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1. INTRODUCTION

In this article, we announce some results in the paper [4].
We investigate oscillatory integrals, that is, integrals of the form

(1.1) $I( \tau)=\int_{\mathbb{R}^{n}}e^{i\tau f(x)}\varphi(x)\chi(x)dx$ ,

for large values of the real parameter $\tau$ , where $f,$ $\varphi,$ $\chi$ are real-valued smooth func-
tions defined on $\mathbb{R}^{n}$ and $\chi$ is a cut-off function with small support which identically
equals one in a neighborhood of the origin in $\mathbb{R}^{n}$ . Here $f$ and $\varphi\chi$ are called the
phase and the amplitude, respectively.

By the principle of stationary phase, the main contribution in the behavior of
the integral (1.1) as $\tauarrow+\infty$ is given by the local properties of the phase around
its critical points. We assume that the phase has a critical point at the origin,
i.e., $\nabla f(O)=0$ . The following deep result has been obtained by using Hironaka‘s
resolution of singularities [17] (cf. [21]). If $f$ is real analytic on a neighborhood of
the origin and the support of $\chi$ is contained in a sufficiently small neighborhood of
the origin, then the integral $I(\tau)$ has an asymptotic expansion of the form

(1.2) $I( \tau)\sim e^{i\tau f(0)}\sum_{\alpha}\sum_{k=1}^{n}C_{\alpha k}\tau^{\alpha}(\log\tau)^{k-1}$ as $\tauarrow+\infty$ ,

where $\alpha$ runs through a finite number of arithmetic progressions, not depending
on $\varphi$ and $\chi$ , which consist of negative rational numbers. Our interest focuses the
largest $\alpha$ occurring in (1.2). Let $S(f, \varphi)$ be the set of pairs $(\alpha, k)$ such that for each
neighborhood of the origin in $\mathbb{R}^{n}$ , there exists a cut-off function $\chi$ with support in this
neighborhood for which $C_{\alpha k}\neq 0$ in the asymptotic expansion (1.2). We denote by
$(\beta(f, \varphi), \eta(f, \varphi))$ the maximum of the set $S(f, \varphi)$ under the lexicographic ordering,
i.e. $\beta(f, \varphi)$ is the maximum of values $\alpha$ for which we can find $k$ so that $(\alpha, k)$ belongs
to $S(f, \varphi);\eta(f, \varphi)$ is the maximum of integers $k$ satisfying that $(\beta(f, \varphi), k)$ belongs
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to $S(f, \varphi)$ . We call $\beta(f, \varphi)$ oscillation index of $(f, \varphi)$ and $\eta(f, \varphi)$ its multiplicity.
(This multiplicity, less one, is equal to the corresponding multiplicity in [1],p.183.)

$\mathbb{R}om$ various points of view, the following is an interesting problem: What kind
of information of the phase and the amplitude determines (or estimates) the oscil-
lation index $\beta(f, \varphi)$ and its multiplicity $\eta(f, \varphi)$ ? There have been many interesting
studies concerning this problems ([26],[7],[23],[8],[6],[14],[15],[16], etc.). In particu-
lar, the significant work of Varchenko [26] shows the following by using the theory
of toric varieties: By the geometry of the Newton polyhedron of $f$ , the oscillation
index can be estimated and, moreover, this index and its multiplicity can be exactly
determined when $\varphi(0)\neq 0$ , under a certain nondegenerate condition of the phase
(see Theorem 2.1 in Section 2). Since his study, the investigation of the behavior
of oscillatory integrals has been more closely linked with the theory of singularities.
Refer to the excellent expositions [1],[20] for studies in this direction. Besides [26],
recent works of Greenblatt [12],[13],[14],[15],[16] are also interesting. He explores a
certain resolution of singularities, which is obtained from an elementary method,
and investigates the asymptotic behavior of $I(\tau)$ . His analysis is also available for a
wide class of phases without the above nondegenerate condition.

We generalize and improve the above results of Varchenko [26]. To be more precise,
we are especially interested in the behavior of the integral (1.1) as $\tauarrow+\infty$ when
$\varphi$ has a zero at a critical point of the phase. Indeed, under some assumptions, we
obtain more accurate results by using the Newton polyhedra of not only the phase
but also the amplitude. Closely related issues have been investigated by Arnold,
Gusein-Zade and Varchenko [1] and Pramanik and Yang [22], and they obtained
similar results to ours. From the point of view of our investigations, their results
will be reviewed in Remark 2.8 in Section 2 and Section 6.4. In our results, delicate
geometrical conditions of the Newton polyhedra of the phase and the amplitude
affect the behavior of oscillatory integrals. There exist some faces of the Newton
polyhedron of the amplitude, which play a crucial role in determining the oscillation
index and its multiplicity. Furthermore, in order to determine the oscillation index
in general, we need not only geometrical properties of their Newton polyhedra but
also information about the coefficients of the terms, corresponding to the above
faces, in the Taylor series of the amplitude.

It is known (see, for instance, [18],[20],[1], and Section 5 in this paper) that the
asymptotic analysis of oscillatory integral (1.1) can be reduced to an investigation
of the poles of the functions $Z_{+}(s)$ and $Z_{-}(s)$ (see (4.1) below), which are similar to
the local zeta function

(1.3) $Z(s)= \int_{\mathbb{R}^{n}}|f(x)|^{s}\varphi(x)\chi(x)dx$,

where $f,$ $\varphi,$ $\chi$ are the same as in (1.1) with $f(O)=0$. The substantial analysis in
this paper is to investigate the properties of poles of the local zeta function $Z(s)$
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and the functions $Z_{\pm}(s)$ by using the Newton polyhedra of the functions $f$ and $\varphi$ .
See Section 4 for more details.

Many problems in analysis, including partial differential equations, mathematical
physics, harmonic analysis and probability theory, lead to the need to study the be-
havior of oscillatory integrals of the form (1.1) as $\tauarrow+\infty$ . We explain the original
motivation for our investigation. In the function theory of several complex variables,
it is an important problem to understand boundary behavior of the Bergman ker-
nel for pseudoconvex domains. In [19], the special case of domains of finite type is
considered and the behavior as $\tauarrow+\infty$ of the Laplace integral

$\tilde{I}(\tau)=\int_{\mathbb{R}^{n}}e^{-\tau f(x)}\varphi(x)dx$

plays an important role in boundary behavior of the above kernel. Here $f,\varphi$ are $C^{\infty}$

functions satisfying certain conditions. The computation of asymptotic expansion
of the above kernel in [19] requires precise analysis of $\tilde{I}(\tau)$ when $\varphi$ has a zero at
the critical point of $f$ . Our analysis in this paper can be applied to the case of the
above Laplace integrals. See also [2],[3].

Notation and Symbols.
$\Phi$ We denote by $Z_{+},$ $\mathbb{Q}_{+},$ $\mathbb{R}_{+}$ the subsets consisting of all nonnegative numbers

in $Z,$ $\mathbb{Q},$ $\mathbb{R}$ , respectively.
$\otimes$ We use the multi-index as follows. For $x=(x_{1}, \ldots, x_{n}),$ $y=(y_{1}, \ldots, y_{n})\in$

$\mathbb{R}^{n},$ $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{R}_{+}^{n}$ , define

$|x|=\sqrt{|x_{1}|^{2}++|x_{n}|^{2}}$, $\langle x,$ $y\rangle=x_{1}y_{1}+\cdots+x_{n}y_{n}$ ,
$x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ , $\{\alpha\}=\alpha_{1}+\cdots+\alpha_{n}$ .

$\otimes$ For $A,$ $B\subset \mathbb{R}^{n}$ and $c\in \mathbb{R}$ , we set

$A+B=\{a+b\in \mathbb{R}^{n};a\in A$ and $b\in B\}$ , $c\cdot A=\{ca\in \mathbb{R}^{n};a\in A\}$ .
$0$ We express by 1 the vector $($ 1, $\ldots,$

$1)$ or the set $\{(1, \ldots, 1)\}$ .
$e$ For a $C^{\infty}$ function $f$ , we denote by $Supp(f)$ the support of $f$ , i.e., $Supp(f)=$

$\overline{\{x\in \mathbb{R}^{n};f(x)\neq 0\}}$.

