \overline{R}_{f}}^{D}$ on $R\backslash \overline{R}_{f}$ . We denote
by $\mathcal{K}(R)$ the totality of Kuramochi functions on $R$ . The $\mathcal{K}$ compactification $R_{\mathcal{K}}^{*}$

is referred to as the Kummochi compactification of $R$ . The set $\gamma_{\mathcal{K}}$
$:=R_{\mathcal{K}}^{*}\backslash R$ is

the Kuramochi boundary of $R$ . We fix a closed parametric disc $\overline{V}=\{|z|\leqq 1\}$ in
$R$ whose interior is a parametric disc $V=\{|z|<1\}$ . Then consider the kernel
function $N(z, w)$ on $R\backslash \overline{V}$ determined as follows. First,

(3.5.2) $-\triangle N(\cdot, w)=Dirac_{w}$ ,

where $Dirac_{w}$ is the Dirac measure supported at $w\in R\backslash \overline{V}$, and $N(\cdot, w)|\partial V=0$ .
Second, for any regular subregion $R_{0}$ containing $\overline{V}\cup\{w\},$ $(N(\cdot, w))_{R\backslash \overline{R}_{0}}^{D}=N(\cdot, w)$

on $R\backslash \overline{R}_{0}$ . Usually $N(z, w)$ is referred to as the (relative)Neumann kemel on
$R\backslash \overline{R}_{0}$ , or Kuramochi kemel on $R\backslash \overline{R}_{0}$ . As far as formality concerns, the Ku-
ramochi compactifications resembles the Martin compactification and these two
compactifications share most basic properties. For example, $R_{\mathcal{K}}^{*}$ is resolutive and
of Stoilow type like $R_{\mathcal{M}}^{*}$ . Using Kuramochi kernel instead of Martin kernel, a sim-
ilar argument used for the Martin comppactification assures that the Kuramochi
compactifications is metrizable. Also the completion of $R$ with the metric given
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by the Kuramochi kernel instead of Martin kernel produces the Kuramochi com-
pactification of $R$ exactly similaly as in the case of Martin compactification. Like
$D_{\Lambda t}^{*}=\overline{D}$, we also have $D_{\mathcal{K}}^{*}=$ D. The fact that the Beurling theorem related to
the boundary behavior of Dirichlet finite holomorphic functions on $D$ concerning
$\partial D$ is generalized to those on hyperbolic Riemann surface $R$ concerning $\gamma_{\mathcal{K}}$ by
Kuramochi is an example of adequateness of $R_{\mathcal{K}}^{*}$ for the study of Dirichlet finite
holomorphic and harmonic functions on hyperbolic Riemann surfaces $R$ .

3.6. The Stoilow compactification. Let $R_{0}$ be a regular subregion of an open
Riemann surface $R$ . Then $R\backslash \overline{R}_{0}$ consists of a finite number of relatively non-
compact components. A function $f\in C(R)$ is a Stoilow function, by definition, if
ther exists a regular subregion $R_{f}$ of $R$ such that, when $R\backslash \overline{R}_{f}$ consists of some fi-
nite number $m$ of relatively noncompact components $S_{1},$ $S_{2},$

$\cdots,$ $S_{m}$ , i.e., $R\backslash \overline{R_{f}}=$

$\bigcup_{1\leqq j\leqq m}S_{j}$ , then there exists $m$ constants $c_{1},$ $c_{2},$ $\cdots,$ $c_{m}$ with $f|S_{j}=c_{j}(1\leqq j\leqq m)$ .
We denote by $S(R)$ the totality of Stoilow functions on $R$ . Then the $S$ compactifi-
cation $R_{S}^{*}$ is referred to as the Stoilow compactification of $R$ and $S$ ideal boundary
$\gamma_{S}$ $:=R_{S}^{*}\backslash R$ of $R$ the Stoilow boundary of $R$ . Occasionally the Stoilow compact-
ification $R_{S}^{*}$ is also called the Ker\’ekj\’art\’o-Stoilow compactification. To show the
traditional topological approach to $R_{S}^{*}$ , take a regular exhaustion $(R_{n})_{n\in N}$ of $R$

and let $K_{1}^{(n)},$ $K_{2}^{(n)},$
$\cdots,$ $K_{N(n)}^{(n)}$ be relatively noncompact components of $R\backslash \overline{R}_{n}$ . A

determining sequence is a sequence $\{K_{i_{n}}^{(n)}\}$ such that

$K_{i_{1}}^{(1)}\supset K_{i_{2}}^{(2)}\supset\cdots K_{i_{n}}^{(n)}\supset\cdots$

Another regular exhaustion $(R_{n}’)_{n\in N}$ gives another determining sequence $\{K_{i_{n}}^{\prime(n)}\}$ .
Two determining sequences $\{K_{i_{n}}^{(n)}\}$ and $\{K_{i_{n}}^{\prime(n)}\}$ are said to be equivalent if for
any $n$ there is an $m$ such that $K_{i_{n}}^{(n)}\supset K_{i_{m}}^{\prime(m)}$ and conversely. An equivalence class
of determining sequence is called a Stoilow end. Then fix a regular exhaustion
$(R_{n})_{n\in N}$ of $R$ . The totality of determining sequences corrersponds in a bijective
manner to the totality of ends of $R$ . Let a determining sequence $\{K_{i_{n}}^{(n)}\}$ give a
Stoilow end $e\{K_{i_{n}}^{(n)}\}$ . Let $R^{*}$ be the union of $R$ and the family of ends $e\{K_{i_{n}}^{(n)}\}$ .
Denote by $E(K_{i_{n}}^{(n)})$ the totality of ends which correspond to determining sequences
containing $K_{i_{n}}^{(n)}$ . For the base of the neighborhood system at $e\{K_{i_{n}}^{(n)}\}$ choose
$K_{i_{n}}^{(n)}\cup E(K_{i_{n}}^{(n)})$ . Then it is seen that $R^{*}=R_{s}^{*}$ . From the view point of the above
introduction of $R_{s}^{*}$ , a point in $\gamma_{S}=R_{s}^{*}\backslash R$ is often referred to as a $St_{0\dot{1}}1ow$ ideal
boundary component. The Stoilow compactification $R_{s}^{*}$ is resolutive and, of course,
of Stoilow type and actually the smallest compactification of Stoilow type, i.e., any
compactification lying over $R_{s}^{*}$ is of Stoilow type. Clearly $R_{s}^{*}$ is metrizable. This
compactification has long been used not only as ideal boundaries for Riemann
surfaces but also for the plane regions besides their proper Euclidean boundaries
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even in the classical function theory. It is particularly convenient for the study
related to the analytic continuations such as Iversen property, the Gross property,
the Stoilow theory of covering surfaces, and so forth (cf. [10], [11], etc.).

3.7. The Alexandroff compactification. Let $R$ be an open Riemann surface
and $f\in C(R)$ such that there exists a regular subregion $R_{f}$ of $R$ satisfying the
condition that $f|R\backslash \overline{R}_{f}$ is a constant function $c_{f}$ on $R\backslash R_{f}$ . Such an $f$ is called
an Alexandmff function on $R$ and the totality of Alexandroff functions on $R$ is
denoted by $\mathcal{A}(R)$ . Then $\mathcal{A}$ compactification $R_{\mathcal{A}}^{*}$ is the Alexandroff compactification
of $R$ . The usual topological introduction of $R_{A}^{*}$ is as follows. Consider an element
$\infty=\infty_{R}$ and let $R^{*}$ $:=R\cup\{\infty\}$ . In addition to the original topology on $R$ , let the
family of sets of the form $\{\infty\}\cup(R\backslash K)$ with $K$ compact subsets of $R$ be a base
of neighborhood system at $\infty$ . Then it is seen that $R^{*}=R\cup\{\infty\}$ is a compact
Hausdorff space and, in fact, $R^{*}=R_{A}^{*}$ . Hence the Alexandroff compactification
$R_{A}^{*}$ of $R$ is also called the one point compactification of $R$ since the Alexandroff
boundary $\gamma_{A}$ $:=R_{\mathcal{A}}^{*}\backslash R=\{\infty\}$ consisting only one point $\infty=\infty_{R}$ , which is often
called the Alexandroff point or the the point at infinity. Hence, for example, the
extended complex plane $\mathbb{C}=\mathbb{C}_{A}^{*}=\mathbb{C}\cup$

へ

$\{\infty\}$ . The Alexandroff compactification
$R_{\mathcal{A}}^{*}$ is resolutive but in general not of $StO\dot{1}low$ type. Clearly it is metrizable. Every
compactification $R^{*}$ of $R$ lies over $R_{A}^{*}$ . It is so crude that no particular instances
of its convenient and essential use in the function theory and the potential theory
on Riemann surfaces can hardly be found except its predicative use, e.g. we can
conveniently use it in the statement of the definition of Evans-Selberg potential
$E(z, \zeta)$ on an open Riemann surface $R$ with the negative pole at $\zeta\in R:E(\cdot, \zeta)\in$

$H(R\backslash \{\zeta\})$ with $\lim_{zarrow\zeta}E(z, \zeta)=-\infty$ and $\lim_{zarrow\infty_{R}}E(z, \zeta)=+\infty$ .

