Metric positivity of direct image sheaves of differential forms ¹

高山 茂晴 (東大数理)

We consider a proper surjective holomorphic map $f: X \longrightarrow Y$ with connected fibers, from a complex manifold X to a normal complex space Y with dim Y = m and dim X = n+m, and an f-ample line bundle E on X. We discuss good properties of $R^{n-p}f_*(\Omega_{X/Y}^p \otimes E)$ or $R^{n-p}f_*(\Omega_X^{p+m} \otimes E)$, as Kollár did for $R^q f_*(K_{X/Y} \otimes E')$ with $q \ge 0$, where E' is a line bundle on X with weaker positivities. Our aim is to try to interpolate Kodaira-Spencer's deformation theory and the Hodge theory by introducing a polarization and by considering adjoint-type vector bundles associated to it. The result is as follows [T].

Theorem 1. Let $f: X \longrightarrow Y$ and E be as above. Then

(1) $R^{n+q}f_*(\Omega_X^{m-q} \otimes E) = 0$ if q > 0.

Let p be an integer with $0 \le p \le n$. Then

- (2) $R^{n-p}f_*(\Omega_X^{p+m} \otimes E)$ is torsion free.
- (3) Assume Y and f are smooth. Then $R^{n-p}f_*(\Omega_X^{p+m} \otimes E)$ is locally free.
- (4) Assume Y and f are smooth. Then there exists an exact sequence

 $T_Y \otimes R^{n-p-1} f_*(\Omega_{X/Y}^{p+1} \otimes E) \xrightarrow{\delta_{p+1}} R^{n-p} f_*(\Omega_{X/Y}^p \otimes E) \xrightarrow{\tau_p} R^{n-p} f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1} \longrightarrow 0,$ which is induced by a natural inclusion $\Omega_{X/Y}^p \otimes f^* K_Y \subset \Omega_X^{p+m}$, i.e., $\Omega_{X/Y}^p \subset \Omega_X^{p+m} \otimes f^* K_Y^{-1}.$ Moreover the surjection τ_p splits.

Theorem 2. In Theorem 1, assume Y and f are smooth, and assume E admits a Hermitian metric h whose curvature is semi-positive $\sqrt{-1}\Theta_h \ge 0$ on X and positive $\sqrt{-1}\Theta_h|_{X_y} > 0$ on every fiber X_y . Then for every $0 \le p \le n$, the vector bundle $R^{n-p}f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ is Griffiths semi-positive. Moreover if E is positive on X, then $R^{n-p}f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ is Griffiths positive, if it is non-zero.

In case when $f: X \longrightarrow Y$ with Y smooth, parametrizes canonically polarized manifolds i.e., every K_{X_y} is ample, we can take $E = K_{X/Y}$ in Theorem 1, and then $(R^{n-p}f_*(\Omega_{X/Y}^p \otimes E))^* = R^p f_* T_{X/Y}^p$ by the relative duality. When p = 1, $R^1 f_* T_{X/Y}^1$ is the sheaf where the Kodaira-Spencer class lives. By a recent remarkable result of Schumacher, $K_{X/Y}$ is semi-positive on X with respect to the fiberwise Kähler-Einstein metrics ω_y ; the Hermitian metric h on $K_{X/Y}$ so that $h|_{X_y} = (\det \omega_y)^{-1}$ on every fiber X_y . Moreover if the parametrization is effective, $K_{X/Y}$ is positive. Thus we can apply Theorem 2 for such kind of $(E, h) = (K_{X/Y}, h)$. Earlier works of Siu and Schumacher tried to determine the sign of the curvature of the Weil-Petersson metric on T_Y . More recently, Schumacher also gives a curvature formula for $R^{n-p}f_*(\Omega_{X/Y}^p \otimes K_{X/Y}^{\otimes m})$ on some open subset of Y.

Regarding the method of proof, our argument is basically analytic. We put an appropriate Hermitian metric h on E with positive curvature, and we develope a theory of harmonic integrals for the cohomology groups $H^q(X, \Omega_X^p \otimes E)$ with $p + q = \dim X$ with respect to h and a Kähler form $\omega_X = \sqrt{-1}\Theta_h$ on X. Positive line bundle valued middle degree harmonic forms are special by the following reason. With respect to a Kähler form $\omega_X = \sqrt{-1}\Theta_h$ and h, Akizuki-Nakano's formula on bidegree (p,q) with $p + q = \dim X$ is $\Delta_{\overline{\partial}} = \Delta_{\partial_h}$, i.e., there is no curvature term $[\sqrt{-1}e(\Theta_h), \Lambda_{\omega_X}]$. Thus, at least in case X is

compact, if $u \in C^{p,q}(X, E)$ is $\Delta_{\overline{\partial}}$ -harmonic, it is Δ_{∂_h} -harmonic too, and hence u is not only $\overline{\partial}$ -closed, but also $D_h = \partial_h + \overline{\partial}$ closed. We will have several vanishings like this, and have a theory of harmonic integrals when Y is localized as follows. Letting Y to be Stein, $H^q(X, \Omega_X^p \otimes E)$ with $p + q = \dim X$ is represented by

