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Abstract. We consider a tumor invasion model with constraint. The
original model was proposed by M.A.J.Chaplain and A.R.A. Anderson in
[1]. In the paper, the diffusion of tumor cells is given by the function,

because there is the effect of heat shock proteins. Moreover, we consider
that $tI_{1}e$ diffusion is affected by the extracellul\‘ar matrix which is the
unknown function for tumor invasion model. Then, our problem has the
given furiction of diffusion depending upon time, place and the unknown
function. We show the exsitence of solution for above problem.

1 Introduction
In this paper, we consider the following parabolic systems with a con-

straint condition;

$(P)\{\begin{array}{l}\frac{\theta n}{\theta t}=\nabla\cdot\{k_{n}(t, x, f)\nabla n-\lambda(t,x)n\nabla f\}+\mu(t,x)n(1-n-f) in Q_{T},n+f\leq 1, in Q_{T},\ovalbox{\tt\small REJECT}=-\delta mf in Q_{T},\frac{\partial m}{\partial t}=k_{m}\Delta m+C_{1}n-C_{2}m in Q_{T},n=0, \frac{\partial m}{\partial n}=0 in \Sigma_{T},n(0)=n_{0}, f(0)=f_{0}, m(0)=m_{0} in fl.\end{array}$
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where, $T$ is a any positive number, $\zeta$] is a bounded domain in $\mathbb{R}^{N},$ $(1\leq$

$N\leq 3)$ having the smooth boundary $\Gamma$ $:=\partial\zeta 2$ , $QT=(0, T)\cross\zeta 2,$ $\Sigma_{T}=$

$(0, T)\cross\Gamma,$ $k_{n}$ is a positive function in $(0, T)\cross fl\mathbb{R},$ $\lambda$ and $\mu$ are positive
functions in $Q_{T},$ $\delta,$ $k_{m},$ $C_{1}$ and $C_{2}$ are positive constants and $n_{0},$ $f_{0}$ and
$m_{0}$ is a fUnction in S2.

This system which is a mathematical modelling for the tumor invasion
phenomena with some constraints, is well-known by [1], [2]. The unknown
functions $n,$ $f$ and $m$ mean density of solid tumor cells, the extracellular
matrix(ECM) and the matrix degrading enzymes(MDEs) concentration,
respectively. The first equation contains the three teams that mean the
diffusions, moving to the place of destroyed ECM by MDEs(hapotaxis)
and the growth. The second equation describes the ECM destroyed by
MDEs. The third equation consists of tfiree terms that mean diffusion of
MDEs, production by tumor cell and natural decay.

In the paper [1] (Chaplain and Anderson), All given functions, $k_{n},$ $\lambda$

and $\mu$ , are positive constants for simplicity. However, in the paper [2]
(Szymariska, Urba\’{n}ski and Marciniak-Czochra), they are given by the
above functions to functions depending the parameters, because they pick
on the act of the heat shock protein (HSP). The heat shock protein has
the following three acts:(1) The HSP affects the $1-D$ protein which is a
freshly generated, a kind of strap, then, the one is made over a general
protein. (2) The HSP affects the destroyed protein by some stress, then,
the one is restored. (3) By the strong stress, the HSP leads a protein
to the apoptosis (Self-induced cell death). Since these properties, they
thought that the heat shock protein acts on the material of forming the
cytoskeleton. Hence, they assume that the diffusion of tumor cell is de-
termined by the amount of the heat shock protein, namely, they give the
diffusion coefficient function to $k_{n}=k_{n}(t)$ .

On the models of [2], we get the time local and time global solution
of that problem, in the paper [3] and [4], respectively. Impose the same
conditions $n+f\leq 1$ as $(P)$ , we proved the existence of solutions by
the approach for quasi-variational inequalities (QVI). Quasi-variational
inequalities is to find a function which satisfies a variational inequality in
which the constraint depend upon the unknown function. In 1973, Ben-
soussart and Lions proposed quasi-variational inequalities in [5], firstly.
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Later, quasi-variational inequalities were studied by many mathemati-
cian. It was well known that there are two methods for analysis of
quasi-variational inequalities. The first method is called by “ Monotonic-
ity Method“ that is proved the solutions by the order relation. There are
many results of this method, for example, [6], [7] and [8]. The other is
called by “ Compactness Method” that is proved the solutions by compact
operator defined in the Banacfi spaces. There are rnany results of this
method, too. For example, [9], [10], [11] and [12].