2. DEFINITIONS AND MAIN RESULTS

2.1. Newton polyhedra. Let us explain some necessary notions to state our main
theorems.

Let $f$ be a real-valued $C^{\infty}$ function defined on a neighborhood of the origin in $\mathbb{R}^{n}$ ,
which has the Taylor series $\sum_{\alpha\in \mathbb{Z}_{+}^{n}}c_{\alpha}x^{\alpha}$ at the origin. Then, the Taylor support of
$f$ is the set $S_{f}=\{\alpha\in Z_{+}^{n};c_{\alpha}\neq 0\}$ and the Newton polyhedron of $f$ is the integral
polyhedron:

$\Gamma_{+}(f)=$ the convex hull of the set $\cup\{\alpha+\mathbb{R}_{+}^{n};\alpha\in S_{f}\}$ in $\mathbb{R}_{+}^{n}$
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(i.e., the intersection of all convex sets which contain $\cup\{\alpha+\mathbb{R}_{+}^{n};\alpha\in S_{f}\}$). The
union of the compact faces of the Newton polyhedron $\Gamma_{+}(f)$ is called the Newton
diagmm $\Gamma(f)$ of $f$ , while the topological boundary of $\Gamma_{+}(f)$ is denoted by $\partial\Gamma_{+}(f)$ .
The principal part of $f$ is defined by $f_{0}(x)= \sum_{\alpha\in\Gamma(f)\cap Z_{+}^{n}}c_{\alpha}x^{\alpha}$. For a compact subset
$\gamma\subset\partial\Gamma_{+}(f)$ , let $f_{\gamma}(x)= \sum_{\alpha\in\gamma\cap Z_{+}}{}_{n}C_{\alpha}X^{\alpha}$ . $f$ is said to be nondegenemte over $\mathbb{R}$ with
respect to the Newton polyhedron $\Gamma_{+}(f)$ if for every compact face $\gamma\subset\Gamma(f)$ , the
polynomial $f_{\gamma}$ satisfies

$\nabla f_{\gamma}=(\frac{\partial f_{\gamma}}{\partial x_{1}},$

$\ldots,$
$\frac{\partial f_{\gamma}}{\partial x_{n}})\neq(0, \ldots, 0)$ on the set $\{x\in \mathbb{R}^{n};x_{1}\cdots x_{n}\neq 0\}$ .

$f$ is said to be convenient if the Newton diagram $\Gamma(f)$ intersects all the coordinate
axes.

Let $f,$ $\varphi$ be real-valued $C^{\infty}$ functions defined on a neighborhood of the origin in
$\mathbb{R}^{n}$ and assume that $\Gamma(f)$ and $\Gamma(\varphi)$ are nonempty. We define the Newton distance
of $(f, \varphi)$ by

(2.1) $d(f, \varphi)=\min\{d>0;d\cdot(\Gamma_{+}(\varphi)+1)\subset\Gamma_{+}(f)\}$ .
It is easy to see $d(f, \varphi)=\max\{d>0;\partial\Gamma_{+}(f)\cap d\cdot(\Gamma_{+}(\varphi)+1)\neq\emptyset\}$. The number
$d(f, \varphi)$ corresponds to what is called the coefficient of inscription of $\Gamma_{+}(\varphi)$ in $\Gamma_{+}(f)$

in [1], $p254$ . (Their definition in [1] must be slightly modified.) Let $\Gamma(\varphi, f)$ be the
subset in $\mathbb{R}^{n}$ defined by

$\Gamma(\varphi, f)+1=(\frac{1}{d(f,\varphi)}\cdot\partial\Gamma_{+}(f))$ 口 $(\Gamma_{+}(\varphi)+1)$ .

In the above definition, $\partial\Gamma_{+}(\varphi)$ can be used instead of $\Gamma_{+}(\varphi)$ . Note that $\Gamma(\varphi, f)$ is
some union of faces of $\Gamma_{+}(\varphi)$ .

Let $\Gamma^{(k)}$ be the union of k-dimensional faces of $\Gamma_{+}(f)$ . Then $\Gamma_{+}(f)$ is stratffied as
$\Gamma^{(0)}\subset\Gamma^{(1)}\subset.$ . . $\subset\Gamma^{(n-1)}(=\partial\Gamma_{+}(f))\subset\Gamma^{(n)}(=\Gamma_{+}(f))$. Let I $(k)=\Gamma^{(k)}\backslash \Gamma^{(k-1)}$ for
$k=1,$ $\ldots,$

$n$ and $\tilde{\Gamma}^{(0)}=\Gamma^{(0)}$ . A map $\rho_{f}$ : $\Gamma_{+}(f)arrow\{0,1, \ldots, n\}$ is defined as $\rho_{f}(\alpha)=$

$k$ if $\alpha\in\tilde{\Gamma}^{(n-k)}$ . In other words, $\rho_{f}(\alpha)$ is the codimension of the face of $\Gamma_{+}(f)$ , whose
relative interior contains the point $\alpha$ . We define the Newton multiplicity of $(f, \varphi)$ by

$m(f, \varphi)=\max\{\rho_{f}(d(f, \varphi)(\alpha+1));\alpha\in\Gamma(\varphi, f)\}$.
Let $\Gamma_{0}$ be the subset of $\Gamma(\varphi, f)$ defined by

$\Gamma_{0}=\{\alpha\in\Gamma(\varphi, f);\rho_{f}(d(f, \varphi)(\alpha+1))=m(f, \varphi)\}$ ,

which is called the essential set on $\Gamma(\varphi, f)$ . Note that $\Gamma_{0}$ is a disjoint union of faces
of $\Gamma_{+}(\varphi)$ .

Consider the case $\varphi(0)\neq 0$ . Then $\Gamma_{+}(\varphi)=\mathbb{R}_{+}^{n}$ . In this case, $d(f, \varphi)$ and $m(f, \varphi)$

are denoted by $d_{f}$ and $m_{f}$ , respectively. (Note that $d(f,$ $\varphi)\leq d_{f}$ for general $\varphi.$ ) It is
easy to see that the point $q=(d_{f}, \ldots, d_{f})$ is the intersection of the line $\alpha_{1}=\cdots=\alpha_{n}$

in $\mathbb{R}^{n}$ and $\partial\Gamma_{+}(f)$ , and that $m_{f}=\rho_{f}(q)$ . $\Gamma(\varphi, f)=\Gamma_{0}=\{0\}$ . More generally, in the
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case that $\Gamma_{+}(\varphi)=\{p\}+\mathbb{R}_{+}^{n}$ with $p\in Z_{+}^{n}$ , the geometrical meanings of the quantities
$d(f, \varphi)$ and $m(f, \varphi)$ will be considered in Proposition 4.2 below.
2.2. Results on oscillatory integrals. Let us explain our results relating to the
behavior of the oscillatory integral $I(\tau)$ in (1.1) as $\tauarrow+\infty$ .

Throughout this subsection, $f,$ $\varphi,$ $\chi$ satisfy the following conditions: Let $U$ be an
open neighborhood of the origin in $\mathbb{R}^{n}$ .

(A) $f$ : $Uarrow \mathbb{R}$ is a real analytic function satisfying that $f(O)=0,$ $|\nabla f(0)|=0$

and $\Gamma(f)\neq\emptyset$ ;
(B) $\varphi$ : $Uarrow \mathbb{R}$ is a $C^{\infty}$ function satisfying $\Gamma(\varphi)\neq\emptyset$ ;
(C) $\chi$ : $\mathbb{R}^{n}arrow \mathbb{R}_{+}$ is a $C^{\infty}$ function which identically equals one in some neigh-

borhood of the origin and has a small support which is contained in $U$ .
As mentioned in the Introduction, it is known that the oscillatory integral (1.1)

has an asymptotic expansion of the form (1.2). Before stating our results, we recall
a part of famous results due to Varchenko in [26]. In our language, they are stated
as follows.
Theorem 2.1 (Varchenko [26]). Suppose that $f$ is nondegenemte over $\mathbb{R}$ with respect
to its Newton polyhedron. Then

(i) $\beta(f, \varphi)\leq-1/d_{f}$ for any $\varphi$ ;
(ii) If $\varphi(0)\neq 0$ and $d_{f}>1$ , then $\beta(f, \varphi)=-1/d_{f}$ and $\eta(f, \varphi)=m_{f}$ ;
(iii) The progression $\{\alpha\}$ in (1.2) belongs to finitely many arithmetic progres-

sions, which are obtained by using the theory of toric varieties based on the
geometry of the Newton polyhedron $\Gamma_{+}(f)$ . (See Remark 2.6, below.)

Now, let us explain our results. First, we investigate more precise situation in the
estimate in the part (i) of Theorem 2.1. Indeed, when $\varphi$ has a zero at the origin,
the oscillation index $\beta(f, \varphi)$ can be more accurately estimated by using the Newton
distance $d(f, \varphi)$ , which is called “the coefficient of inscription of $\Gamma_{+}(\varphi)$ in $\Gamma_{+}(f)$

” in
[1].

