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This talk is based on ajoint work with Dr. Kunihiko Taniguchi, Hiroshima University.
We will consider the following nonautonomous competition system

$\{\begin{array}{l}x’=x(a_{1}(t)-b_{1}(t)F_{1}(x)-c_{1}(t)G_{1}(y))y’=y(a_{2}(t)-b_{2}(t)F_{2}(x)-c_{2}(t)G_{2}(y))\end{array}$ (S)

The following conditions are always assumed through this talk:
$(A_{1})F_{i},$ $G_{i}\in C([0, \infty);[0, \infty)),$ $i=1,2$ , are strictly increasing functions $F_{i}(0)=$

$G_{i}(O)=0$ , and $F_{i}$ (oo) $=G_{i}(\infty)=\infty$ ;
$(A_{2})a_{i},$ $b_{i},$ $\mathfrak{g}\in C([0, \infty);(0, \infty)),$ $i=1,2$ ;

$( A_{3})\frac{a_{1}(t)}{b_{1}(t)},$ $\frac{c_{1}(t)}{b_{1}(t)};\frac{a_{2}(t)}{c_{2}(t)},$ $\frac{b_{2}(t)}{c_{2}(t)}$ are all bounded and bounded away from $0$ near $+\infty$ ;

$( A_{4})\int^{\infty}b_{1}(t)dt=\int^{\infty}c_{2}(t)dt=\infty$ .
Note that (A3) and $(A_{4})$ imply that $\int^{\infty}b_{i}(t)dt=\int^{\infty}c_{i}(t)dt=\infty,$ $i=1,2$ .

System (S) is a generalization of the classical Lotka-Volterra competition system with
constant coefficients. We can show that if the initial values $x(O),$ $y(O)$ are both positive,
then the corresponding solutions of (S) exist globally on $[0, \infty)$ , and remain positive there;
see for example [3, 4].

It is an important problem to find conditions for the global asymptotic stability of
(S). When (S) is an autonomous system, there are many contributions to this problem by
means of phase plane analysis; see for example [3, 4]. For nonautonomous cases of (S),
Ahmad & Lazer [1], Ahmad & Montes de Oca [2], and Taniguchi [5, 6] have proposed
criterion for the global asymptotic stability of (S) by employing asymptotic behavior of
time averages of coefficients functions. In this talk, we will consider this problem from a
different point of view.

Before going ahead we must describe well-known results concerning the classical Lotka-
Volterra competition systems

$\{\begin{array}{l}x’=x(\alpha_{1}-\beta_{1}x-\gamma_{1}y)y’=y(\alpha_{2}-\beta_{2}x-\gamma_{2}y)\end{array}$ (LV)

where $\alpha_{i},$
$\beta_{i}$ and $\gamma_{i},$ $i=1,2$ , are positive constants. For (LV) we can introduce the isoclines

$x+ \frac{\gamma_{1}}{\beta_{1}}y=\frac{\alpha_{1}}{\beta_{1}}$ , (1)

$\beta_{2}$

$\overline{\gamma_{2}}^{X}+y=\frac{\alpha_{2}}{\gamma_{2}}$ . (2)
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Theorem A. If line (1) is located under line (2), then every positive solution $(x, y)$ of
(LV) satisfies

$\lim_{tarrow\infty}(x(t), y(t))=(0,0)$ .

(Figure 1.)

Theorem B. Suppose that lines (1) and (2) are located as in Figure 2. (Therefore they

intersect only at one point $(\xi, \eta).)$ Then every positive solution $(x, y)$ of (LV) satisfies

$\lim_{tarrow\infty}(x(t), y(t))=(\xi, \eta)$ .

$y$

Figure 1

$y$

Figure 2

We will show that analogous results hold for our system (S). This is the aim of the
talk. When (S) reduces to classical Lotka-Volterra competition system (LV), our results
reduce to well-known classical ones.

To state our results, we introduce notation. For bounded function $f$ defined near $+$oo
we put

$f_{L}= \lim\inf f(t)tarrow\infty$ , $f_{M}= \lim_{tarrow}\sup_{\infty}f(t)$ , and $f_{\infty}= \lim_{tarrow\infty}f(t)$ .