It was used in [3],[4] that this is the existence theorem of solutions
for parabolic quasi-variational inequalities in [12]. Moreover, for the case
which the distribution of the heat shock protein is not uniformity in the
domain (namely $k_{n}=k_{n}(t,x)$ ), we proved the existence of solutions as
the same method of quasi-variational inequalities. (cf.[13])

In this paper, we consider that the diffusion of tumor is affected by tfie
heat shock proteins and the extracellular matrix which is a basis of cells.
Namely, $k_{n}=k_{n}(t, x, f)$ .

2 The approach by QVI
We define the following three operators.

Definition 2.1.

(1) For each $t\in[0, T]$ and $\tilde{n}\in L^{2}(0, t;L^{2}(\zeta\}))$ , we consider the following
parabolic problem (Pl):

(Pl) $\{\begin{array}{l}\frac{\partial\tilde{m}}{\partial t}=k_{m}\triangle\tilde{m}+C_{1}\tilde{n}-C_{2}\tilde{m} a.e. in Q_{t},\frac{\partial\tilde{m}}{\partial n}=0 a.e. in \Sigma_{t},\tilde{m}(0)=m_{0} a.e. in S ).\end{array}$

This problem has a unique solution $\tilde{n}$ as well known. Then, we de-
fine the solution operator $\Lambda_{1}(t)$ : $L^{2}(0, t;L^{2}(fl))arrow W^{1,2}(0, t;L^{2}(fl))\cap$

$L^{\infty}(O, t;H^{1}(fl))\cap L^{2}(0, t;H^{2}(S2))$ for $\tilde{n}$ . $i.e.\Lambda_{1}(t)\tilde{n}=\tilde{m}$ .
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(2) For each $t\in[0, T]$ and nt $\in L^{2}(0, t;L^{2}(Jl))$ , we define the operator
$\Lambda_{2}(t)\tilde{m}$ $:=f\in W^{1,2}(0, t;L^{2}(\zeta 2))$ by the following formulation;

$f(x, s)$ $:=f_{0}(x)\exp(-\delta J_{0}^{s}\tilde{m}(x, \tau)d\tau)$ , $\forall(x, s)\in Q_{t}$ .

Namely, for each $\tilde{m},$ $\Lambda_{2}(t)$ is the solution operator of the following
initial value problem (P2):

(P2) $\{\frac{d\tilde{f}}{dt}=-\delta\tilde{m}f$

a.e. in $Q_{t}$ ,

$f(0)=f_{0}$ a.e. in $\zeta l$ .

(3) For each $t\in[0, T]$ , we define the composite operator $\Lambda(t)$ $:=\Lambda_{2}(t)\circ$

$\Lambda_{1}(t)$ .

We define the solution of our problem (P) using the above operators.
Definition 2.2.

For each $t\in[0, T]$ , we say that the triplet $\{n, f, m\}$ is a solution of the
our problem (P) on $[0, t]$ , if $\{n, f, m\}$ satisfies that the following conditions
$(S1)-(S4)$ ;

(Sl) $n\in W^{1,2}(0, t;L^{2}(S2))$ $\cap L^{\infty}(O, t;H_{0}^{1} (S2))$

(S2) $n\leq 1-f$ a.e. in $Q_{t}$ ,

$\int_{0}^{t}\int_{tl}(\frac{\partial n}{\partial t}-\mu n(1-n-f))(n-v)dxds$

$+ \int_{0}^{t}\int_{tl}(\lambda(s)\{n\nabla f\}+k_{n}(t, x, f)\nabla n)\cdot\nabla(n-v)dxds\leq 0$,

for $\forall v\in L^{2}(0, t;H_{0}^{1}(fl))$ with $v\leq 1-f$ a.e. in $Q_{t}$ ,

(S3) $n(O)=n_{0}$ a.e. in $\zeta l$ ,

(S4) $m=\Lambda_{1}(t)n,$ $f=\Lambda(t)n$ , in $L^{2}(fl)$ .

We assume that the following condition (Al)$-(A6)$ are satisfied for we
discuss our problem (P).

(Al) $k_{n}$ which is a positive function in $(0, T)\cross\zeta l\cross \mathbb{R}$ , is satisfied the
following three condition (i)(ii)(iii):
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(i) For each $r\in \mathbb{R}$ , there is a positive number $p>1$ such that

$k_{n}(\cdot, \cdot, r)\in W^{1,p}(0, T;L^{\infty}(fl))$ .

(ii) There are positive numbers $K_{0}$ and $K_{1}>0$ such that

$K_{0}\leq K_{n}(t, x, r)\leq K_{1}$ ,

for all $(t, x, r)\in(O, T)\cross\zeta 1\cross \mathbb{R}$.