Theorem 2.2. Suppose that (i) $f$ is nondegenemte over $\mathbb{R}$ with respect to its Newton
polyhedron and (ii) at least one of the following conditions is satisfied:

(a) $f$ is convenient;
(b) $\varphi$ is convenient;
(c) $\varphi$ is real analytic on $U$ ;
(d) $\varphi$ is expressed as $\varphi(x)=x^{p}\tilde{\varphi}(x)$ on $U$ , where $p\in Z_{+}^{n}$ and $\tilde{\varphi}$ is a $C^{\infty}$ function

defined on $U$ with $\tilde{\varphi}(0)\neq 0$ .
Then, we have $\beta(f, \varphi)\leq-1/d(f, \varphi)$ .
Remark 2.3. A more precise estimate for $I(\tau)$ is obtained as follows: If the support
of $\chi$ is contained in a sufficiently small neighborhood of the origin, then there exists
a positive constant $C$ independent of $\tau$ such that

$|I(\tau)|\leq C\tau^{-1/d(f,\varphi)}(\log\tau)^{A-1}$ for $\tau\geq 1$ ,
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where

$A:=\{\begin{array}{l}m(f, \varphi)\min\{m(f, \varphi)+1, n\}\end{array}$

Remark 2.4. Let us consider the above theorem under the assumptions (i), $(ii)-(d)$

without the condition: $\tilde{\varphi}(0)\neq 0$ . Then the estimate $\beta(f, \varphi)\leq-1/d(f, \varphi)$ does
not always hold. In fact, consider the two-dimensional example: $f(x_{1}, x_{2})=x_{1}^{2}$ ,
$\varphi(x_{1}, x_{2})=x_{1}^{2}(x_{1}^{2}+e^{-1/x_{2}^{2}})$ . The proof of Theorem 2.2, however, implies that the
estimate $\beta(f, \varphi)\leq-1/d(f, x^{p})$ holds under the above assumptions. This assertion
with $p=(0, \ldots, 0)$ shows the assertion (i) in Theorem 2.1.

Vassiliev [25] obtained a similar result to that in the case of (d).

Remark 2.5. The condition (d) implies $\Gamma_{+}(\varphi)=\{p\}+\mathbb{R}_{+}^{n}$ . When $\varphi$ is a $C^{\infty}$ function,
however, the converse is not true in general. We give an example in Section 6.2,
which shows that the assumption (d) cannot be replaced by the condition: $\Gamma(\varphi)=$

$\{p\}+\mathbb{R}_{+}^{n}$ in Theorem 2.2.

Remark 2.6. From the proof of the above theorem, we can see that under the same
condition, the progression $\{\alpha\}$ in (1.2) is contained in the set

$\{-\frac{\tilde{l}(a)+\{a\rangle+\nu}{l(a)};a\in\Sigma^{(1)}^{\sim},$ $\nu\in Z_{+}\}\cup(-\mathbb{N})$ ,

where the symbols $l(a),\tilde{l}(a)$ and $\Sigma^{(1)}^{\sim}$ are as in Theorem 4.7, below. This explicitly
shows the assertion (iii) in Theorem 2.1.

Next, let us give an analogous result to the part (ii) in Theorem 2.1, due to
Varchenko. Indeed, the following theorem deals with the case that the equation
$\beta(f, \varphi)=-1/d(f, \varphi)$ holds.

Theorem 2.7. Suppose that (i) $f$ is nondegenemte over $\mathbb{R}$ with respect to its Newton
polyhedron, (ii) at least one of the following two conditions is satisfied:

(a) $d(f, \varphi)>1$ ;
(b) $f$ is nonnegative or nonpositive on $U$ ,

and (iii) at least one of the following two conditions is satisfied:
(c) $\varphi$ is expressed as $\varphi(x)=x^{p}\tilde{\varphi}(x)$ on $U_{f}$ where every component of $p\in Z_{+}^{n}$ is

even and $\tilde{\varphi}$ is a $C^{\infty}$ function defined on $U$ with $\tilde{\varphi}(0)\neq 0$ ;
(d) $f$ is convenient and $\varphi_{\Gamma_{0}}$ is nonnegative or nonpositive on $U$ .

Then the equations $\beta(f, \varphi)=-1/d(f, \varphi)$ and $\eta(f, \varphi)=m(f, \varphi)$ hold.

Remark 2.8. Considering the assumptions: (i), $(ii)-(a)$ , (iii)-(c) with $p=(0, \ldots, 0)$

in the above theorem, we see the assertion (ii) in Theorem 2.1.
Pramanik and Yang [22] obtained a similar result in the case that the dimension

is two and $\varphi(x)=|g(x)|^{\epsilon}$ where $g$ is real analytic and $\epsilon$ is positive. Their result
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in Theorem 3.1 (a) does not need any additional assumptions. We explain this
reason roughly. They use the weighted Newton distance, whose definition is different
from our Newton distance. The definition of their distance is more intrinsic and is
based on a good choice of coordinate system, which induces a clear resolution of
singularity. Moreover, the nonnegativity of $\varphi$ implies the positivity of the coefficient
of the expected leading term of the asymptotic expansion (1.2). On the other hand,
in our case, the corresponding coefficient possibly vanishes without the assumption
(c) or (d). See Sections 6.1 and 6.3.

Remark 2.9. If $\varphi(0)=0$ and $\varphi$ takes the local minimal (resp. the local maximal)
at the origin, then $\varphi_{\Gamma_{0}}$ is nonnegative (resp. nonpositive) on some neighborhood of
the origin.

Remark 2.10. It is easy to show that Theorem 2.7 can be rewritten in a slightly
stronger form by replacing the condition (c) by the following (c’):

$(c’)\varphi$ is expressed as $\varphi(x)=\sum_{j=1}^{l}x^{p_{j}}\tilde{\varphi}_{j}(x)$ on $U$ , where $p_{j}\in Z_{+}^{n}$ and $\tilde{\varphi}_{j}\in$

$C^{\infty}(U)$ for all $j$ satisfies that if $p_{j}\in\Gamma_{0}$ , then every component of $p_{j}$ is even
and $\tilde{\varphi}_{j}(0)>0$ $(or \tilde{\varphi}_{j}(0)<0)$ for all $j$ .

We will give an example in Section 6.3, which satisfies the conditions (a), (d) but
does not satisfy the condition $(c’)$ . (Consider the case that the parameter $t$ satisfies
$0<|t|<2$ in the example.)

Remark 2.11. In the one-dimensional case, the conditions (c) and (d) are equivalent.

Lastly, let us discuss a “symmetrical” property with respect to the phase and the
amplitude. Observe the one-dimensional case. Let $f,$ $\varphi$ satisfy that $f(O)=f’(0)=$
. $=f^{(q-1)}(0)=\varphi(0)=\varphi’(0)=\cdots=\varphi^{(p-1)}(0)=0$ and $f^{(q)}(0)\varphi^{(p)}(0)\neq 0$ , where

$p,$ $q\in \mathbb{N}$ are even. Applying the computation in Chapter 8 in [24] (see also Section
6.1 in this paper), we can see that if the support of $\chi$ is sufficiently small, then

$\int_{-\infty}^{\infty}X\mathcal{T}q^{\frac{+1}{+1}}\sum_{j=0}^{\infty}C_{j}\tau^{-j/(q+1)}$ as $\tauarrow\infty$ ,

where $C_{0}$ is a nonzero constant. Note that the above expansion can be obtained for
$C^{\infty}$ functions $f$ and $\varphi$ . In particular, $\beta(xf, \varphi)=-\frac{p+1}{q+1}$ holds. Similarly, we can get
$\beta(x\varphi, f)=-\frac{q+1}{p+1}$ . Rom this observation, the following question seems interesting:
When does the equality $\beta(x^{1}f, \varphi)\beta(x^{1}\varphi, f)=1$ hold in higher dimensional case?
The following theorem is concerned with this question.

Theorem 2.12. Let $f,$ $\varphi$ be nonnegative or nonpositive real analytic functions de-
fined on U. Suppose that both $f$ and $\varphi$ are convenient and nondegenemte $over\mathbb{R}$ with
respect to their Newton polyhedm. Then we have $\beta(x^{1}f, \varphi)\beta(x^{1}\varphi, f)\geq 1$ . Moreover,
the following two conditions are equivalent:

(i) $\beta(x^{1}f, \varphi)\beta(x^{1}\varphi, f)=1$ ;

175



神本，野瀬

(ii) There exists a positive mtional number $d$ such that $\Gamma_{+}(x^{1}f)=d\cdot\Gamma_{+}(x^{1}\varphi)$ .

If the condition (i) or (ii) is satisfied, then we have $\eta(x^{1}f, \varphi)=\eta(x^{1}\varphi, f)=n$ .

3. TORIC RESOLUTION

The purpose of this section is to give the resolution of the singularities of the
critical points of some functions from the theory of toric varieties.

3.1. Cones and fans. In order to construct a toric resolution obtained from the
Newton polyhedron, we recall the definitions of important terminology: cone and
fan.

A mtional polyhedml cone $\sigma\subset \mathbb{R}^{n}$ is a cone generated by finitely many elements
of $Z^{n}$ . In other words, there are $u_{1},$ $\ldots,$

$u_{k}\in Z^{n}$ such that
$\sigma=\{\lambda_{1}u_{1}+\cdots+\lambda_{k}u_{k}\in \mathbb{R}^{n};\lambda_{1}, \ldots, \lambda_{k}\geq 0\}$.