We introduce the following continuous curves in the first quadrant of the xy-plane:

$F_{1}(x)+( \frac{c_{1}}{b_{1}})_{\infty}G_{1}(y)=(\frac{a_{1}}{b_{1}}I_{\infty},$ $(S_{1})_{\infty}$

$( \frac{b_{2}}{c_{2}})_{M}F_{2}(x)+G_{2}(y)=(\frac{a_{2}}{c_{2}})_{L}$ , $(S_{2})_{ML}$

and
$( \frac{b_{2}}{c_{2}})_{\infty}F_{2}(x)+G_{2}(y)=(\frac{a_{2}}{c_{2}})_{\infty}$ . $(S_{2})_{\infty}$
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By our assumption $(A_{1})$ these three curves are all downward-sloping continuous curves.
When (S) reduces to classical Lotka-Volterra system (LV), these three curves reduce to
isoclines of the system, namely (1) and (2). These three curves can be regarded as isoclines
of limiting systems of (S), in some sense. We will show that asymptotic stability of system
(S) can be determined from the relative positions of these curves. Theorems 1 and 2 below
are, respectively, generalizations of Theorems A and B.

Theorem 1. Let $(a_{1}/b_{1})_{\infty}$ and $(c_{1}/b_{1})_{\infty}$ exist. If curve $(S_{1})_{\infty}$ is located under curve
$(S_{2})_{ML}$ , then every solution $(x, y)$ of (S) satisfies

$\lim_{tarrow\infty}x(t)=0$

and
$0<G_{2}^{-1}(( \frac{a_{2}}{c_{2}})_{L})\leq\lim\inf y(t)tarrow\infty\leq\lim_{tarrow}\sup_{\infty}y(t)\leq G_{2}^{-1}((\frac{a_{2}}{c_{2}})_{M})\cdot$

(Figure 3.)

Theorem 2. Let $(a_{1}/b_{1})_{\infty},$ $(c_{1}/b_{1})_{\infty},$ $(a_{2}/c_{2})_{\infty}$ and $(b_{2}/c_{2})_{\infty}$ exist. Suppose that curves
$(S_{1})_{\infty}$ and $(S_{2})_{\infty}$ are located as in Figure 4. (Therefore they intersect only at one point
$(\xi, \eta).)$ Then every solution $(x, y)$ of (S) satisfies

$\lim_{tarrow\infty}(x(t), y(t))=(\xi, \eta)$ .

$y$

Figure 3

$y$

Figure 4

We need a simple lemma concerning ordinary differential inequalities, on which the
proof of Theorems 1 and 2 are essentially based. Let us consider the following differential
inequalities near $\infty$ :

$z’\leq z(p(t)-q(t)H(z))$ (3)
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and
$w’\geq w(p(t)-q(t)H(z))$ . (4)

For them we assume the following:
$(L_{1})H\in C([0, \infty);[0, \infty))$ is a strictly increasing function, $H(O)=0$ , and $H(\infty)=\infty$ ;
$(L_{2})p,$ $q\in C([0, \infty);(0, \infty))$ ;
(L3) $0<(p/q)_{L}\leq(p/q)_{M}<\infty$ ;
$( L_{4})\int^{\infty}q(t)dt=\infty$ .

Lemma 3. (i) Let $z$ be a positive function satisfying inequality (3) near $\infty$ . Then,

$\lim_{tarrow}\sup_{\infty}z(t)\leq H^{-1}((p/q)_{M})$ .

(ii) Let $w$ be a positive function satisfying inequality (4) near $\infty$ . Then,

$\lim\inf w(t)tarrow\infty\geq H^{-1}((p/q)_{L})$ .

Proof of Lemma 3. (i) The proof is divided into three cases.
Suppose that $z(t)\geq H^{-1}(p(t)/q(t))$ near $\infty$ . Since $p(t)-q(t)H(z(t))\leq 0$ , we find that

$z(t)$ decreases, $\lim_{tarrow\infty}z(t)$ exists and $\lim_{tarrow\infty}z(t)\geq H^{-1}((p/q)_{M})$ . To prove $\lim_{tarrow\infty}z(t)=$

$H^{-1}((p/q)_{M})$ , suppose to the contrary that $\lim_{tarrow\infty}z(t)>H^{-1}((p/q)_{M})$ . Then there are
two positive constants $\delta_{1}$ and $\delta_{2}$ satisfying

$H(z(t))>H( \delta_{1})>H(\delta_{2})>\frac{p(t)}{q(t)}$ for all sufficiently large $t$ .