(iii) For each $(t, x)\in(O, T)\cross\zeta\},$ $k_{n}(t, x, \cdot)$ is Lipschitz continuous
in $\mathbb{R}$ . Namely, there exists positive number $K_{2}>0$ such that

I $k_{n}(t,x, r_{1})-k_{n}(t, x, r_{2})|\leq K_{2}|r_{1}-r_{2}|$

for all $r_{1},$ $r_{2}\in \mathbb{R}$ .

(A2) $\lambda$ is non-negative function in $L^{\infty}(Q_{T})$ ,

(A3) $\mu$ is non-negative function in $L^{2}(Q_{T})\cap L^{1}(0, T;L^{\infty}(ff))$ ,

(A4) $n_{0}\in H^{1}(\zeta\}),$ $0\leq n_{0}\leq 1$ a.e. in $\zeta\}$ ,

(A5) $f_{0}\in W^{1,\infty}(\zeta\})\cap H^{2}(fl),$ $0\leq f_{0}\leq 1-n_{0}$ a.e. in $\zeta l$ ,

(A6) $m_{0}\in H^{2}(fl),$ $0\leq m_{0}$ a.e. in $\zeta l$ .

Theorem 2.1.
We $\kappa’$suriie tliat the condition (Al)$-(A6)$ are satisfied. $T1_{1}er$l, our prob-

lem (P) has at least one solution $\{n, f, m\}$ in $[0, T_{0}],$ $(0<T_{0}\leq T)$ .

3 Convex functions
We show the proof of our main result by the method of quasi-variational

inequalities. Firstly, we define some notations to use the approach by
quasi-variational inequalities. We introduce a time-dependent, non-negative,
proper, l.s. $c$ . and convex function $\varphi_{0}$ on $L^{2}$ (S2) such that

$\varphi_{0}(z)=\{\begin{array}{ll}\frac{K_{0}}{2}\int_{tl}|\nabla z|^{2}dx if z\in L^{2}(fl), z\in K,+\infty otherwise,\end{array}$
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where, $K_{0}$ is given by the assumption (ii) of (Al) and

$K$ $:=\{z\in H_{0}^{1}(\zeta 2);0\leq z\leq 1 a.e. in \zeta l\}$ .

Let $\delta_{0}$ be a fixed positive number. For each $t\in[0, T]$ we define a closed
convex set $V(-\delta_{0}, t)$ by

$V(-\delta_{0}, t)$ $:=\{v\in W^{1,2}(-\delta_{0}, t;L^{2}(S2)); V_{1-\delta_{0},t]}(v)<\infty\}$

with

$V_{[-\delta_{0},t]}(v):= \sup_{-\delta_{0}\leq s\leq t}\varphi_{0}(v(s))+|v(0)|_{L^{2}(l)}^{2}+|v’|_{L^{2}(-\delta_{0},t;L^{2}(l))}^{2}$

where $v’(t)= \frac{d}{dt}(v(t))$ .
In the paper [12], we use the family $\{\varphi^{s}(v, \cdot)\}_{0\leq s\leq t}$ of time-dependent

convex functions $\varphi^{s}(v, \cdot)$ for each $v\in V(-\delta_{0}, t;L^{2}(\zeta l))$ , which satisfies the
following there conditions:

$(\Phi 1)\varphi^{s}(v;z)$ is proper, l.s. $c.$ , non-negative and convex in $z\in L^{2}(\zeta l)$ ,
and it is determined by $s\in[0, t]$ and $v$ on $[-\delta_{0}, s]$ ; namely, for $v_{1}$ ,
$v_{2}\in V(-\delta_{0}, t)$ , we have $\varphi^{s}(v_{1};\cdot)=\varphi^{s}(v_{2};\cdot)$ on $L^{2}(\zeta\})$ ;

$(\Phi 2)\varphi^{s}(v;z)\geq\varphi_{0}(z),$ $\forall v\in V(-\delta_{0}, t),$ $0\leq\forall s\leq\forall t\leq T$;

$(\Phi 3)$ If $0\leq s_{k}\leq t\leq T,$ $v_{k}\in \mathcal{V}(-\delta_{0}, t),$ $\sup_{k\in N}V_{[-\delta_{0},t]}(v_{k})<\infty,$ $s_{k}arrow s$

and $v_{k}arrow v$ in $C([-\delta_{0}, t];L^{2}(\zeta l))$ , then $\varphi^{s_{k}}(v_{k};\cdot)arrow\varphi^{s}(v;\cdot)$ on $L^{2}$ (S2)
in the sense of Mosco.