We repeat: the \v{C}ech compactification $R_{c}^{*}$ is not resolutive for any open Riemann
surface $R$ but all of the rest 6 compactffications are all resolutive among which
$R_{\mathcal{W}}^{*}$ is the largest; the Alexandroff compactffication $R_{A}^{*}$ is in general not of Stoilow
type but all of the rest 6 compactffications are of $St_{o1}1ow$ type among which $R_{s}^{*}$ is
the smallest; the \v{C}ech compactification $R_{C}^{*}$ , the Wiener compactffication $R_{w}^{*}$ , and
the Royden compactification $R_{R}^{*}$ are not metrizable for any open Riemann surface
$R$ but the rest 4 compactffications aer all metrizable.

4. Relations among 7 compactifications

Consider two $Q$ compactffications $R_{Q_{i}}^{*}(i=1,2)$ of an open Riemann surface $R$ and
we observe that if $Q_{1}(R)\supset Q_{2}(R)$ , then $R_{Q_{1}}^{*}$ lies over $R_{Q_{2}}^{*}:R_{Q_{1}}^{*}arrow R_{Q_{2}}^{*}$ . In fact,
choose any generalized sequence $(z_{\alpha})_{\alpha\in A}$ with $A$ , a directed net, in $R$ converging
to an arbitrarily given point $\xi\in\gamma_{Q}$ in $R_{Q_{1}}^{*}$ and we are to find an $\eta\in\gamma_{Q_{2}}$ such
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that $(z_{\alpha})_{\alpha\in A}$ converges to $\eta$ in $\gamma_{Q_{2}}$ in $R_{Q_{2}}^{*}$ . Contrary to the assertion assume that
there are two distinct points $\eta’$ and $\eta’’$ in $\gamma_{Q_{2}}$ and two subsequences $(z_{\alpha’})_{\alpha’\in A’}$ and
$(z_{\alpha’’})_{\alpha’’\in A’’}$ of $(z_{\alpha})_{\alpha\in A}$ such that $z_{\alpha’}arrow\eta’$ and $z_{\alpha’’}arrow\eta’’$ in $R_{Q_{2}}^{*}$ . Take an $f\in Q_{2}(R)$

with $f(\eta’)\neq f(\eta’’)$ . In view of $Q_{2}(R)\subset Q_{1}(R)$ the function $f$ also belongs to
$Q_{1}(R)$ and hence $f$ is also continuous on $R_{Q_{1}}^{*}$ . Then $(f(z_{\alpha}))_{\alpha\in A}arrow f(\xi)$ while
its two subsequences $(f(z_{\alpha’}))_{a’\in A’}$ and $(f(z_{\alpha’’}))_{\alpha’’\in A’’}$ converge to $f(\eta’)$ and $f(\eta’’)$ .
This contradiction proves our assertion. Then we can exhibit the following strings
of inclusion relations:

(4.1) $\{\begin{array}{l}C(R)\supset \mathcal{W}(R)\supset \mathcal{R}(R)\supset \mathcal{K}(R)\supset S(R)\supset \mathcal{A}(R)\mathcal{W}(R)\supset \mathcal{M}(R)\supset S(R)\end{array}$

All inclusions except two are either just trivial or very easy to derive from defini-
tions of relevent families. Two exceptions here are $\mathcal{W}(R)\supset \mathcal{R}(R)$ and $\mathcal{W}(R)\supset$

$M(R)$ . We give proofs for these two inclusion relations. To show the inclusion
$\mathcal{W}(R)\supset \mathcal{R}(R)$ , take an arbitrary $f\in \mathcal{R}(R)$ . By the Royden-Brelot decomposition
(3.3.1) of $f$ , we have $f=h+g$ on $R$ , where $h\in HD(R)$ $:=\{u\in H(R)$ : $D(u;R)<$
$+\infty\}$ and $g$ a Dirichlet potential on $R$ so that there exists a genuine potential $p$

on $R$ with $|g|\leqq p$ on $R$ . Let $h=h^{+}-h^{-}$ be the Jordan decomposition of $h$ and
set $u=h^{+}+h^{-}\in HD(R)^{+}$ . Then $s;=u+p$ is a nonnegative superharmonic
function on $R$ . Then $|f|\leqq|h|+|g|\leqq u+p=s$ , i.e., $|f|\leqq s$ on $R$ so that the first
condition for $f$ to be in $\mathcal{W}(R)$ is satisfied. Let $(R_{n})_{n\in N}$ be any regular exhaustion
of $R$ . We have

$H_{f}^{R_{n}}=H_{h}^{R_{n}}+H_{g}^{R_{n}}=h+H_{g}^{R_{n}}$

on $R$ and $|H_{g}^{R_{n}}|\leqq H_{|g|}^{R_{n}}\leqq H_{p}^{R_{n}}$ on $R$ . Since $p\geqq 0$ is superharmonic, the com-
parison principle implies that $0\leqq H_{p}^{R_{n+1}}\leqq H_{p}^{R_{n}}$ on $R_{n}$ and $0 \leqq\lim_{narrow\infty}H_{p}^{R_{n}}\leqq p$

on $R$ , i.e., the nonnegative harmonic function $\lim_{narrow\infty}H_{p}^{R_{n}}$ on $R$ is dominated by
the potential $p$ on $R$ so that $\lim_{narrow\infty}H_{p}^{R_{n}}=0$ on $R$ . Therefore $\lim_{narrow\infty}H_{f}^{R_{n}}=h$

on $R$ , which shows the second condition, the essential requirment of the har-
monizability of $f$ for $f$ to belong to $\mathcal{W}(R)$ , is satisfied. Next we show the
rest of two inclusion relations: $\mathcal{W}(R)\supset \mathcal{M}(R)$ . More generally we show that
$\mathcal{W}(R)\supset C(R_{\mathcal{M}}^{*})$ . Then take any $f\in C(R_{\Lambda 4}^{*})$ and we are to show that $f\in \mathcal{W}(R)$

and, for the purpose, we may assume that $0\leqq f\leqq 1$ . For each $n\in N$ ,
let $E_{i};=\{\zeta\in E$ : $(i-1/2)/n\leqq f(()\leqq(i+1/2)/n\}$ (cf. (3.4.6)) and
$F_{i};=\{z\in R:f(z)\leqq(i-1)/n or f(z)\geqq(i+1)/n\}$ for $i=0,1,2,$ $\cdots,$ $n$ .
We set

$w_{i}:= \int_{E_{i}}K(\cdot,$ $()dhm(\zeta)$

on $R$ . Since $R_{\mathcal{M}}^{*}\backslash \overline{F}_{i}$ forms a neighborhood of each $\zeta\in E_{i}\subset E$ , the balayaged
function $(K(\cdot, \zeta))_{F_{i}}$ of $K(., \zeta)$ relative to $F_{i}$ is a potential, which is the character-
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izing condition for $K(\cdot, \zeta)(\zeta\in\gamma_{\Lambda 4})$ to belong to the class of extreme points of the
convex set $\{u\in H(R)^{+}:u(a)=1\}$ . Thus, from the identity