Then inequality (3) implies that

$z’(t) \leq q(t)(\frac{p(t)}{q(t)}-H(z(t)))z(t)<q(t)(H(\delta_{2})-H(\delta_{1}))z(t)$

$=-q(t)(H(\delta_{1})-H(\delta_{2}))z(t)$ .

Since $\int^{\infty}q(t)dt=\infty$ , this implies that $z(t)arrow-$oo as $tarrow\infty$ . This is a contradiction.
Next suppose that $z(t)\leq H^{-1}(p(t)/q(t))$ near $\infty$ . Obviously in this case there is

nothing to prove.
Finally suppose that the function $z(t)-H^{-1}(p(t)/q(t))$ changes its sign in any neigh-

borhood of $\infty$ . Suppose that $\lim suptarrow\infty^{z(t)}>H^{-1}((p/q)_{M})$ . Then, there are three suf-
ficiently large numbers $t_{1}<\tau<t_{2}$ satisfying $z’(\tau)=0,$ $z(t_{i})=H^{-1}(p(t_{i})/q(t_{i})),$ $i=1,2$ ,
and $z(t)>H^{-1}(p(t)/q(t))$ for $t\in(t_{1}, t_{2})$ . It follows therefore that $z’(t)<0$ for $t\in(t_{1}, t_{2})$ .
This is a contradiction. The proof is complete.

(ii) As in the proof of (i), the proof is divided into several cases.
Suppose that $w(t)\leq H^{-1}(p(t)/q(t))$ near $\infty$ . Since $p(t)-q(t)H(w(t))\geq 0$ , we find

that $w(t)$ increases, $\lim_{tarrow\infty}w(t)\in(0, \infty)$ exists and $\lim_{tarrow\infty}w(t)\geq H^{-1}((p/q)_{L})$ . To prove
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$\lim_{tarrow\infty}w(t)=H^{-1}((p/q)_{L})$ , suppose to the contrary that $\lim_{tarrow\infty}w(t)<H^{-1}((p/q)_{L})$ .
Then there are two positive constants $\delta_{1}$ and $\delta_{2}$ satisfying

$H(w(t))<H( \delta_{1})<H(\delta_{2})<\frac{p(t)}{q(t)}$ for all sufficiently large $t$ .

Then inequality (4) implies that

$w’(t) \geq q(t)(\frac{p(t)}{q(t)}-H(w(t)))w(t)>q(t)(H(\delta_{2})-H(\delta_{1}))w(t)$ .

Since $\int^{\infty}q(t)dt=\infty$ , this implies that $w(t)arrow\infty$ as $tarrow\infty$ . This is a contradiction.
Other cases can be treated similarly; so we omit them. The proof is complete. $\square$

Sketch of the proof of Theorem 1. By Lemma 3, it suffices to show that $\lim_{tarrow\infty}x(t)=$

$0$ . From the first equation of (S) we get

$x’\leq x(a_{1}(t)-b_{1}(t)F_{1}(x))$

near $\infty$ . Lemma 3-(i) shows that

$\lim_{tarrow}\sup_{\infty}x(t)\leq F_{1}^{-1}((a_{1}/b_{1})_{\infty})^{p}=^{ut}X_{1}$.

Then, by the second equation of (S) for every $\epsilon>0$ we have

$y’\geq y[(a_{2}(t)-b_{2}(t)F_{2}(X_{1}+\epsilon))-c_{2}(t)G_{2}(y)]$

near $\infty$ . By Lemma 3-(ii) and our assumptions

$\lim\inf y(t)tarrow\infty\geq G_{2}^{-1}((\frac{a_{2}}{c_{2}})_{L}-(\frac{b_{2}}{c_{2}})_{M}F_{2}(X_{1}))^{p}=^{ut}Y_{1}$ .