We say that $\sigma$ is stmngly convex if $\sigma\cap(-\sigma)=\{0\}$ .
The fan is defined to be a finite collection $\Sigma$ of cones in $\mathbb{R}^{n}$ with the following

properties:
$Q$ Each $\sigma\in\Sigma$ is a strongly convex rational polyhedral cone;
$0$ If $\sigma\in\Sigma$ and $\tau$ is a face of $\sigma$ , then $\tau\in\Sigma$ ;
$0$ If $\sigma,$

$\tau\in\Sigma$ , then $\sigma\cap\tau$ is a face of each.
For a fan $\Sigma$ , the union $|\Sigma|$ $:= \bigcup_{\sigma\in\Sigma}\sigma$ is called the support of $\Sigma$ . For $k=0,1,$ $\ldots,$

$n$ ,
we denote by $\Sigma^{(k)}$ the set of k-dimensional cones in $\Sigma$ . The skeleton of a cone $\sigma\in\Sigma$

is the set of all of its primitive integer vectors (i.e., with components relatively prime
in $z_{+})$ in the edges of $\sigma$ . It is clear that the skeleton of $\sigma$ generates $\sigma$ itself. Thus,
the set of skeletons of the cones belonging to $\Sigma^{(k)}$ is also expressed by the same
symbol $\Sigma^{(k)}$ .

3.2. Simplicial subdivision. We denote by $(\mathbb{R}^{n})^{*}$ the dual space of $\mathbb{R}^{n}$ with respect
to the standard inner product. For $a=(a_{1}, \ldots, a_{n})\in(\mathbb{R}^{n})^{*}$ , define

(3.1) $l(a)= \min\{\{a, \alpha\};\alpha\in\Gamma_{+}(f)\}$

and $\gamma(a)=\{\alpha\in\Gamma_{+}(f);\{a, \alpha\rangle=l(a)\}(=\Gamma_{+}(f)\cap H(a, l(a)))$ . We introduce an
equivalence relation $\sim$ in $(\mathbb{R}^{n})^{*}$ by $a\sim a’$ if and only if $\gamma(a)=\gamma(a’)$ . For any
k-dimensional face $\gamma$ of $\Gamma_{+}(f)$ , there is an equivalence class $\gamma^{*}$ which is defined by

$\gamma^{*}=\{a\in(\mathbb{R}^{n})^{*};\gamma(a)=\gamma$ , and $a_{j}\geq 0$ for $j=1,$ $\ldots,$
$n\}$ .

It is easy to see that the closure of $\gamma^{*}$ is an $(n-k)$-dimensional strongly convex
rational polyhedral cone in $(\mathbb{R}^{n})^{*}$ . Moreover, the collection of the closures of $\gamma^{*}$

gives a fan $\Sigma_{0}$ . Note that $|\Sigma_{0}|=\mathbb{R}_{+}^{n}$ .
It is known that there exists a simplicial subdivision $\Sigma$ of $\Sigma_{0}$ , that is, $\Sigma$ is a fan

satisfying the following properties:
$0$ The fans $\Sigma_{0}$ and $\Sigma$ have the same support;
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$\Phi$ Each cone of $\Sigma$ lies in some cone of $\Sigma_{0}$ ;
$Q$ The skeleton of any cone belonging to $\Sigma$ can be completed to a base of the

lattice dual to $Z^{n}$ .

3.3. Construction of toric varieties. Fix a simplicial subdivision $\Sigma$ of $\Sigma_{0}$ . For
n-dimensional cone $\sigma\in\Sigma$ , let $a^{1}(\sigma),$

$\ldots,$
$a^{n}(\sigma)$ be the skeleton of $\sigma$ , ordered once

and for all. Here, we set the coordinates of the vector $a^{j}(\sigma)$ as
$a^{j}(\sigma)=(a_{1}^{j}(\sigma), \ldots, a_{n}^{j}(\sigma))$ .

With every such cone $\sigma$ , we associate a copy of $\mathbb{C}^{n}$ which is denoted by $\mathbb{C}^{n}(\sigma)$ . We
denote by $\pi(\sigma)$ : $\mathbb{C}^{n}(\sigma)arrow \mathbb{C}^{n}$ the map defined by $\pi(\sigma)(y_{1}, \ldots, y_{n})=(x_{1}, \ldots, x_{n})$

with

(3.2) $x_{j}=y_{1}^{a_{j}^{1}(\sigma)}\cdots y_{n^{j}}^{a^{n}(\sigma)}$ , $j=1,$ $\ldots,$
$n$ .

Let $X_{\Sigma}$ be the union of $\mathbb{C}^{n}(\sigma)$ for $\sigma$ which are glued along the images of $\pi(\sigma)$ .
Indeed, for any n-dimensional cones $\sigma,$

$\sigma’\in\Sigma$ , two copies $\mathbb{C}^{n}(\sigma)$ and $\mathbb{C}^{n}(\sigma^{l})$ can be
identified with respect to a rational mapping: $\pi^{-1}(\sigma’)\circ\pi(\sigma)$ : $\mathbb{C}^{n}(\sigma)arrow \mathbb{C}^{n}(\sigma’)$ (i.e.
$x\in \mathbb{C}^{n}(\sigma)$ and $x’\in \mathbb{C}^{n}(\sigma’)$ will coalesce if $\pi^{-1}(\sigma’)\circ\pi(\sigma)$ : $x\mapsto x’)$ . Then it is known
that

$oX_{\Sigma}$ is an n-dimensional complex algebraic manifold;
$Q$ The map $\pi$ : $X_{\Sigma}arrow \mathbb{C}^{n}$ defined on each $\mathbb{C}^{n}(\sigma)$ as $\pi(\sigma)$ : $\mathbb{C}^{n}(\sigma)arrow \mathbb{C}^{n}$ is

proper.
The manifold $X_{\Sigma}$ is called the toric variety associated with $\Sigma$ . The transition func-
tions between local maps of the manifold $X_{\Sigma}$ are real on the real part of the manifold
$X_{\Sigma}$ which will be denoted by $Y_{\Sigma}$ . The restriction of the projection $\pi$ to $Y_{\Sigma}$ is also
denoted by $\pi$ . Then we have

@ $Y_{\Sigma}$ is an n-dimensional real algebraic manifold;
$\oplus$ The map $\pi$ : $Y_{\Sigma}arrow \mathbb{R}^{n}$ defined on each $\mathbb{R}^{n}(\sigma)$ as $\pi(\sigma)$ : $\mathbb{R}^{n}(\sigma)arrow \mathbb{R}^{n}$ is

proper.

3.4. Resolution of singularities. For $I\subset\{1, \ldots, n\}$ , define the set $T_{I}$ in $\mathbb{R}^{n}$ by
(3.3) $T_{I}=\{y\in \mathbb{R}^{n};y_{j}=0$ for $j\in I,$ $y_{j}\neq 0$ for $j\not\in I\}$ .

The following proposition shows that $\pi$ : $Y_{\Sigma}arrow \mathbb{R}^{n}$ is a real resolution of the sin-
gularity of the critical point of a real analytic function satisfying the nondegenerate
property.

Proposition 3.1 ([26], Lemma 2.13, Lemma 2.15). Suppose that $f$ is a real analytic
function in a neighborhood $U$ of the origin. Then we have the following.

(i) There exists a real analytic function $f_{\sigma}$ defined on the set $\pi(\sigma)^{-1}(U)$ such
that $f_{\sigma}(O)\neq 0$ and

(3.4) $(f\circ\pi(\sigma))(y_{1}, \ldots, y_{n})=y_{1}^{l(a^{1}(\sigma))}\cdots y_{n}^{l(a^{n}(\sigma))}f_{\sigma}(y_{1}, \ldots, y_{n})$ .
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(ii) The Jacobian of the mapping $\pi(\sigma)$ is equal to

(3.5) $J_{\pi(\sigma)}(y)=\pm y_{1}^{(a^{1}(\sigma)\rangle-1}\cdots y_{n}^{\langle a^{n}(\sigma)\rangle-1}$ .
(iii) The set of the points in $\mathbb{R}^{n}$ in which $\pi(\sigma)$ is not an isomorphism is a union

of coordinate planes.
Moreover, if $f$ is nondegenemte over $\mathbb{R}$ with respect to $\Gamma_{+}(f)$ and $\pi(\sigma)(T_{I})=0$ ,

then the set $\{y\in T_{I};f_{\sigma}(y)=0\}$ is nonsingular, that is, the gmdient of the restriction
of the function $f_{\sigma}$ to $T_{I}$ does not vanish at the points of the set $\{y\in T_{I};f_{\sigma}(y)=0\}$ .

Next, we consider the case of $C^{\infty}$ functions.