$(w_{i})_{F_{i}}= \int_{E_{i}}(K(\cdot, \zeta))_{F_{i}}$ dhm $(\zeta)$ ,

it follows that $(w_{i})_{F_{i}}$ is a potential. Hence we obtain

$\frac{i-1}{n}(w_{i}-(w_{i})_{F_{i}})\leqq fw_{i}\leqq\frac{i+1}{n}w_{i}+(w_{i})_{F_{:}}(i=0,1, \cdots, n)$

on $R$ except for a polar subset of $R$ . Summing up the above inequalities for $i=0$

to $n$ , we obtain, by observing $\sum_{i=0}^{n}fw_{i}=f$ , that

$\sum_{i=1}^{n}\frac{i-1}{n}(w_{i}-(w_{i})_{F_{i}})\leqq f\leqq\sum_{i=0}^{n}\frac{i+1}{n}w_{i}+\sum_{i=0}^{n}(w_{i})_{F_{i}}$

on $R$ . Take a regular exhaustion $(R_{m})_{m\in N}$ of $R$ . Then we see that

$\sum_{i=1}^{n}\frac{i-1}{n}(w_{i})-H_{p}^{R_{m}}\leqq H_{f}^{R_{m}}\leqq\sum_{i=0}^{n}\frac{i+1}{n}w_{i}+H_{q}^{R_{m}}$

on $R_{m}$ , where

$p= \sum_{i=1}^{n}(i-1)(w_{i})_{F_{i}}/n$ and $q= \sum_{i=0}^{n}(w_{i})_{F_{l}}$

are potentials on $R$ . Thus we have, on letting $marrow\infty$ in the above inequalities,

$\sum_{i=1}^{n}\frac{i-1}{n}(w_{i})\leqq\lim_{marrow}\inf_{\infty}H_{f}^{R_{m}}\leqq\lim_{marrow}\sup_{\infty}H_{f}^{R_{m}}\leqq\sum_{i=0}^{n}\frac{i+1}{n}w_{i}$

on $R$ , which implies that

$0 \leqq\lim_{marrow}\sup_{\infty}H_{f}^{R_{m}}-\lim_{marrow}\inf_{\infty}H_{f}^{R_{m}}$

$\leqq\sum_{i=0}^{n}\frac{i+1}{n}w_{i}-\sum_{i=1}^{n}\frac{i-1}{n}w_{i}\leqq\frac{2}{n}\sum_{i=0}^{n}w_{i}=\frac{2}{n}$

on $R$ . On letting $n\uparrow\infty$ , we conclude that $\lim\inf_{narrow\infty}H_{f}^{R_{m}}=\lim\sup_{narrow\infty}H_{f}^{R_{m}}$

on $R$ so that the local uniform convergence of the sequence $(H_{f}^{R_{m}})_{m\in N}$ on $R$ is
deduced, i.e., we have shown that $f\in \mathcal{W}(R)$ .

Based upon the table (4.1) of the inclusion relations among the 7 function sub-
classes $Q(R)$ of $C(R)$ determining the 7 particular $Q$ compactifications $R_{Q}^{*}$ we can
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obtain the following table of “lying over” relations among 7 particular $Q$ compact-
ifications as follows:

$R_{c}^{*}$ $arrow$ $R_{\mathcal{W}}^{*}$ $arrow$ $R_{\mathcal{R}}^{*}$ $arrow$ $R_{\mathcal{K}}^{*}$ $arrow$ $R_{S}^{*}$ $arrow$ $R_{\mathcal{A}}^{*}$

(4.2)

Once more we recall that $R_{Q_{1}}^{*}arrow R_{Q_{2}}^{*}$ means that $R_{Q_{1}}^{*}$ lies over $R_{Q_{2}}^{*}$ and its
negation $R_{Q_{1}}^{*}\neq\div R_{Q_{2}}^{*}$ is also denoted by $R_{Q_{1}}^{*}-\mapsto R_{Q_{2}}^{*}$ . However, in the table (4.2)
$R_{Q_{1}}^{*}arrow R_{Q_{2}}^{*}$ means that $R_{Q_{1}}^{*}$ lies over $R_{Q_{2}}^{*}$ for every choice of an open Riemann
surface $R$ and $R_{Q_{1}}^{*}arrow R_{Q_{2}}^{*}$ means that there exists some open Riemann surface
$R$ for which $R_{Q_{1}}^{*}$ does not lie over $R_{Q_{2}}^{*}$ . We have not yet discussed about

(4.3) $R_{\mathcal{R}}^{*}\vec{\mapsto-}R_{\Lambda t}^{*}$

in the table (4.2), i.e., there is an open Riemann surface $R$ for which $R_{\mathcal{R}}^{*}arrow R_{\Lambda t}^{*}$

does not hold and also there is an open Riemann surface $R$ for which $R_{\mathcal{M}}^{*}arrow R_{\mathcal{R}}^{*}$

does not hold so that, in short, there is no relation between $R_{\mathcal{R}}^{*}$ and $R_{\mathcal{M}}^{*}$ in general,
and about

(4.4) $R_{\mathcal{K}}^{*}\mapsto--\mapsto R_{\lambda 4}^{*}$

also in the table (4.2), i.e., there is an open Riemann surface $R$ for which $R_{\mathcal{K}}^{*}arrow R_{\Lambda 4}^{*}$

is not valid and also there exists an $R$ for which $R_{\mathcal{M}}^{*}arrow R_{\mathcal{K}}^{*}$ is not the case so
that, in short, $R_{\mathcal{K}}^{*}$ and $R_{\mathcal{M}}^{*}$ are not related in general. As far as the relations
among 7 particular $Q$ compactifications are concerned, the table (4.2) is the final
complete conclusion. What are left here are “no relation” relations (4.3) and (4.4).
Bibliographically speaking the relation (4.4), i.e., the following part

$R_{\mathcal{R}}^{*}$ $arrow$ $R_{\mathcal{K}}^{*}$

(4.5) $/J^{p}$

$R_{\mathcal{M}}^{*}$

in the table (4.2), was established by Kuramochi in his paper [4]. Especially the
part of his proof for $R_{\mathcal{M}}^{*}\star R_{\mathcal{K}}^{*}$ is quite elaborate and extremely intricate but the
surface $R$ he constructed to show $R_{\Lambda 4}^{*}\neq\div R_{\mathcal{K}}^{*}$ is planar. As our central object of
this paper we will prove (4.3), i.e., the part

(4.6)
$R_{R}^{*}arrow\nwarrow\searrow$

$R_{\mathcal{K}}^{*}$

$R_{\Lambda t}^{*}$
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in the table (4.2). As far as the present author is aware of, no proof for this part
has been in publicized print, which may justifies his intention. We start from
proving $R_{\mathcal{M}}^{*}\neq\div R_{\mathcal{R}}^{*}$ first. For the purpose we choose the following approach.

THEOREM 4.7. Any compactification $R^{*}$ of any open Riemann surfaoe $R$ is not
metrizable if $R^{*}$ lies over the Royden compactification $R_{\mathcal{R}}^{*}$ of $R$ .

PROOF: Let $I$ be the identity mapping of $R$ onto itself and $I^{*}$ be the extension
of $I$ which is the continuous mapping of $R^{*}$ onto $R_{\mathcal{R}}^{*}$ , i.e., $I^{*}$ is the projection
of $R^{*}$ onto $R_{R}^{*}$ . Contrary to the assertion assume that $R^{*}$ is metrizable. Let
$d$ be a metric on $R^{*}$ such that the metric space $(R, d)$ is homeomorphic to $R$

with the original Riemann surface topology. Choose arbitrarily but then fix a
$\xi\in\gamma$ $:=R^{*}\backslash R$ and let $\eta$