Again returning to the first equation of (S), we have for every $\epsilon>0$

$x’ \leq b_{1}(t)[(\frac{a_{1}(t)}{b_{1}(t)}-\frac{c_{1}(t)}{b_{1}(t)}G_{1}(Y_{1}-\epsilon))-F_{1}(x)]$

near $\infty$ . So, if $(a_{1}/b_{1})_{\infty}-(c_{1}/b_{1})_{\infty}G_{1}(Y_{1})\leq 0$ , then assumptions (A3) and $(A_{4})$ show that
$\lim_{tarrow\infty}x(t)=0$ ; accordingly the proof is complete. So we may suppose that $(a_{1}/b_{1})_{\infty}-$

$(c_{1}/b_{1})_{\infty}G_{1}(Y_{1})\geq 0$ .
Repeating the above consideration, we find that

$\lim_{tarrow}\sup_{\infty}x(t)\leq F_{1}^{-1}((\frac{a_{1}}{b_{1}})_{\infty}-(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(Y_{1}))^{p}=^{ut}X_{2}$ ,

and
$\lim\inf y(t)tarrow\infty\geq G_{2}^{-1}((\frac{a_{2}}{c_{2}})_{\infty}-(\frac{b_{2}}{c_{2}})_{\infty}F_{2}(X_{2}))^{p}=^{ut}Y_{2}$.
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Continuing this procedure, we can construct inductively two infinite sequences $\{X_{n}\}_{n=1}^{\infty}$

and $\{Y_{n}\}_{n=1}^{\infty}$ satisfying
$X_{1}=F_{1}^{-1}((a_{1}/b_{1})_{\infty})$ ,

$F_{1}(X_{n})+( \frac{c_{1}}{b_{1}})_{\infty}G_{1}(Y_{n-1})=(\frac{a_{1}}{b_{1}})_{\infty}$ , $n=2,3,4,$ $\ldots$ , (5)

$( \frac{b_{2}}{c_{2}})_{M}F_{2}(X_{n})+G_{2}(Y_{n})=(\frac{a_{2}}{c_{2}}I_{L}$ , $n=1,2,3,$ $\ldots$ , (6)

and
$G_{1}(Y_{n})< \frac{(a_{1}/b_{1})_{\infty}}{(c_{1}/b_{1})_{\infty}}$ , $n=1,2,3,$ $\ldots$ ,

unless
$( \frac{a_{1}}{b_{1}})_{\infty}-(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(Y_{m})\leq 0$ for some $m\in$ N.

By the assumption of Theorem 1, we can show inductively that

$Y_{1}<Y_{2}< \cdots<Y_{n}<Y_{n+1}<\cdots<G_{1}^{-1}(\frac{(a_{1}/b_{1})_{\infty}}{(c_{1}/b_{1})_{\infty}})$ .

So $\lim_{narrow\infty}Y_{n}put=\tilde{Y}>0$ exists, which means that $\lim_{narrow\infty}X_{n}put=\tilde{X}\geq 0$ also exists in
turn. Let $narrow\infty$ in (5) and (6). We then find that

$F_{1}( \tilde{X})+(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(\tilde{Y})=(\frac{a_{1}}{b_{1}})_{\infty}$ ,

and
$( \frac{b_{2}}{c_{2}})_{M}F_{2}(\tilde{X})+G_{2}(\tilde{Y})=(\frac{a_{2}}{c_{2}}I_{L}$ .

These means that two curves $(S_{1})_{\infty}$ and $(S_{2})_{ML}$ intersect at $(X, \tilde{Y})\in[0, \infty)\cross[0, \infty)$ , a
contradiction to the assumption of Theorem 1. Thus it must hold that

$( \frac{a_{1}}{b_{1}})_{\infty}-(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(Y_{m})\leq 0$ for some $m\in$ N.

Since for every $\epsilon>0$

$x’ \leq b_{1}(t)[(\frac{a_{1}(t)}{b_{1}(t)}-\frac{c_{1}(t)}{b_{1}(t)}G_{1}(Y_{m}-\epsilon))-F_{1}(x)]$

near $\infty$ , we can show that $\lim_{tarrow\infty}x(t)=0$ by assumptions (A3) and $(A_{4})$ . This completes
the proof. 口

Sketch of the proof of Theorem 2. Arguing as in the sketch of the proof of Theorem 1,
we obtain sequences $\{X_{n}\}_{n=1}^{\infty},$ $\{\underline{X}_{n}\}_{n=1}^{\infty},$ $\{Y_{n}\}_{n=1}^{\infty}$ , and $\{\underline{Y}_{n}\}_{n=1}^{\infty}$ such that

$\overline{X}_{1}=F_{1}^{-1}((a_{1}/b_{1})_{\infty})$ , $\overline{Y}_{1}=G_{2}^{-1}((a_{2}/c_{2})_{\infty})$ ;
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$0< \underline{X}_{n}\leq\lim\inf x(t)tarrow\infty\leq\lim_{tarrow}\sup_{\infty}x(t)\leq\overline{X}_{n}$ , $n=1,2,3,$ $\ldots$ ; (7)