$$\mathcal{H}^{p,q}(X,\omega_X, E, h) = \{ u \in C^{p,q}(X, E); \ \overline{\partial}u = \vartheta_h u = 0, u \text{ is } \omega_X \text{-primitive,} \\ u \wedge ds = 0 \text{ for any } s \in H^0(X, \mathcal{O}_X) \},$$

where ϑ_h is the formal adjoint of $\overline{\partial}$ with respect to ω_X and h. Since X is non-compact, we need practically a boundary condition to obtain a reasonable harmonic representation. The final condition $u \wedge ds = 0$ plays a role of the so-called $\overline{\partial}$ -Neumann condition. We can moreover show that $\mathcal{H}^{p,q}(X, \omega_X, E, h)$ becomes an $H^0(X, \mathcal{O}_X)$ -module in a natural way, which will lead the torsion freeness of $R^q f_*(\Omega^p_X \otimes E)$ via the above harmonic representation.

A Hermitian metric $g = g_p$ on $\mathbb{R}^{n-p} f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ in Theorem 2 can be described as follows. The curvature of h on E gives a Kähler form $\omega_y = \sqrt{-1}\Theta_h|_{X_y}$ on every fiber X_y . We then consider a Hermitian inner product on $\mathbb{C}^{p,n-p}(X_y, E_y)$ with respect to ω_y and $h_y = h|_{X_y}$, and put a "Hermitian metric" g on $\mathbb{R}^{n-p} f_*(\Omega_{X/Y}^p \otimes E)$, via the fiberwise harmonic representation with respect to ω_y and h_y . Regarding $\mathbb{R}^{n-p} f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ as a locally free subsheaf of $\mathbb{R}^{n-p} f_*(\Omega_{X/Y}^p \otimes E)$ by the splitting in Theorem 1 (4), we put a "Hermitian metric" on $\mathbb{R}^{n-p} f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$. We then can show that this defines a Hermitian metric on $\mathbb{R}^{n-p} f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ in the usual sense.

The computation of the curvature of the metric g on $R^{n-p}f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ will be done by trying to generalize that in Berndtsson [B] i.e. in case p = n. For simplicity, we let Y be a unit disc in \mathbb{C} with coordinate t, and $\omega_X = \sqrt{-1}\Theta_h > 0$. Let $u \in C^{p,n-p}(X, E)$ and suppose that $u|_{X_y}$ is primitive on every fiber and $\partial_h u = \xi \wedge dt$, $\overline{\partial} u = \eta \wedge dt$ with $\xi \in C^{p,n-p}(X, E), \eta \in C^{p-1,n-p+1}(X, E)$. (This is not really correct as it stands.) We put $\|f_*u\|^2 \in C^{\infty}(Y, \mathbb{R})$ by $\|f_*u\|(y) = \|u|_{X_y}\|$: the L^2 -norm of $u|_{X_y}$ with respect to the metrics ω_y and h_y . Then the curvature of g on $R^{n-p}f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$ is like $-\sqrt{-1}\partial\overline{\partial}\|f_*u\|^2$, and

$$-\sqrt{-1}\frac{\partial^2 \|f_*u\|^2}{\partial t \partial \overline{t}}\Big|_{t=0} = f_* \left(ch\sqrt{-1}\Theta_h \wedge u \wedge \overline{u}\right)_{t=0} - \|\xi\|_{X_0}\|^2 + \|\eta\|_{X_0}\|^2,$$

where c is a constant so that the pointwise pairing $ch\sqrt{-1}\Theta_h \wedge u \wedge \overline{u}$ is positive definite if u is primitive with respect to ω_X , and where $f_*(ch\sqrt{-1}\Theta_h \wedge u \wedge \overline{u})_{t=0} = \varphi(0)$ when we write the push-forward (1, 1)-current $f_*(ch\sqrt{-1}\Theta_h \wedge u \wedge \overline{u}) = \varphi(t)\sqrt{-1}dt \wedge d\overline{t}$. We would like to show that the right hand side is positive. In case p = n ([B]), the first term is positive since u is primitive simply by a bidegree reason, and one can manage to delete $\xi|_{X_0} = 0$. Thus $-\sqrt{-1}\partial\overline{\partial}||f_*u||^2 > 0$. One might think for general p that the first term is positive as well, since $\sqrt{-1}\Theta_h > 0$. However in general, it is not automatic, since u is not primitive forms for some parts, but (it seems) we can not do it completely. We have a difficulty to show the Nakano positivity of $R^{n-p}f_*(\Omega_X^{p+m} \otimes E) \otimes K_Y^{-1}$, caused by this "nonprimitive issue". But finally we can manage to show that $f_*(ch\sqrt{-1}\Theta_h \wedge u \wedge \overline{u})_{t=0} > 0$ and $||\xi|_{X_0}|| \leq ||\eta|_{X_0}||$, and then the Griffiths positivity.

- [B] Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. 169 (2009) 531–560.
- [T] Takayama, Higher direct images of twisted sheaves of differential forms, preprint.