$:=I^{*}(\xi)\in\gamma_{\mathcal{R}}$ $:=R_{\varphi}^{*}\backslash R$ . Take a sequence $(z_{n})_{n\in N}$ in $R$

such that $z_{n}\neq z_{m}(n\neq m)$ and $d(z_{n}, \xi)arrow 0(narrow\infty)$ . Fix a closed parametric
disc $U_{n}=\{|z|\leqq 1\}(z(z_{n})=0)$ at $z_{n}$ with its interior $U_{n}$ $:=\{|z|<1\}$ on $R$ for
each $n\in$ N. We can assume that $\overline{U}_{n}\cap\overline{U}_{m}=\emptyset(n\neq m)$ . We use the notation
$\rho U_{n}(1>\rho>0)$ and $\rho\overline{U}_{n}$ for the subset of $U_{n}$ and $U_{n}$ given by $\{|z|<\rho\}$ and
$\{|z|\leqq\rho\}$ , respectively. Fix a sequence $(\epsilon_{n})_{n\in N}$ such that $0<\epsilon_{n}<1(n\in N)$ and
$\sum_{n\in N}\epsilon_{n}\leqq 1$ . For each $n\in N$ , choose $0<a_{n}<1$ so small that that the diameter
$\overline{d}(a_{n}\overline{U}_{n})$ $:= \sup\{d(z’, z^{l\prime}) : z^{l}, z’’\in a_{n}\overline{U}_{n}\}<\epsilon_{n}$ and $0<b_{n}<a_{n}$ further so small
as to make $\log(a_{n}/b_{n})>1/\epsilon_{n}$ . Consider the annulus $A_{n}$ $:=a_{n}U_{n}\backslash b_{n}\overline{U}_{n}$ and the
closed disc $\overline{B}_{n}$ $:=b_{n}\overline{U}_{n}$ in $R$ for each $n\in$ N. By the choice of the sequences
$(a_{n})_{n\in N}$ and $(b_{n})_{n\in N}$ , we have $\overline{A}_{n}\cap\overline{A}_{m}=\emptyset(n\neq m)$ and

(4.8) $modA_{n}:=\log\frac{a_{n}}{b_{n}}>\frac{1}{\epsilon_{n}}$ $(n\in N)$ .

We choose and fix one more point $w_{n}$ in the outer boundary of $A$ , i.e., $w_{n}\in\partial(a_{n}U_{n})$

for each $n\in$ N. Then $d(\xi, w_{n})\leqq d(\xi, z_{n})+d(z_{n}, w_{n})<d(\xi, z_{n})+e_{n}arrow 0$ as $narrow\infty$ .
Hence we have

(4.9) $\lim_{narrow\infty}z_{n}=\lim_{narrow\infty}w_{n}=\xi$

on $R^{*}$ . We define a function $f\in C(R)$ as follows: $f|A_{n}=H_{\varphi_{n}^{n}}^{A}$ for each $n\in N$ ,
where $\varphi_{n}$ is the boundary function on $\partial A_{n}$ with $f|\partial(a_{n}U_{n})=0$ and $f|\partial(b_{n}U_{n})=1$ ;
$f|\overline{B}_{n}=1$ for each $n\in N$ ; and $f|R \backslash \bigcup_{n\in N}(A_{n}\cup\overline{B}_{n})\equiv 0$. Observe that $f|A_{n}=H_{\varphi_{n}}^{A_{n}}$

is the harmonic measure function $\omega_{n}$ of the inner boundary of the annulus $A_{n}$

relative to the annulus $A_{n}$ so that, by (4.8), we see that

$D(f;A_{n})=D( \omega_{n};A_{n})=\frac{2\pi}{modA_{n}}<2\pi\epsilon_{n}$ $(n\in N)$ .

Therefore we have

$D(f;R)= \sum_{n\in N}(D(f;A_{n})+D(f;\overline{B}_{n}))+D(f;R\backslash \bigcup_{n\in N}(A_{n}\cup\overline{B}_{n}))$
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$= \sum_{n\in N}D(f;A_{n})<2\pi\sum_{n\in N}\epsilon_{n}=2\pi$
,

and therefore $f\in L^{1,2}(R)$ . Since $f\in C(R)$ , we conclude that $f\in \mathcal{R}(R)=$

$C(R)\cap L^{1,2}(R)$ so that $f$ is continuous on $R_{\mathcal{R}}^{*}$ . Since $I^{*}$ : $R^{*}arrow R_{\mathcal{R}}^{*}$ is continuous
and $f$ : $R_{\mathcal{R}}^{*}arrow \mathbb{R}$ is also continuous, we see that the function $g:=f\circ I^{*}$ : $R^{*}arrow \mathbb{R}$ is
continuous. By (4.9) we see that $g(z_{n})arrow g(\xi)(narrow\infty)$ and $g(w_{n})arrow g(\xi)(narrow$

$\infty)$ . But $z_{n}\in\overline{B}_{n}$ shows that $g(z_{n})=f(z_{n})=1$ and $w_{n}\not\in A_{n}\cup\overline{B}_{n}$ shows that
$g(w_{n})=f(w_{n})=0$ . From the former $g(\xi)$ must be 1 while from the latter $g(\xi)$

must be $0$ , a contradiction. a
COROLLARY To THEOREM 4.7. The Martin compactification $R_{\mathcal{M}}^{*}$ of any open
Riemann surfaoe $R$ does not lie over the Royden compactification $R_{\mathcal{R}}^{*}$ of $R_{f}$ i. e.,
$R_{\lambda 4}^{*}-\mapsto R_{\mathcal{R}}^{*}$ for every open Riemann surface $R$ .

Thus we have finished the proof of a part of (4.7): $R_{\mathcal{R}}^{*}\mapsto-R_{\Lambda t}^{*}$ . Since we have the
Kuramochi result (4.4) and in particular $R_{\mathcal{K}}^{*}\mapsto-R_{\Lambda 4}^{*}$ , we can infer as follows. Sup-
pose $R_{\mathcal{R}}^{*}arrow R_{\mathcal{M}}^{*}$ for every $R$ . Then (4.2) shows $R_{\mathcal{R}}^{*}arrow R_{\mathcal{K}}^{*}$ and by the transitivity
of the relation “lying over” we would have to conclude that $R_{\mathcal{K}}^{*}arrow R_{\Lambda t}^{*}$ for every
$R$ , contradicting the Kuramochi result $R_{\mathcal{K}}^{*}\div+-R_{\mathcal{M}}^{*}$ . However, there is a wide gap
here. Our result stated above is $R_{1\Lambda}^{*}-\mapsto R_{\mathcal{R}}^{*}$ for every open Riemann surface $R$ .
On the other hand the result derived from the Kuramochi result explained above
is that $R_{\mathcal{M}}^{*}-\mapsto R_{\mathcal{R}}^{*}$ for some open Riemann surface $R$ so that there might exist the
case $R_{\mathcal{M}}^{*}arrow R_{\mathcal{R}}^{*}$ by a suitable choice of $R$ , which can never happen is the assertion
of our Corollary above. However the following observation falls into the different
category from the above remark. We will complete (4.3) by showing $R_{\mathcal{R}}^{*}arrowarrow R_{\mathcal{R}}^{*}$

for some $R$ in the next section 5. Now if $R_{\mathcal{K}}^{*}arrow R_{\Lambda t}^{*}$ is the case for every $R$ , then by
using $R_{\mathcal{R}}^{*}arrow R_{\mathcal{K}}^{*}$ for every $R$ in (4.2), we would have to conclude that $R_{\mathcal{R}}^{*}arrow R_{\mathcal{M}}^{*}$

for every $R$ contradicting $R_{\mathcal{R}}^{*}-\mapsto R_{\Lambda t}^{*}$ for some $R$ to be shown later in the next
section. Therefore, once (4.3) is established, it also takes care of the half of (4.4),
and what is left is

$R_{\mathcal{K}}^{*}\divarrow R_{\Lambda 4}^{*}$

for some open Riemann surface $R$ . Although we have a proof for this part given
by Kuramochi [4], it is always nice to have another standard proof that can be
followed without extraordinary and ridiculous elaboration.