Proposition 3.2. Let $\varphi$ be a $C^{\infty}$ function defined on a neighborhood of the origin.
When $\varphi$ is convenient or real analytic near the origin, define $\tilde{l}(a)=\min\{\{a, \alpha\};\alpha\in$

$\Gamma_{+}(\varphi)\}$ for $a\in Z_{+}^{n}$ . Otherwise, define $\tilde{l}(a)=\min\{\{a, \alpha\rangle;\alpha\in\Gamma_{+}(\varphi)\}$ for $a\in N^{n}$

and $\tilde{l}(a)=0$ for $a\in Z_{+}^{n}\backslash N^{n}$ . Then, for $\sigma\in\Sigma^{(n)},$ $\varphi 0\pi(\sigma)$ can be expressed as

(3.6) $\varphi(\pi(\sigma)(y))=(\prod_{j=1}^{n}y_{j}^{\tilde{l}(a^{j}(\sigma))})\varphi_{\sigma}(y)$ ,

where $\varphi_{\sigma}$ is a $C^{\infty}$ function defined on a neighborhood of the origin. (Needless to
say, if $\varphi$ is real analytic, so is $\varphi_{\sigma}.$ )

4. POLES OF LOCAL ZETA FUNCTIONS

Throughout this section, the functions $f,$ $\varphi,$ $\chi$ always satisfy the conditions (A),
(B), (C) in the beginning of Section 2.2.

The purpose of this section is to investigate the properties of poles of the functions:

(4.1) $Z_{+}(s)= \int_{\mathbb{R}^{n}}f(x)_{+}^{s}\varphi(x)\chi(x)dx$ , $Z_{-}(s)= \int_{\mathbb{R}^{n}}f(x)_{-}^{s}\varphi(x)\chi(x)dx$ ,

where $f(x)_{+}= \max\{f(x), 0\}$ and $f(x)_{-}= \max\{-f(x), 0\}$ and the local zeta func-
tion:

(4.2) $Z(s)= \int_{\mathbb{R}^{n}}|f(x)|^{s}\varphi(x)\chi(x)dx$.

From the properties of $Z_{+}(s)$ and $Z_{-}(s)$ , we can easily obtain analogous properties
of $Z(s)$ by using the relationship: $Z(s)=Z_{+}(s)+Z_{-}(s)$ .

It is easy to see that the above functions are holomorphic functions in the region
${\rm Re}(s)>0$ . Moreover, it is known (see [20],[1], etc.) that if the support of $\chi$ is
sufficiently small, then these functions can be analytically continued to the complex
plane as meromorphic functions and their poles belong to finitely many arithmetic
progressions constructed from negative rational numbers. More precisely, Varchenko
[26] describes the positions of the candidate poles and their orders by using the toric
resolution constructed in Section 3. In this section, we give more accurate results in
the case that $\varphi$ has a zero at the origin.
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4.1. The monomial case. First, let us consider the case that the function $\varphi$ is a
monomial, i.e., $\varphi(x)=x^{p}=x_{1}^{p_{1}}\cdots x_{n}^{p_{n}}$ with $p=(p_{1}, \ldots,p_{n})\in Z_{+}^{n}$ . Fedorjuk [9] was
the first to consider this kind of issue in two-dimensional case. Moreover, there have
been closely related studies to ours in [7],[8],[5],[6], which contain other interesting
results.

Theorem 4.1. Suppose that (i) $f$ is nondegenemte $over\mathbb{R}$ with respect to its Newton
polyhedron and (ii) $\varphi(x)=x^{p}$ with $p\in Z_{+}^{n}$ . If the support of $\chi$ is contained in a
sufficiently small neighborhood of the origin, then the poles of the functions $Z_{+}(s)$ ,
$Z_{-}(s)$ and $Z(s)$ are contained in the set

$\{-\frac{(a,p+1\}+\iota \text{ノ}}{l(a)};\nu\in Z_{+},$ $a\in\Sigma^{(1)}^{\sim}\}\cup(-\mathbb{N})$ ,

where $l(a)$ is as in (3.1) and $\Sigma^{(1)}^{\sim}=\{a\in\Sigma^{(1)};l(a)>0\}$ .

For $p\in Z_{+}^{n}$ , we define

(4.3) $\beta(p)=\max\{-\frac{\{a,p+1\}}{l(a)};a\in\Sigma^{(1)}^{\sim}\}$ .

If $s=\beta(p)$ is a pole of $Z_{\pm}(s),$ $Z(s)$ , then we denote by $\eta\pm(p),\hat{\eta}(p)$ the order of its
pole, respectively. For $\sigma\in\Sigma^{(n)}$ , let

$A_{p}( \sigma)=\{j\in B(\sigma);\beta(p)=-\frac{\langle a^{j}(\sigma),p+1\}}{l(a^{j}(\sigma))}\}\subset\{1, \ldots, n\}$ .

The following proposition shows the relationship between “the values of $\beta(p)$ ,
$\eta_{\pm}(p),\hat{\eta}(p)$

” and “the geometrical conditions of $\Gamma_{+}(f)$ and the point $p$”.

Proposition 4.2. Let $q=(q_{1}, \ldots, q_{n})$ be the point of the intersection of $\partial\Gamma_{+}(f)$

with the line joining the origin and the point $p+1=(p_{1}+1, \ldots,p_{n}+1)$ . Then

$- \beta(p)=\frac{p_{1}+1}{q_{1}}=\cdots=\frac{p_{n}+1}{q_{n}}=\frac{\{p\rangle+n}{\{q\}}=\frac{1}{d(f,x^{p})}$ ,

$\eta_{\pm}(p),\hat{\eta}(p)\leq\{\begin{array}{ll}\rho_{f}(q) lf1/d(f, x^{p}) is not an integer,\min\{\rho_{f}(q)+1, n\} otherwise,\end{array}$

where $\rho_{f}$ and $d(\cdot,$ $\cdot)$ are as in Section 2.1. Note that $m(f, x^{p})=\rho_{f}(q)=\rho_{f}(d(f, x^{p})(p+$

$1))$ .

Remark 4.3. In the case when $n=2$ or 3, $\rho_{f}(q)$ is equal to $\min\{\hat{m}_{p}, n\}$ , where $\hat{m}_{p}$ is
the number of the $(n-1)$-dimensional faces of $\Gamma_{+}(f)$ containing the point $q$ . This,
however, does not generally hold for $n\geq 4$ .

Next, let us consider the coefficients of the Laurent expansions of $Z_{+}(s)$ and $Z_{-}(s)$

at the poles. When $d(f, x^{p})>1$ , we compute the coefficients of $(s-\beta(p))^{-m(f,x^{p})}$ in
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the Laurent expansions of $Z_{\pm}(s),$ $Z(s)$ . Let

$C_{\pm}= \lim_{sarrow\beta(p)}(s-\beta(p))^{m(f,x^{p})}Z_{\pm}(s)$ ,

respectively.

$C= \lim_{sarrow\beta(p)}(s-\beta(p))^{m(f,x^{p})}Z(s)$ ,

Theorem 4.4. Suppose that (i) $f$ is nondegenemte over $\mathbb{R}$ with respect to its Newton
polyhedron, (ii) $\varphi(x)=x^{p}$ , where every component of $p\in Z_{+}^{n}$ is even, and (iii)
$d(f, x^{p})>1$ . If the support of $\chi$ is contained in a sufficiently small neighborhood of
the origin, then $C_{+}$ and C-are nonnegative and $C=c_{+}+C_{-}$ is positive.

The following proposition is concerned with the poles of $Z_{+}(s)$ and $Z_{-}(s)$ , which
are induced by the set of zeros of $f_{\sigma}$ .

Proposition 4.5. Suppose that the conditions (i), (ii) in Theorem 4.1 are satisfied
and (iii) $d(f, x^{p})<1$ . Let 1, . . . , $k_{*}$ be all the natuml numbers $st_{7\dot{\eta}}ctly$ smaller
than $-\beta(p)=1/d(f, x^{p})$ . If the support of $\chi$ is contained in a sufficiently small
neighborhood of the origin, then $Z_{+}(s)$ and $Z_{-}(s)$ have at $s=-1,$ $\ldots,$

$-k_{*}$ poles of
order not higher than 1 and do not have other poles in the region ${\rm Re}(s)>\beta(p)$ .
Moreover, let $a_{k}^{+},$ $a_{k}^{-}$ be the residues of $Z_{+}(s),$ $Z_{-}(s)$ at $s=-k$, respectively, then
we have $a_{k}^{+}=(-1)^{k-1}a_{k}^{-}for$ $k=1,$ $\ldots,$

$k_{*}$ .

Remark 4.6. We can easily generalize the results in this subsection as follows. The
same assertions in Theorem 4.1, Theorem 4.4 and Proposition 4.5 can be obtained,
even if $x^{p}$ is replaced by $x^{p}\tilde{\varphi}(x)$ where $\tilde{\varphi}\in C^{\infty}(U)$ with $\tilde{\varphi}(0)\neq 0$ . Here, in the case
of Theorem 4.4, when $\tilde{\varphi}(0)<0$ , ”positive” and “nonnegative” must be changed to
“negative” and “nonpositive”, respectively.