$0< \underline{Y}_{n}\leq\lim\inf y(t)tarrow\infty\leq\lim_{tarrow}\sup_{\infty}y(t)\leq\overline{Y}_{n}$ , $n=1,2,3,$ $\ldots$ ; (S)

and
$F_{1}( \overline{X}_{n+1})+(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(\underline{Y}_{n})=(\frac{a_{1}}{b_{1}})_{\infty}$ ; (9)

$( \frac{b_{2}}{c_{2}})_{\infty}F_{2}(\underline{X}_{n})+G_{2}(\overline{Y}_{n+1})=(\frac{a_{2}}{c_{2}})_{\infty}$ ; (10)

$F_{1}( \underline{X}_{n})+(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(\overline{Y}_{n})=(\frac{a_{1}}{b_{1}})_{\infty}$ ; (11)

$( \frac{b_{2}}{c_{2}})_{\infty}F_{2}(\overline{X}_{n})+G_{2}(\underline{Y}_{n})=(\frac{a_{2}}{c_{2}})_{\infty}$ . (12)

These four formulas show that the points $(\overline{X}_{n+1}, \underline{Y}_{n})$ and $(\underline{X}_{n}, \overline{Y}_{n})$ exist on curve $(S_{1})_{\infty}$ ,
and the points $(\underline{X}_{n}, \overline{Y}_{n+1})$ and $(X_{n}, \underline{Y}_{n})$ exist on curve $(S_{2})_{\infty},$ $n=1,2,3,$ $\ldots$ . Therefore,
we can find inductively that

$\underline{X}_{n}\leq\underline{X}_{n+1}\leq\xi\leq\overline{X}_{n+1}\leq\overline{X}_{n}$,

and
$\underline{Y}_{n}\leq\underline{Y}_{n+1}\leq\eta\leq\overline{Y}_{n+1}\leq\overline{Y}_{n}$ .

So, these four sequences all have positive limits as $narrow\infty$ :

$\lim_{narrow\infty}\underline{X}_{n}=\underline{\xi},\lim_{narrow\infty}\overline{X}_{n}=\overline{\xi},\lim_{narrow\infty}\underline{Y}_{n}=\underline{\eta}$ and $\lim_{narrow\infty}\overline{Y}_{n}=\overline{\eta}$ .

Letting $narrow\infty$ in (9), (10), (11) and (12), we have

$F_{1}( \overline{\xi})+(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(\underline{\eta})=(\frac{a_{1}}{b_{1}}I_{\infty}\cdot$ (13)

$( \frac{b_{2}}{c_{2}})_{\infty}F_{2}(\underline{\xi})+G_{2}(\overline{\eta})=(\frac{a_{2}}{c_{2}})_{\infty}$
. (14)

$F_{1}( \underline{\xi})+(\frac{c_{1}}{b_{1}})_{\infty}G_{1}(\overline{\eta})=(\frac{a_{1}}{b_{1}})_{\infty}$ ; (15)

$( \frac{b_{2}}{c_{2}})_{\infty}F_{2}(\overline{\xi})+G_{2}(\underline{\eta})=(\frac{a_{2}}{c_{2}}I_{\infty}$ . (16)

The formulas (13) and (16) imply that two curves $(S_{1})_{\infty}$ and $(S_{2})_{\infty}$ intersect at $(\overline{\xi}, \underline{\eta})$ ;
similarly curves $(S_{1})_{\infty}$ and $(S_{2})_{\infty}$ intersect at $(\underline{\xi}, \overline{\eta})$ . By the assumption of Theorem 2, it
must hold that $(\overline{\xi}, \underline{\eta})=(\underline{\xi}, \overline{\eta})=(\xi, \eta)$ , that is,

$\lim_{narrow\infty}\overline{X}_{n}=\lim_{narrow\infty}X_{n}=\xi$ , and $\lim_{narrow\infty}\overline{Y}_{n}=\lim_{narrow\infty}\underline{Y}_{n}=\eta$ .
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Letting $narrow\infty$ in (7) and (8), we can get $\lim_{tarrow\infty}(x(t), y(t))=(\xi, \eta)$ . This completes the
proof. $\square$
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