5. T\^oki covering surfaces

Recall that we have denoted by $H(R)$ the linear space of real valued harmonic
functions on an open Riemann surface $R$ . Two important subspaces of $H(R)$ are
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(as we have already considered): first,

$HB(R)$ $:=\{u\in H(R)$ : $\sup_{R}|u|<+\infty\}$ ,

i.e., the subspace of $H(R)$ consisting of bounded functions and $B$ in $HB(R)$ sug-
gests the boundedness, and it forms a Banach space equipped with the supremum
norm $\sup_{R}|u|$ ; second,

$HD(R)$ $:=\{u\in H(R)$ : $D(u;R)= \int_{R}du\wedge*du<+\infty\}$ ,

i.e., the subspace of $H(R)$ consisting of Dirichlet finite functions and $D$ in $HD(R)$

suggests the Dirichlet finiteness, and it forms a Banach space, and actually a
Hilbert space, with the norm $(u(a)^{2}+D(u;R))^{1/2}$ with an arbitrarily fixed ref-
erence point $a\in R$ . To combine the above two subspaces it is convenient to
consider

$HBD(R)$ $:=HB(R)\cap HD(R)$

and usually the norm $\sup_{R}|u|+D(u;R)^{1/2}$ is employed to make $HBD(R)$ a Banach
space. We denote by $\mathcal{O}_{HX}$ the family of open Riemann surfaces $R$ such that
$HX(R)=\mathbb{R}$ , i.e., there is no functions in $HX(R)$ other than constant functions,
where $X=B$ or $D$ . Together with the class $\mathcal{O}_{G}$ of parabolic Riemann surfaces we
know

(5.1) $\mathcal{O}_{G}<\mathcal{O}_{HB}<\mathcal{O}_{HD}$,

where $<$ stands for the strict inclusion, i.e., $\subset$ and $\neq$ . The Virtanen-Royden theo-
rem says that the class $HBD(R)$ is dense in $HD(R)$ in the following sense: there is
a sequence $(u_{n})_{n\in N}$ in $HBD(R)$ for any given $u\in HD(R)$ such that $u_{n}arrow u(narrow$

$\infty)$ locally uniformly on $R$ and at the same time $D(u-u_{n};R)arrow 0(narrow\infty)$ . This
theorem assures trivially the inclusion $\mathcal{O}_{HB}\subset \mathcal{O}_{HD}$ . Once upon a time the ques-
tion whether this inclusion relation is strict or not was one of central themes in the
classffication theory of Riemann surfaces in its second evolution following the type
problem period. It was T\^oki who succeeded in showing that it is certainly strict
after some failures by a couple of extremely eminent function theorists at that
time (in the sense that their publicized papers claiming the strictness contained
certain gaps). T\^oki constructed an infinitely sheeted complete covering surface $\tilde{D}$

of the unit disc $D$ with $HB(\tilde{D})=HB(D)0\pi$ ( $\pi$ being the projection of $\tilde{D}$ onto D)
and thus $HD(\tilde{D})=\mathbb{R}$ , which proves $\mathcal{O}_{HB}<\mathcal{O}_{HD}$ . This gives rise to a notion of
T\^oki covering surfaces.

For convenience let us run over the definition of covering surfaces and some of
its relevant terminology before we go to our main theme of this section (cf. [1]).

20



A covering Riemann surface or loosely just a covering surface is a triple $(\tilde{R}, R, \pi)$

of two Riemann surfaces $\tilde{R}$ and $R$ and an analytic mapping $\pi$ : $\tilde{R}arrow R$ . The
Riemann surface $\tilde{R}$ itself is again called the covering surface of $R$ (of the covering
surface $(\tilde{R}, R, \pi)),$ $R$ the base surface, and $\pi$ the projection of the covering surface
$(\tilde{R}, R, \pi)$ . Pick any point $\tilde{p}$ in $\tilde{R}$ and let $p=\pi(\tilde{p})$ . If we choose suitable local
parameters $z$ and $w$ at $\tilde{p}$ and $p$ , respectively, then we have $w=z^{n}(n\in \mathbb{N})$ as a
local expression of $\pi$ at $\tilde{p}$ . When $n>1$ , then the point $\tilde{p}$ is referred to a branch
point of order $n-1$ and $n$ is called the multiplicity of the branch point $\tilde{p}$ . In
case the existence of a branch point in $\tilde{R}$ cannot be denied, then $\tilde{R}$ is said to be
branched or possibly branched. A covering surface $\tilde{R}$ , or more precisely $(\tilde{R}, R, \pi)$ ,
is said to be complete if every base point $p\in R$ has a neighborhood $V$ such that
every component of $\pi^{-1}(V)$ is compact. The important consequence of $\tilde{R}$ being
complete is that $\tilde{R}$ covers each point of $R$ the same number of times, provided
that the branch points are counted as many times as their multiplicity indicates.
This number may be infinite and in such a case $(\tilde{R}, R, \pi)$ is said to be of infinitely
sheeted. This is all for the review of covering surfaces. We now define a T\^oki
covering surface $\tilde{R}$ of any open Riemann surface $R$ . An open Riemann surface $\tilde{R}$

is said to be a T\^oki covering surface of a given open Riemann surface $R$ if the
following two conditions are fulfilled:

(a) $(\tilde{R}, R, \pi)$ forms a complete covering Riemann surface which is infinitely
sheeted and possibly branched;

(b) every bounded harmonic function on $\tilde{R}$ is constant on the fiber $\pi^{-1}(w)$ of
any base point $w\in R$ .
As far as the notion of T\^oki covering surfaces is concerned, the most important
and fundamental recognition is its existence.

THEOREM 5.2. Any open Riemann surface $R$ admits at least one its T\^oki covering
surface $(\tilde{R}, R, \pi)$ .

The result is established when $R=D$, the unit disc in the complex plane $\mathbb{C}$ , by
T\^oki [13]. Ameliorating the T\^oki construction, the above general case is treated
by Nakai-Segawa [9]. Let $(\tilde{R}, R, \pi)$ be an infinitely sheeted covering surface so that
the one satisfying above (a). Then it is always the case that

$HB(\tilde{R})\supset HB(R)\circ\pi:=\{u\circ\pi:u\in HB(R)\}$ .

The subspace $HB(R)\circ\pi$ occupies larger and larger portion of $HB(\tilde{R})$ as each
sheet of $\tilde{R}$ is put together closer and closer. The extreme case is

(5.3) $HB(\tilde{R})=HB(R)\circ\pi$ .
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It is easy to see that this condition is equivalent to the condition (b) above. Thus
a covering surface $(\tilde{R}, R, \pi)$ is a T\^oki covering surface of $R$ if and only if it is
complete, infinitely sheeted, and satisfies (5.3). Then choose any $\tilde{u}\in HBD(\tilde{R})$ .
In view of (5.3) there is a $u\in HB(R)$ with $\tilde{u}=uo\pi$ so that we must conclude
that

$\infty>D(\tilde{u};\tilde{R})=D(u;R)\cdot\infty$ .

Hence $D(u;R)=0$ and $u$ must be a constant, which implies that $\tilde{u}\equiv c$, a constant.
Therefore $HBD(\tilde{R})=\mathbb{R}$ . By the Virtanen-Royden theorem that $HBD(\tilde{u})$ is
”dense” in $HD(\tilde{R})$ , we can conlude the following result.

THEOREM 5.4. Any T\^oki covering surface $\tilde{R}\in \mathcal{O}_{HD}$ , i. e., $HD(\tilde{R})=\mathbb{R}$ .

Hereafter we always use the notation $\tilde{R}$ to denote a T\^oki covering surface of an
open Riemann surface $R$ unless the contrary is explicitly mentioned.

We proceed to the final one of our main objectives of this paper: the proof of
$R_{\mathcal{R}}^{*}arrow\Rightarrow R_{\mathcal{M}}^{*}$ for some $R$ . Actually we will achieve our aim by showing $(\tilde{R})_{\mathcal{R}}^{*}-\dashv\div$

$(\tilde{R})_{\mathcal{M}}^{*}$ for any T\^oki covering surface $\tilde{R}$ of a suitable open Riemann surface. We
denote by $A(R)$ the class of all single valued analytic functions on an open Riemann
surface. Similar to $HB(R)$ and $HD(R)$ to $H(R)$ , we also consider the subspace
AB$(R)$ (resp. $AD(R)$ ) of $A(R)$ consisting of bounded (resp. Dirichlet finite)
functions in $A(R)$ . Like $\mathcal{O}_{HX}$ we can also consider $\mathcal{O}_{AX}$ , i.e., the class of open
Riemann surface $R$ for which $AX(R)=\mathbb{C}$ , the complex number field, for $X=B$

or $D$ .

THEOREM 5.5. If $R$ is a hyperbolic Riemann surface satisfying $R\not\in \mathcal{O}_{AB}(i.e.$ ,
AB $(R)\backslash \mathbb{C}\neq\emptyset)$ , then $(\tilde{R})_{\mathcal{R}}^{*}arrow(\tilde{R})_{\mathcal{M}}^{*}$ for any T\^oki covering surface $\tilde{R}$ of $R$ .