4.2. The convenient case. Next, let us consider the poles of $Z_{\pm}(s)$ in (4.1) and
$Z(s)$ in (4.2) in the case that $f$ or $\varphi$ is convenient, i.e., the associated Newton
polyhedron intersects all the coordinate axes.

Theorem 4.7. Suppose that (i) $f$ is nondegenemte over $\mathbb{R}$ with respect to its Newton
polyhedmn and (ii) at least one of the following conditions is satisfied:

(a) $f$ is convenient;
(b) $\varphi$ is convenient;
(c) $\varphi$ is real analytic on a neighborhood of the origin.

If the support of $\chi$ is contained in a sufficiently small neighborhood of the origin,
then the poles of the functions $Z_{+}(s)_{z}Z_{-}(s)$ and $Z(s)$ are contained in the set

$\{-\frac{\tilde{l}(a)+\{a\rangle+\nu}{l(a)};\nu\in Z_{+},$ $a\in\Sigma^{(1)}^{\sim}\}\cup(-\mathbb{N})$ ,
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where $l(a)$ is as in (3.1), $\tilde{l}(a)$ is as in Proposition 3.2, below, and $\Sigma^{(1)}^{\sim}$ is as in
Theorem 4.1, and

$\max\{-\frac{\tilde{l}(a)+\{a\}}{l(a)};a\in\Sigma^{(1)}^{\sim}\}=-\frac{1}{d(f,\varphi)}$ .

Moreover, for each $Z_{+}(s),Z_{-}(s)$ and $Z(s)$ , if $s=-1/d(f, \varphi)$ is a pole, then its
order is not larger than

$\{\begin{array}{ll}m(f, \varphi) if 1/d(f, \varphi) is not an integer,\min\{m(f, \varphi)+1, n\} otherwise.\end{array}$

Next, when $d(f, \varphi)>1$ , we consider the coefficients of $(s+1/d(f, \varphi))^{-m(f,\varphi)}$ in
the Laurent expansions of $Z_{\pm}(s)$ and $Z(s)$ . Let

$C_{\pm}= \lim_{sarrow-1/d(f,\varphi)}(s+1/d(f, \varphi))^{m(f,\varphi)}Z_{\pm}(s)$ ,
(4.4)

$C= \lim_{sarrow-1/d(f,\varphi)}(s+1/d(f, \varphi))^{m(f,\varphi)}Z(s)$ ,

respectively.

Theorem 4.8. Suppose that (i) $f$ is convenient and nondegenemte over $\mathbb{R}$ with
respect to its Newton polyhedron, (ii) $\varphi_{\Gamma_{0}}$ is nonnegative (resp. nonpositive) on a
neighborhood of the origin and (iii) $d(f, \varphi)>1$ . If the support of $\chi$ is contained in a
sufficiently small neighborhood of the origin, then $C_{+}$ and C-are nonnegative (resp.
nonpositive) and $C=C_{+}+C_{-}$ is positive (resp. negative).

The following proposition is concerned with the poles of $Z_{+}(s)$ and $Z_{-}(s)$ , which
are induced by the set of zeros of $f_{\sigma}$ .

Proposition 4.9. Suppose that the conditions (i), (ii) in Theorem 4.8 are satisfied
and (iii) $d(f, \varphi)<1$ . Let 1, . . . , $k_{*}$ be all the natuml numbers strictly smaller than
$1/d(f, \varphi)$ . If the support of $\chi$ is contained in a sufficiently small neighborhood of the
origin, then $Z_{+}(s)$ and $Z_{-}(s)$ have at $s=-1,$ $\ldots,$

$-k_{*}$ poles of order not higher than
1 and they do not have other poles in the region ${\rm Re}(s)>-1/d(f, \varphi)$ . Moreover,
let $a_{k}^{+},$

$a_{k}^{-}$ be the residues of $Z_{+}(s),$ $Z_{-}(s)$ at $s=-k$, respectively, then we have
$a_{k}^{+}=(-1)^{k-1}a_{k}^{-}for$ $k=1,$ $\ldots,$

$k_{*}$ .

4.3. Remarks. In this subsection, let us consider Theorem 4.4 (with Remark 4.6)
and Theorem 4.8 under the additional assumption: $f$ is nonnegative or nonpositive
near the origin. The following theorem shows that the same assertions can be
obtained without the assumption: $d(f, \varphi)>1$ .
Theorem 4.10. Suppose that (i) $f$ is nondegenerate over $\mathbb{R}$ with respect to its
Newton polyhedron, (ii) $f$ is nonnegative or nonpositive on a neighborhood of the
origin and (iii) at least one of the following condition is satisfied:
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(a) $\varphi$ is expressed as $\varphi(x)=x^{p}\tilde{\varphi}(x)$ on a neighborhood of the origin, where
every component of $p\in Z_{+}^{n}$ is even and $\tilde{\varphi}(0)>0$ $($ resp. $\tilde{\varphi}(0)<0)$ ;

(b) $f$ is convenient and $\varphi_{\Gamma_{0}}$ is nonnegative (resp. nonpositive) on a neighborhood
of the origin.

If the support of $\chi$ is contained in a sufficiently small neighborhood of the origin,
then $C_{+}$ and C-are nonnegative (resp. nonpositive) and $C=c_{+}+C_{-}$ is positive
(resp. negative), where $c_{\pm},$ $C$ are as in (4.4).

4.4. Certain symmetrical properties. We denote by $\beta_{\pm}(f, \varphi),\hat{\beta}(f, \varphi)$ the largest
poles of $Z_{\pm}(s),$ $Z(s)$ and by $\eta_{\pm}(f, \varphi),\hat{\eta}(f, \varphi)$ their orders, respectively.

Theorem 4.11. Let $f,$ $\varphi$ be nonnegative or nonpositive real analytic functions de-
fined on a neighborhood of the origin. Suppose that $f$ and $\varphi$ are convenient and
nondegenemte over $\mathbb{R}$ with respect to their Newton polyhedm. If the support of $\chi$ is
contained in a sufficiently small neighborhood of the origin, then we have

(4.5) $\beta_{\pm}(x^{1}f, \varphi)\beta_{\pm}(x^{1}\varphi, f)\leq 1$ and $\hat{\beta}(x^{1}f, \varphi)\hat{\beta}(x^{1}\varphi, f)\leq 1$

Moreover, the following two conditions are equivalent:
(i) The equality holds in each estimate in (4.5);
(ii) There exists a positive mtional number $d$ such that $\Gamma_{+}(x^{1}f)=d\cdot\Gamma_{+}(x^{1}\varphi)$ .

If the condition (i) or (ii) is satisfied, then we have $\eta_{\pm}(x^{1}f, \varphi)=\eta_{\pm}(x^{1}\varphi, f)=$

$\hat{\eta}(x^{1}\varphi, f)=n$ .

5. RELATIONSHIP BETWEEN $I(\tau)$ AND $Z_{\pm}(s)$

It is known (see [18], [20], [1], etc.) that the study of the asymptotic behavior of the
oscillatory integral $I(\tau)$ in (1.1) can be reduced to an investigation of the poles of the
functions $Z_{\pm}(s)$ in (4.1). Indeed, every result in Section 2 can been easily obtained
from the results in Section 4. Here, we roughly explain a relationship between $I(\tau)$

and $Z_{\pm}(s)$ . Let $f,\varphi,\chi$ satisfy the conditions (A),(B),(C) in Section 2.2. Suppose
that the support of $\chi$ is sufficiently small.

Define the Gelfand-Leray function: $K:\mathbb{R}arrow \mathbb{R}$ as

(5.1) $K(t)= \int_{W_{t}}\varphi(x)\chi(x)\omega$ ,

where $W_{t}=\{x\in \mathbb{R}^{n};f(x)=t\}$ and $\omega$ is the surface element on $W_{t}$ which is
determined by $df\wedge\omega=dx_{1}\wedge\cdots\wedge dx_{n}$ . $I(\tau)$ and $Z_{\pm}(s)$ can be expressed by using
$K(t)$ : Changing the integral variables in (1.1),(4.1), we have

(5.2) $I( \tau)=\int_{-\infty}^{\infty}e^{i\tau t}K(t)dt=\int_{0}^{\infty}e^{i\tau t}K(t)dt+\int_{0}^{\infty}e^{-i\tau t}K(-t)dt$ ,

(5.3) $Z_{\pm}(s)= \int_{0}^{\infty}t^{s}K(\pm t)dt$ ,
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respectively. Applying the inverse formula of the Mellin transform to (5.3), we have

(5.4) $K( \pm t)=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}Z_{\pm}(s)t^{-s-1}ds$,

where $c>0$ and the integral contour follows the line ${\rm Re}(s)=c$ upwards. Recall that
$Z_{+}(s)$ and $Z_{-}(s)$ are meromorphic functions and their poles exist on the negative
part of the real axis. By deforming the integral contour as $c$ tends to-oo in (5.4),
the residue formula gives the asymptotic expansions of $K(t)$ as $tarrow\pm O$ . Substituting
these expansions of $K(t)$ into (5.2), we can get an asymptotic expansion of $I(\tau)$ as
$\tauarrow+\infty$ .