PROOF: First we maintain that there is a point $\zeta_{0}$ in the Royden boundary
$\gamma_{R}$

$:=(\tilde{R})_{R}^{*}\backslash \tilde{R}$ of $\tilde{R}$ such that

(5.6) $hm_{(\tilde{R})_{R}^{*}}(\{\zeta_{0}\})=1$ .

To prove (5.6), for the purpose of simplifying notations we set $S$ $:=\tilde{R},$ $S^{*}$ $:=S_{\mathcal{R}}^{*}$ ,
$\gamma:=S^{*}\backslash S$ , hm $=$ hm$s*$ , and let $\delta$ be the Royden harmonic boundary of $S$ so
that $\delta$ is a compact subset of $\gamma$ . Since $\delta$ is the totality of regular points in $\gamma$

with respect to the Dirichlet problem, $H_{f}^{S}$ has boundary values $f$ on $\delta$ for every
$f\in C(\delta)$ . Choose any $f\in \mathcal{R}(S)$ and let $f=u+g$ be the Royden-Brelot
decomposition of $f$ on $S$ with $u\in HD(S)$ and $g$ a Royden potential on $S$ (cf.
(2.1) $)$ . Since $\delta$ is characterized also by the fact every Dirichlet (Royden) potential
vanishes on $\delta$ and vice versa, we see that $HD(S)|\delta=\mathcal{R}(S)|\delta$ , which forms a vector
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lattice and separates points in $\delta$ . Hence in particular the subspace $HBD(S)|\delta$ of
$C(\delta)$ is a vector sublattice and separates points in $\delta$ , by the Stone-Weierstrass
approximation theorem, the uniform closure $\overline{HBD(S)|\delta}$ of $HBD(S)|\delta$ coincides
with $C(\delta)$ . But, in the present case, $S\in \mathcal{O}_{HD}$ by Theorem 5.4 and a fortiori
$C(\delta)=\overline{HBD(S)|\delta}=\mathbb{R}$. This proves that $\delta$ consists of only one point $\zeta_{0}$ , say.
For every compact $K\subset\gamma\backslash \delta$ , using the function $p_{K}$ in (2.2), we can see that
hm$(K)=0$ . This proves that hm $(\gamma\backslash \delta)=0$ . Since hm$(\gamma)=1$ , we can conclude
that hm$(\{\zeta_{0}\})=1$ , i.e., (5.6) is deduced. Contrary to our assertion let us make
an erroneous assumption that $(\tilde{R})_{\mathcal{R}}^{*}arrow(\tilde{R})_{\Lambda t}^{*}$ and let $I^{*}$ be the projection of $(\tilde{R})_{\mathcal{R}}^{*}$

onto $(\tilde{R})_{\Lambda t}^{*}$ . Setting $\xi_{0};=I^{*}(\zeta_{0})\in\gamma_{\Lambda t}$ $:=(\tilde{R})_{\mathcal{R}}^{*}\backslash \tilde{R}$ , we see that

(5.7) $hm_{(\tilde{R})^{*}i\mathcal{M}n}(\{\xi_{0}\})=hm_{(\tilde{R})_{\Lambda 4}^{*}}(I^{*}(\{\zeta_{0}\}))>0$

along with (5.6) (cf. (2.5)). Clearly (5.3) assures the vadidity of AB$(\tilde{R})=AB(R)0$

$\pi$ . Our assumption $R\not\in \mathcal{O}_{AB}$ assures that AB $(R)$ and hence AB $(\tilde{R})$ contains other
than constants. Hence we can choose a nonconstant bounded holomorphic function
$f$ on $\tilde{R}$ . Applying the Fatou theorem stated in the subsection 3.4, we can conclude
that the fine limit $\hat{f}(\xi_{0})$ of $f$ at $\xi_{0}\in\gamma_{\Lambda t}$ exists. Observe that $\{\xi_{0}\}\subset\{\xi\in\gamma_{At}$ :
$f(\xi)=f(\xi_{0})\}$ and hence $0<$ hm$(\tilde{R})_{\Lambda 4}^{*}(\{\xi_{0}\})\leqq$ hm$(\overline{R})$ fu

$(\{\xi\in\gamma_{\Lambda t}$ : $f(\xi)=\hat{f}(\xi_{0})\})$ .
The F. and M. Riesz theorem mentioned in the same subsection 3.4 as above,
yields that $f\equiv\hat{f}(\xi_{0})$ on $\tilde{R}$ , a contradiction. $\square$

A function $u\in H(R)^{+}$ is said to be minimal on a hyperbolic Riemann surface
$R$ if $u>0$ on $R$ and whenever $u\geqq v>0$ on $R$ holds for some $v\in H(R)^{+}$

we can find a constant $c_{v}>0$ such that $v=c_{v}u$ on $R$ . It is easily seen that
$u\in H(R)^{+}$ is minimal if and only if $u/u(a)$ is an extreme point of the convex set
$\{v\in H(R)^{+}:v(a)=1\}$ . In view of the Martin representation theorem (3.4.6),
$u\in H(R)^{+}$ is minimal if and only if $u=u(a)K(\cdot, \zeta_{u})$ for a unique point $\zeta_{u}\in E$ .
Since

$1= \int_{E}K(\cdot, \zeta)dhm(\zeta)$ ,

we see that a $u\in H(R)^{+}$ is bounded and minimal if and only if $u=u(a)K(\cdot, \zeta_{u})$

for a unique $\zeta_{u}\in E$ with hm$(\tilde{R})_{\Lambda t}^{*}(\{\zeta_{u}\})>0$. Thus we conclude:

THEOREM 5.8. A hyperbolic Riemann surface $R$ carries a bounded minimal har-
monic function if and only if the Martin boundary of $R$ contains a point of har-
monic measure positive.

The fact that a hyperbolic Riemann surface $R$ carries a bounded minimal harmonic
function must be understood to be a quite pathological phenomenon. Therefore,
on the contrary, that a hyperbolic Riemann surface $R$ does not carry any bounded
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minimal harmonic function is just a usual and normal state. Hyperbolic plane
regions, hyperbolic Riemann surface of finite genus or even of almost finite genus
(cf. [11]) fall in this category. In addition to Theorem 5.5, we give another theorem
for $(\tilde{R})_{\mathcal{R}}^{*}-\mapsto(\tilde{R})$la whose example is also easy, simple, and handy.

THEOREM 5.9. If $R$ is a hyperbolic Riemann surface on which there is no bounded
minimal harmonic function, then $(\tilde{R})_{\mathcal{R}}^{*}-\mapsto(\tilde{R})_{\lambda 4}^{*}$ for any T\^oki covering surface

$\tilde{R}$ of $R$ .

PROOF: Contrariwise suppose there is a bounded minimal harmonic function
$\tilde{u}$ on arbitrarily chosen T\^oki covering surface $\tilde{R}$ of $R$ . Let $u\in HB(R)$ satisfies
$\tilde{u}=uo\pi$ . Since $\tilde{u}>0$ on $\tilde{R}$ , we must have $u>0$ on $R$ . Let $u\geqq v>0$ on $R$ for
some $v\in H(R)^{+}$ , and actually $v\in HB(R)^{+}$ . Then $\tilde{u}\geqq\tilde{v}:=vo\pi>0$ on $\tilde{R}$ yields
the existence of a constant $c>0$ such that $vo\pi=\tilde{v}=c\tilde{u}=cuo\pi$ on $\tilde{R}$ so that
$v=cu$ on $R$ . This proves the existence of a bounded minimal harmonic function
$u$ on $R$ , a contradiction. Thus $\tilde{R}$ does not carry any bounded minimal harmonic
function and, by Theorem 5.8,

(5.10) $hm_{(\tilde{R})_{\dot{\lambda}4}}(\{\xi\})=0$

for every $\xi\in\gamma_{\mathcal{M}}$ $:=(\tilde{R})_{\mathcal{M}}^{*}\backslash \tilde{R}$. Recall that $\gamma_{\mathcal{R}}$