Through the above calculation, we see more precise relationship for the coeffi-
cients. If $Z_{+}(s)$ and $Z_{-}(s)$ have the Laurent expansions at $s=-\lambda$ :

$Z_{\pm}(s)= \frac{B\pm}{(s+\lambda)^{\rho}}+O(\frac{1}{(s+\lambda)^{\rho-1}}I$ ,

respectively, then the corresponding part in the asymptotic expansion of $I(\tau)$ has
the form

$B\tau^{-\lambda}(\log\tau)^{\rho-1}+O(\tau^{-\lambda}(\log\tau)^{\rho-2})$ .
Here a simple computation gives the following relationship:

(5.5) $B= \frac{\Gamma(\lambda)}{(\rho-1)!}[e^{i\pi\lambda/2}B_{+}+e^{-i\pi\lambda/2}B_{-}]$ ,

where $\Gamma$ is the Gamma function.

6. EXAMPLES

In this section, we give some examples of the phase and the amplitude in the inte-
gral (1.1), which clarifies the subtlety of our results in Sections 2 and 4. Throughout
this section, we always assume that $f,$ $\varphi,$ $\chi$ satisfy the conditions (A), (B), (C) in
Section 2. (In Examples 1, 2, each $f,$ $\varphi,$ $\varphi_{t}$ satisfies the respective condition.)

6.1. The one-dimensional case. Let us compute the asymptotic expansion of
$I(\tau)$ in (1.1) as $\tauarrow+\infty$ in the one-dimensional case by using our analysis in this
paper. As mentioned in Section 2, the results below can also be obtained by using
the analysis in [24]. Note that the computation below is valid for $C^{\infty}$ phases. From
the assumptions $\Gamma_{+}(f),$ $\Gamma_{+}(\varphi)\neq\emptyset,$ $f,$ $\varphi$ can be expressed as

$f(x)=x^{q}f(x)$ , $\varphi(x)=x^{p}\tilde{\varphi}(x)$ ,

where $q,p\in Z_{+},$ $q\geq 2$ and $\tilde{f},\tilde{\varphi}$ are $C^{\infty}$ functions defined on a neighborhood of the
origin with $f(0)\tilde{\varphi}(0)\neq 0$ . Suppose that the support of $\chi$ is so small that $\tilde{f},\tilde{\varphi}$ do
not have any zero on the support.

183



神本，野瀬

It is easy to see that $f$ is nondegenerate over $\mathbb{R}$ with respect to its Newton poly-
hedron, $\Gamma_{+}(f)=[q, \infty),$ $\Gamma_{+}(\varphi)=\lceil p,$ $\infty),$ $d(f, \varphi)=\frac{q}{p+1}$ and $m(f, \varphi)=1$ . Let $\alpha$ be
the sign of $f(x)$ on the support of $\chi$ . From a simple computation, for even $q$

(6.1)
$Z_{\alpha}(s)= \int_{0}^{\infty}x^{qs+p}\{|f(x)|^{s}\tilde{\varphi}(x)\chi(x)+(-1)^{p}|f(-x)|^{s}\tilde{\varphi}(-x)\chi(-x)\}dx$ ,

$Z_{-\alpha}(s)=0$ ,

and for odd $q$

$Z_{\alpha}(s)= \int_{0}^{\infty}x^{qs+p}|f(x)|^{s}\tilde{\varphi}(x)\chi(x)dx$,
(6.2)

$Z_{-\alpha}(s)=(-1)^{p} \int_{0}^{\infty}x^{qs+p}|f(-x)|^{s}\tilde{\varphi}(-x)\chi(-x)dx$.

We can see that the poles of $Z_{\pm}(s)$ are simple and they are contained in the set
$\{-\frac{p+1+\nu}{q};\nu\in z_{+}\}$ . Moreover, we can compute the explicit values of the coefficients
of the term $(s+\epsilon_{\frac{+1}{q})^{-1}}$ in the Laurent expansions of $Z_{+}(s)$ and $Z_{-}(s)$ .

Next, applying the argument in Section 5, we have

$I( \tau)\sim\tau^{-L+\underline{1}}q\sum_{j=0}^{\infty}C_{j}\tau^{-j/q}$ as $\tauarrow\infty$ .

The relationship (5.5) gives the values of the coefficient $C_{0}$ . As a result, we can see
all the cases that $\beta(f, \varphi)=-1/d(f, \varphi)$ holds.

(i) ( $q$ :even; $p$:even) $C_{0}= \frac{2}{q}\Gamma(aq^{\underline{1}}+)|f(0)|^{-L+\underline{1}}q\tilde{\varphi}(0)e^{\alpha i^{R}\frac{+1}{2q}\pi}\neq 0$, which implies
$\beta(f, \varphi)=-1/d(f, \varphi)$ ;

(ii) ( $q$ :even; $p$:odd) $C_{0}=0$ , which implies $\beta(f, \varphi)<-1/d(f, \varphi)$ ;
(iii) ( $q$ :odd; $p$:even) $C_{0}= \frac{2}{q}\Gamma(a_{\frac{+1}{q}})|\tilde{f}(0)|^{-L+\underline{1}}q\tilde{\varphi}(0)\cos(\epsilon_{\frac{+1}{2q}\pi})$, which implies

that $\beta(f, \varphi)=-1/d(f, \varphi)$ is equivalent to $\frac{p+1}{2q}\not\in N+\frac{1}{2}$ ;

(iv) ( $q$ :odd; $p$:odd) $C_{0}= \alpha\frac{2i}{q}\Gamma(\frac{p+1}{q})|f(0)|^{-L+\underline{1}}q\tilde{\varphi}(0)\sin(\frac{p+1}{2q}\pi)$ , which implies

that $\beta(f, \varphi)=-1/d(f, \varphi)$ is equivalent to $\epsilon_{2^{\frac{+1}{q}}}\not\in \mathbb{N}$.
Let us compare the conditions (a),(b),(c),(d) in Theorem 2.7 with the condition of
$p,$ $q$ . That $q$ (resp. p) is even is equivalent to the condition (b) (resp. (c), $(d)$ ). The
condition (a) is equivalent to the inequality: $L+_{\pi}2q^{\underline{1}}<\frac{\pi}{2}$ , which implies $C_{0}\neq 0$ in
(iii).

6.2. Example 1. Consider the following two-dimensional example:
$f(x_{1}, x_{2})=x_{1}^{4}$ ,
$\varphi(x_{1}, x_{2})=x_{1}^{2}x_{2}^{2}+e^{-1/x_{2}^{2}}(=:\varphi_{1}(x_{1}, x_{2})+\varphi_{2}(x_{1}, x_{2}))$ ,
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and $\chi$ is radially symmetric about the origin. It is easy to see that $f$ is nondegenerate
over $\mathbb{R}$ with respect to its Newton polyhedron, $\Gamma_{+}(f)=\{(4,0)\}+\mathbb{R}_{+}^{2},$ $\Gamma_{+}(\varphi)=$

$\Gamma_{+}(\varphi_{1})=\{(2,2)\}+\mathbb{R}_{+}^{2},$ $\Gamma_{+}(\varphi_{2})=\emptyset,$ $d(f, \varphi)=4/3,$ $m(f, \varphi)=1$ . Define

$Z_{\pm}^{(j)}(s)= \int_{\mathbb{R}^{2}}(f(x))_{\pm}^{s}\varphi_{j}(x)\chi(x)dx$ $j=1,2$ .

Note $Z_{-}(s)=0$ . A simple computation gives

$Z_{+}^{(1)}(s)=4 \int_{0}^{\infty}\int_{0}^{\infty}x_{1}^{4s+2}x_{2}^{2}\chi(x_{1}, x_{2})dx_{1}dx_{2}$ .

We see that the poles of $Z_{+}^{(1)}(s)$ are simple and they are contained in the set
$\{-3/4, -4/4, -5/4, \ldots\}$ . Similarly, the poles of

$Z_{+}^{(2)}(s)=4 \int_{0}^{\infty}\int_{0}^{\infty}x_{1}^{4s}e^{-1/x_{2}^{2}}\chi(x_{1}, x_{2})dx_{1}dx_{2}$

are simple and contained in the set $\{-1/4, -2/4, -3/4, \ldots\}$ . Moreover, the coeffi-
cient of $(s+1/4)^{-1}$ is computed as

$\int_{0}^{\infty}e^{-1/x_{2}^{2}}\chi(0, x_{2})dx_{2}>0$.