$:=(\tilde{R})_{\mathcal{R}}^{*}\backslash \tilde{R}$ contains a point
$\zeta_{0}$ with $hm_{(R^{-})_{R}^{*}}(\{\zeta_{0}\})=1$ (cf. (5.6)). If there exists a continuous extention
$I^{*}$ : $(\tilde{R})_{\mathcal{R}}^{*}arrow(\tilde{R})_{\mathcal{M}}^{*}$ of the identity $I$ : $\tilde{R}arrow\tilde{R}$ , then, on setting $I^{*}(\zeta_{0})=:\xi_{0}\in\gamma_{\mathcal{M}}$ ,
(2.5) implies that $hm_{(\tilde{R})_{\lambda 4}^{*}}(\{\xi_{0}\})=$ hm$(\tilde{R})_{A4}^{*}(I^{*}(\{\zeta_{0}\}))>0$ , contradicting (5.10) and
thus the relation $(\tilde{R})_{\mathcal{R}}^{*}-\prec(\tilde{R})_{\Lambda t}^{*}$ is established. $\square$

Although we have finished our main object of this paper to prove (4.3) or equiv-
alently (4.6), to get better understanding for the compactification theory, we add
here one more item on Kuramochi compactifications $(\tilde{R})_{\mathcal{K}}^{*}$ of T\^oki covering sur-
faces $\tilde{R}$ . We will see that $(\tilde{R})_{\mathcal{K}}^{*}$ is considerably small if $R$ is not too complicated
in some sense. From now on we consider only, what we call special, T\^oki covering
surfaces. In addition to the defining conditions (a) and (b) in this section for T\^oki

covering surfaces we add one more condition:

(c) the projection $\mathcal{B}=\pi(\tilde{\mathcal{B}})$ in $R$ of the set $\tilde{B}$ of branch points in $\tilde{R}$ is isolated
in $R$ .

If a covering surface $(\tilde{R}, R, \pi)$ satisfies three conditions (a), (b), and (c), then we
say $\tilde{R}$ , or more precisely, $(\tilde{R}, R, \pi)$ is a special T\^oki covering surface of $R$ . Either
in [13] or in [9] the proof for Theorem 5.2 is valid not only for plain $T\tilde{o}ki$ covering
surfaces but also, in reality, for special ones. Actually T\^oki covering surfaces con-
structed in [13] and [9] were special ones. Thus we have the existence result: there
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always exists at least one special T\^oki covering surface $\tilde{R}$ of any open Riemann
surface $R$ . Hereafter we always assume that T\^oki covering surfaces $\tilde{R}$ are special.
A Riemann surface $R$ is said to be regular if $R\not\in \mathcal{O}_{G}$ , i.e., $R$ carries the Green
kernel $G(\cdot,$ $\cdot)$ , and

(5.11) $\lim_{zarrow\infty_{R}}G(z, a)=0$ ,

where $\infty_{R}$ is the Alexandroff point of $R$ and $a$ is an arbitrary reference point in $R$ .
The condition (5.11) is equivalent to the following: the set $\{z\in R:G(z, a)>\lambda\}$

is relatively copmpact in $R$ for every $\lambda>0$ .

THEOREM 5.12. Any special T\^oki covering surface $\tilde{R}$ of any regular Riemann
surface $R$ is again regular.

PROOF: Let $\tilde{G}(\tilde{z},\tilde{w})$ (resp. $G(z,$ $w)$ ) be the Green kernel on $\tilde{R}$ (resp. $R$) and
take an $\tilde{a}\in\tilde{R}$ arbitrarily fixed with $a=\pi(\tilde{a})\in R$ . We are to prove that
$\lim_{zarrow\infty_{R^{-}}}\tilde{G}(\tilde{z},\tilde{a})=0$ , which we do by contradiction. Thus assume contrarily the
existence of a sequence $(\tilde{b}_{m})_{m\in N}$ in $\tilde{R}$ with $\tilde{b}_{m}arrow\infty_{\tilde{R}}(marrow\infty)$ and

(5.13) $\lim_{marrow\infty}\tilde{G}(\tilde{b}_{m},\tilde{a})=:\epsilon>0$ .

Since $\tilde{G}(\tilde{z},\tilde{w})\leqq G(\pi(\tilde{z}), \pi(\tilde{w}))$ on $\tilde{R}\cross\tilde{R}$ , we have $\tilde{G}(\tilde{b}_{m},\tilde{a})\leqq G(\pi(\tilde{b}_{m}), a)$ . Let
$b_{m}$ $:=\pi(\tilde{b}_{m})(m\in \mathbb{N})$ . By (5.13), $\lim\inf_{marrow\infty}G(b_{m}, a)\geqq\tilde{G}(\tilde{z}_{m},\tilde{a})=\epsilon>0$ . By
the regularity of $R$ , by choosing a subsequence if necessary, we can assume that
$\lim_{marrow\infty}b_{m}=c\in R$ . We can assume that $c\neq a$ by moving $a$ a little if necessary.
By virtue of the condition (c), we can find a closed neighborhood $V\subset R\backslash \{a\}$ of
$c$ as follows: $(V\backslash \{c\})\cap \mathcal{B}=\emptyset$ . Let $\pi^{-1}(V)=\bigcup_{n\in N}\tilde{V}_{n}$ and we can further take
$V$ small enough so as to make each connected component $V$ of $\pi^{-1}(V)$ compact
for each $n\in \mathbb{N}$ . Let $\pi^{-1}(c)\cap\tilde{V}_{n}=\{\tilde{c}_{n}\}$ so that $\pi^{-1}(c)=\{\tilde{c}_{n} : n\in \mathbb{N}\}$ . Then
$(V \backslash \{c_{n}\})\cap\tilde{\mathcal{B}}=\emptyset$ for every $n\in \mathbb{N}$ . Let $k_{n}=k_{n}(\tilde{V}_{n};\tilde{R}\backslash \{\tilde{a}\})$ be the Harnack
constant for the compact set $V_{n}$ relative to the region $\tilde{R}\backslash \{\tilde{a}\}$ . We can assume
that $k;= \sup\{k_{n} : n\in N\}\in(1, , +\infty)$ . Once more, by choosing a subsequence
of $(b_{m})_{m\in N}$ if necessary, we can assume that $(b_{m})_{m\in N}\subset V$ and let $\tilde{b}_{m}\in\tilde{V}_{n(m)}$ for
every $m\in \mathbb{N}$ . Comparing two functions $\tilde{w}\mapsto\sum_{n=1}^{N}\tilde{G}(\tilde{c}_{n},\tilde{w})$ for any fixed $N\in N$

and $\tilde{w}\mapsto G(c, \pi(\tilde{w}))$ , we have

$\sum_{n-1}^{\infty}\tilde{G}(\tilde{c}_{n},\tilde{w})\leqq G(c, \pi(\tilde{w}))$ $(\tilde{w}\in\tilde{R})$ .

Then we have

$\sum_{n-1}^{\infty}\tilde{G}(\tilde{c}_{n},\tilde{a})\leqq G(c, a)<+\infty$
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so that we infer $\tilde{G}(\tilde{c}_{n},\tilde{a})arrow 0$ as $narrow\infty$ and in particular

(5.14) $\lim_{marrow\infty}\tilde{G}(\tilde{c}_{n(m)},\tilde{a})=0$ .

By virtue of
$\tilde{G}(\tilde{b}_{n},\tilde{a})\leqq k_{m}\tilde{G}(\tilde{c}_{n(m)},\tilde{a})\leqq k\tilde{G}(\tilde{c}_{n(m)},\tilde{a})$ ,

we arrive, by (5.13) and (5.14), at a contradiction:

$0< \epsilon=\lim_{marrow}\tilde{G}(\tilde{b}_{m},\tilde{a})\leqq k\cdot\lim marrow$ oo$\tilde{G}(\tilde{c}_{n(m)},\tilde{a})=0$ ,

and we are done. 口

THEOREM 5.15. The Kummochi compactification $(\tilde{R})_{\mathcal{K}}^{*}$ of any special T\^oki cov-
emng surface $\tilde{R}$ of a regular Riemann surface $R$ is $a$ one point compactification of

$\tilde{R}$ so that

(5.16) $(\tilde{R})_{\mathcal{K}}^{*}=(\tilde{R})_{S}^{*}=(\tilde{R})_{A}^{*}$.

PROOF: We consider the subregion $W$ of $\tilde{R}$ obtained from $\tilde{R}$ by removing a
closed parametric disc $K$ . We denote by $\beta$ the relative boundary of $W$ , a circle,
and by $\gamma$

$:=(\tilde{R})_{\mathcal{K}}^{*}\backslash \tilde{R}$ so that $W$ is bounded by $\beta$ and $\gamma$ . We only have to show
that $\gamma$ consists of a single point. As the table (4.2) shows, $\overline{W}=W\cup(\beta\cup\gamma)$ , the
closure of $W$ in $(\tilde{R})_{\mathcal{K}}^{*}$ , lies above $(\tilde{R})_{\mathcal{A}}^{*}\backslash K=(\tilde{R}\backslash K)\cup\{\infty\}$ , where $\infty=\infty_{R^{-}}$ is
the point at infinity of $\tilde{R}$ . Thus $\gamma$ lies over $\infty$ . We denote by $N(\cdot, w)$ the relative
Neumann kemel on $W$ and $G(\cdot, w)$ the relative Green kemel on $W$ so that both
of $N(\cdot, w)$ and $G(\cdot, w)$ have vanishing boundary values on $\beta$ . An $N$ fundamental
sequence $(w_{n})_{n\in N}$ in $W$ (or rather in $\tilde{R}$) is a sequence of points $w_{n}\in W$ such
that $w_{n}arrow\infty$ and $N(\cdot, w_{n})$ converges locally uniformly on $W$ (so that on $W\cup\beta$)
to a harmonic function $N(\cdot, (w_{n})_{n\in N})$ on $W$ having boundary values zero on $\beta$ .
Two $N$ fundamental sequences $(w_{n})_{n\in N}$ and $(w_{n}’)_{n\in N}$ are said to be equivalent if
$N(\cdot, (w_{n})_{n\in N})\equiv N(\cdot, (w_{n}’)_{n\in N})$ on $W$ . If we denote by $\zeta$ an equivalence class of $N$

fundamental sequences, then the totality of such $\zeta$ is $\gamma$ and $N(\cdot, \zeta)=N(\cdot, (w_{n})_{n\in N})$

if $(w_{n})_{n\in N}\in\gamma$ . This is the procedure of constmcting $(\tilde{R})_{\mathcal{K}}^{*}$ by the completion of
$\tilde{R}$ with respect to the metric determined by the Neumann kernel. Thus we only
have to show that $(N(\cdot, w_{n}))_{n\in N}$ converges to a fixed harmonic function on $W$ for
any sequence $(w_{n})_{n\in N}$ in $W$ converging to $\infty=\infty_{R^{-}}$ in $(\tilde{R})_{A}^{*}$ . Let $HD(W;\partial W):=$

$\{u\in HD(W)\cap C(W\cup\beta) : u|\beta=0\}$ . Then $HD(W;\partial W)$ is a Hilbert space under
the inner product $D(u, v;W)$ $:= \int_{W}du\wedge*dv$ for $u$ and $v$ in $HD(W;\partial W)$ . The
Hilbert space $HD(W;\partial W)$ has a reproducing kernel $B(z, w)$ , usually called the
(harmonic) Bergman kernel on $W$ , and it is seen that

(5.17) $B(z, w)=N(z, w)-G(z, w)$ .
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Since $\tilde{R}$ is regular, we can ascertain that $W$ is also regular. We see that $HD(W;\partial W)$

is linearly isomorphic to $HD(\tilde{R})$ by the correspondence $urightarrow v$ with $u=v$ on
the Royden harmonic boundary of $\delta$ of $\tilde{R}$ . By Theorem 5.4, $HD(\tilde{R})=\mathbb{R}$ or
$\dim HD(\tilde{R})=1$ . Then $\dim HD(W;\partial W)=1$ so that $HD(W, \partial W)=\{cw|c\in \mathbb{R}\}$ ,
where $w\in HD(W;\partial W)$ with $w=1$ on the Royden harmonic boundary $\delta$

of $\tilde{R}$ . Suppose $(w_{n})_{n\in N}$ is any $N$ fundamental sequence in $W$ . Observe that
$G(\cdot, w_{n})arrow 0(narrow\infty)$ in view of the regularity of $\tilde{R}$ . Thus (5.17) assures that

(5.18) $\lim_{narrow\infty}B(\cdot, w_{n})=\lim_{narrow\infty}N(\cdot, w_{n})$

locally uniformly on $W\cup\beta$ . Since $B(\cdot, w_{n})\in HD(W;\partial W)=\mathbb{R}w$, we see that
$B(\cdot, w_{n})=c_{n}w$ for some $c_{n}\in \mathbb{N}$ . From (5.18), it follows the existence of a $c\in \mathbb{R}$

such that $\lim_{narrow\infty}c_{n}=c$ and $\lim_{narrow\infty}B(\cdot, w_{n})=cw$ . Hence (5.18) shows that
$N(\cdot, w_{n})arrow cw$ uniformly in the vicinity of $\beta$ . Thus

$c \int_{\beta}*dw=\int_{\beta}*d(cw)=\lim_{narrow\infty}\int_{\beta}*dB(\cdot, w_{n})=\lim_{narrow\infty}\int_{\beta}*dN(\cdot, w_{n})$ .

In view of the Stokes formula

$0= \int_{\beta+\alpha_{n}+\delta}*dN(\cdot, w_{n})=\int_{\beta}*dN(\cdot, w_{n})+\int_{\alpha_{n}}*dN(\cdot, w_{n})+\int_{\delta}*dN(\cdot, w_{n})$ ,

where $\alpha_{n}$ is a small circle centered at $w_{n}$ . Since $*dN(\cdot, w_{n})=0$ on $\delta$ , and
$\int_{\alpha_{n}}*dN(\cdot, w_{n})=1$ , we deduce $\int_{\beta}*dN(\cdot, w_{n})=-1$ . Hence $c=-1/ \int_{\beta}*dw$ so
that

$\lim_{narrow\infty}N(\cdot, w_{n})=-(\int_{\beta}*dw)^{-1}w$

for any $N$ fundamental sequence $(w_{n})_{n\in N}$ so that $\gamma$ is a singleton. $\square$

As we have already remarked, an example of $R$ for which $R_{\mathcal{R}}^{*}-+\div R_{\mathcal{M}}^{*}$ also works as
an example for $R_{\mathcal{K}}^{*}arrow R_{\mathcal{M}}^{*}$ . However, (5.16) can be used to construct an example
showing $R_{\mathcal{K}}^{*}-\mapsto R_{\Lambda t}^{*}$ directly. Let $R$ be an open Riemann surface satisfying the
following two conditions: $R$ is regular; $R\not\in \mathcal{O}_{HB}$ . Concrete examples of such
$R$ as above are plenty; the simplest one is the unit disc D. Then the special
T\^oki covering surface $\tilde{R}$ of $R$ is the required example: $(\tilde{R})_{\mathcal{K}}^{*}arrow(\tilde{R})_{\mathcal{M}}^{*}$ . In fact,
Theorem 5.15 shows that $(\tilde{R})_{\mathcal{K}}^{*}=\tilde{R}\cup\{\infty\}$. Since $\tilde{R}\not\in \mathcal{O}_{HB}$ along with $R\not\in \mathcal{O}_{HB}$ ,
the Martin representation theorem assures that the Martin boundary $\gamma_{\mathcal{M}}$ of $\tilde{R}$

cannot be a singleton. Thus $\tilde{R}\cup\{\infty\}$ cannot lie over $\tilde{R}\cup\gamma_{\mathcal{M}}$ since there is no
surjective mapping of $\{\infty\}$ , a one point set, onto $\gamma_{\Lambda 4}$ , a multiple points set. Now
every relation in the table (4.2) has at least one each publicized source (including
our present paper) assuring its validity as we aimed for. Nevertheless we still
strongly feel it would be extremely desirable to have another proof for the relation

$(\tilde{R})_{\Lambda t}^{*}-arrow(\tilde{R})_{\mathcal{K}}^{*}$
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other than ingenious but formidably difficult one given by Kuramoci himself.
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