Therefore, we have $\beta_{+}(f, \varphi)=\beta(f, \varphi)=-1/4$. As a result, $\beta(f, \varphi)>-1/d(f, \varphi)(=$

$-3/4)$ .
This example does not satisfy the condition (d) in Theorem 2.2. Noticing that

$\Gamma_{+}(\varphi)=\{(2,2)\}+\mathbb{R}_{+}^{2}$ , we see that the information of the Newton polyhedron is
not sufficient to understand the behavior of oscillatory integrals in the case of $C^{\infty}$

amplitudes.

6.3. Example 2. Consider the following two-dimensional example with a real pa-
rameter $t$ :

$f(x_{1}, x_{2})=x_{1}^{5}+x_{1}^{6}+x_{2}^{5}$ ,
$\varphi_{t}(x_{1}, x_{2})=x_{1}^{2}+tx_{1}x_{2}+x_{2}^{2}$ .

It is easy to see that $f$ is nondegenerate over $\mathbb{R}$ with respect to its Newton poly-
hedron, $(\varphi_{t})_{\Gamma_{0}}(x)=\varphi_{t}(x),$ $d(f, \varphi_{t})=5/4$ , and $m(f, \varphi_{t})=1$ . $(\varphi_{t})_{\Gamma_{0}}(x)$ is non-
negative on $\mathbb{R}^{2}$ , if and only if $|t|\leq 2$ . Thus, Theorem 4.8 implies that $\beta(f, \varphi_{t})=$

$-1/d(f, \varphi_{t})=-4/5$ if $|t|\leq 2$ . In this example, we understand the situation in more
detail from the explicit computation below.

By applying the computation in Section 4, we see the properties of poles of the
functions $Z_{+}(s)$ and $Z_{-}(s)$ in the following. The poles of the functions $Z_{+}(s)$ and
$Z_{-}(s)$ are contained in the set $\{-4/5, -5/5, -6/5, \ldots\}$ and their order is at most
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one. Let $C_{+}(t),$ $C_{-}(t)$ be the coefficients of $(s-4/5)^{-1}$ in the Laurent expansions
of $Z_{+}(s)$ and $Z_{-}(s)$ . Then, we have $C_{+}(t)=C_{-}(t)=A+tB$ with

$A$ $:= \frac{1}{5}\int_{-\infty}^{\infty}|u^{5}+1|^{-4/5}(u^{2}+1)du$, $B$ $:= \frac{1}{5}\int_{-\infty}^{\infty}|u^{5}+1|^{-4/5}udu$ .

Note that $A$ is positive and $B$ is negative.
Next, by applying the argument in Section 5, $I(\tau)$ has the asymptotic expansion

of the form:

(6.3) $I( \tau)\sim\tau^{-\frac{4}{5}}\sum_{j=0}^{\infty}C_{j}(t)\tau^{-j/5}$ as $\tauarrow+\infty$ .

The relationship (5.5) gives $C_{0}(t)=2 \Gamma(\frac{4}{5})\cos(\frac{2}{5}\pi)(A+tB)$ .
Set $t_{0}=-A/B(>0)$ . From the above value of $C_{0}(t)$ , if $t\neq t_{0}$ , then the equation

$\beta(f, \varphi_{t})=-1/d(f, \varphi_{t})$ holds. This means that the condition (d) in Theorem 2.7
is not necessary to satisfy the above equation. Rrrthermore, this example shows
that the oscillation index is determined by not only the geometry of the Newton
polyhedra but also the values of the coefficients of $x^{\alpha}$ for $\alpha\in\Gamma_{0}$ in the Taylor
expansion of the amplitude.

Note 6.1. The existence of the term $x_{1}^{6}$ in $f$ produces infinitely many non-zero coef-
ficients $C_{j}(t)$ in the asymptotic expansion (6.3) for any $t$ .

6.4. Comments on results in [1]. As mentioned in the Introduction, there have
been studies in [1] in a similar direction to our investigations. In our language, their
results can be stated as follows.

“Theorem“ 6.1 (Theorem 8.4 in [1], $p254$). If $f$ is nondegenemte over $\mathbb{R}$ with
respecオオ $0$ 伽 Newton polyhedron, then

(i) $\beta(f, \varphi)\leq-1/d(f, \varphi)$ ;
(ii) If $d(f, \varphi)>1$ and $\Gamma_{+}(\varphi)=\{p\}+\mathbb{R}_{+}^{n}$ with $p\in Z_{+}^{n}$ , then $\beta(f, \varphi)=$

$-1/d(f, \varphi)$ .
Unfortunately, more additional assumptions are necessary to obtain the above

assertions (i), (ii). Indeed, it is easy to see that Example 1 violates (i), (ii). As for
(ii), even if $\varphi$ is real analytic, the one-dimensional case in Section 6.1 indicates that
at least some condition on the power $p$ is needed. (It is easy to find counterexamples
in higher dimensional case.) The same case shows that the evenness of $p$ is not always
necessary to satisfy $\beta(f, \varphi)=-1/d(f, \varphi)$ .

REFERENCES
[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko: Singularities of Differentiable Maps

II, Birkhauser, 1988.
[2] B.-Y. Chen, J. Kamimoto and T. Ohsawa: Behavior of the Bergman kernel at infinity, Math.

Z. 248 (2004), 695-708.

186



振動積分と局所ゼータ関数

[3] K. Cho, J. Kamimoto and T. Nose: Asymptotics of the Bergman functions for semipositive
holomorphic line bundles, Kyushu J. Math. 65 (2011), 349-382.

[4] K. Cho, J. Kamimoto and T. Nose: Asymptotic analysis of oscillatory integrals via the Newton
polyhedra of the phase and the amplitude, To appear in J. Math. Soc. Japan.

[5] J. Denef, A. Laeremans and P. Sargos: On the largest nontrivial pole of the distribution $|f|^{s}$ ,
RIMS Kokyuroku 999 (1997), 1-7.

[6] J. Denef, J. Nicaise and P. Sargos: Oscillating integrals and Newton polyhedra, J. Anal. Math.
95 (2005), 147-172.

[7] J. Denef and P. Sargos: Poly\‘edra de Newton et distribution $f_{+}^{s}$ . $I$ , J. Analyse Math. 53 (1989),
201-218.

[8] –: Poly\‘edra de Newton et distribution $f_{+}^{s}$ . II, Math. Ann. 293 (1992), 193-211.
[9] M. V. Fedorjuk, Non-homogeneous generalized functions of two variables, (Russian) Mat. Sb.

(N.S.) 49 (1959), 431-446.
[10] W. Fulton: Introduction to toric varieties, Princeton University Press, Princeton, NJ, 1993.
[11] I. M. Gel‘fand and G. E. Shilov: Genemlized Functions $I$. Academic Press, New York, 1964.
[12] M. Greenblatt: A direct resolution of singularities for functions of two variables with applica-

tions to analysis. J. Anal. Math. 92 (2004), 233-257.
[13] –: An elementary coordinate-dependent local resolution of singularities and applications.

J. Funct. Anal. 255 (2008), 1957-1994.
[14] –: The asymptotic behavior of degenerate oscillatory integrals in two dimensions, J.

Funct. Anal. 257 (2009), 1759-1798.
[15] –: Oscillatory integral decay, sublevel set growth, and the Newton polyhedron, Math.

Ann. 346 (2010), 857-895.
[16] –: Resolution of singularities, asymptotic expansions of oscillatory integrals, and related

phenomena, preprint, arXiv:0709.$2496v2$ .
[17] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic

zero I, II, Ann. of Math. 79 (1964), 109-326.
[18] J. Igusa: Forms of higher degree. Tata Institute of Fundamental Research Lectures on Math-

ematics and Physics, 59. New Delhi, 1978.
[19] J. Kamimoto: Newton polyhedra and the Bergman kernel, Math. Z. 246 (2004), 405-440.
[20] A. Kaneko: Newton diagrams, Singular points and Oscillatory integmls, Lecture Note at

Sophia University, 11 (in Japanese), 1981.
[21] B. Malgrange: Int\’egrales asymptotiques et monodromie. Ann. Sci. \’Ecole Norm. Sup. (4) 7

(1974), 405-430.
[22] M. Pramanik and C. W. Yang: Decay estimates for weighted oscillatory integrals in $\mathbb{R}^{2}$ ,

Indiana Univ. Math. J., 53 (2004), 613-645.
[23] H. Schulz: Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms,

Indiana Univ. Math. J., 40 (1991), 1267-1275.
[24] E. M. Stein: Harmonic Analysis. Real-variable methods, orthogonality and oscillatow inte-

grals, Princeton University Press, Princeton, NJ, 1993.
[25] V. A. Vassiliev: Asymptotic behavior of exponential integrals in the complex domain, Funct.

Anal. Appl., (1979), 239-247.
[26] A. N. Varchenko: Newton polyhedra and estimation of oscillating integrals, Functional Anal.

Appl., 10-3 (1976) 175-196.
E-mail address: joe@math.kyushu-u.ac. jp
E-mail address: t-nose@math.kyushu-u.ac.jp

187