For each $t\in[0, T]$ , we define $\mathcal{V}_{+}^{t}$ by

$\mathcal{V}_{+}^{t}:=\{v\in \mathcal{V}(-\delta_{0}, t);0\leq v\leq 1\}$ ,

and for each $v\in \mathcal{V}_{+}^{t}$ , we define $\varphi^{s}(v;\cdot)$ by

$\varphi^{s}(v;z)=\{\begin{array}{ll}\frac{1}{2}\int_{\zeta l}k_{n}(s, x, [\Lambda(t)v](s, x))|\nabla z|^{2}dx if z\in L^{2}(fl), z\in K(s;v),+\infty otherwise,\end{array}$

where $\Lambda(t)$ is defined by Def.2.1. arid

$K(s;v)$ $:=\{z\in H_{0}^{1}(\zeta l)_{)}\cdot 0\leq z\leq 1-[\Lambda(t)v](s) a.e. in fl\}$ .
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Lemma 3.1. For each $s\in[0, t]$ and $v\in \mathcal{V}_{+}^{t},$ $\varphi^{s}(v;z)$ satisfies the above
conditions $(\Phi 1),$ $(\Phi 2)$ and $(\Phi 3)$ .
(Proof) It is clear that the conditions $(\Phi 1)$ and $(\Phi 2)$ are satisfied. Then,
we show only that the condition $(\Phi 3)$ is satisfied. We put $w_{k}=\Lambda_{1}(t)v_{k}$ ,
$w=\Lambda_{1}(t)v,$ $z_{k}=\Lambda(t)v_{k}$ and $z=\Lambda(t)v$ . It is easily that the following
convergences holds:

$w_{k}arrow w$
$\{\begin{array}{ll}in C([0, t];L^{2}(fl))\cap L^{2}(0,t;H^{1}(fl)),weakly in W^{1,2}(0, t;L^{2}(fl))\cap L^{2}(0, t;H^{2}(\zeta\})),in L^{\infty}(0, t;H^{1}(S2)).\end{array}$

Then, we see from the above convergence that there exist constants
$K_{3},$ $K_{4}>0$ such that the following inequality holds for all $s\in[0, t]$ :

$|z_{k}(s)-z(s)|_{L^{2}(tl)}^{2}$ $\leq K_{3}\int_{l}|\int_{0}^{s}(w_{k}(x, \tau)-w(x, \tau))d\tau|^{2}dx$

$\leq K_{4}|w_{k}-w|_{C([0,t];L^{2}(fl))}^{2}$ .

Hence, we get the following convergences:

$z_{k}arrow z$ in $C([0, t];L^{2}(fl))$ ,

and
$z_{k}(s_{k})arrow z(s)$ in $L^{2}(fl)$ .

At first, we show $1 iin\inf_{karrow\infty}\varphi^{s_{k}}(v_{k};z)\geq\varphi^{s}(v;z)$ for any $\theta\in L^{2}(fl)$ . If
$\lim\inf_{karrow\infty}\varphi^{s_{k}}(v_{k};\theta)=\infty$ , then we already proved. Hence, we only con-
sider the case $C= \lim\inf_{karrow\infty}\varphi^{s_{k}}(v_{k};\theta)<\infty$ . We assume $C<\varphi^{s}(v;\theta)$ .
Fixed $C’\in(C, \varphi^{s}(v;\theta))$ , we can take a subsequence such that

$\varphi^{s_{k}}(v_{k};\theta)\leq\frac{C+C’}{2},$ $\forall k\in$ N.

This implies $\theta\in K(s_{k};v_{k})$ . Then,

$\theta\in H_{0}^{1}(fl)$ with $0\leq\theta\leq 1-z_{k}(s_{k})$ a.e. in $fl$ .

We take a limit as $karrow\infty$ , it is clear that

$\theta\in H_{0}^{1}(\zeta\})$ with $0\leq\theta\leq 1-z(s)$ a.e. in S2.
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Therefore, we have

$z\in K(s;v)$ and $\lim_{karrow\infty}\varphi^{s_{k}}(v_{k};\theta)=\varphi^{s}(v;\theta)$ .

Hence, $C< \varphi^{s}(v;\theta)\leq\frac{C+C’}{2}$ . This is a contradiction.
Secondly, let $\theta\in K(s;v)$ and put $\theta_{k}$ $:= \min\{\theta, 1-z_{k}(s_{k})\}$ . It is

clear that $z_{k}\in K(s_{k};v_{k})$ and $\lim_{karrow\infty}\theta_{k}=\theta$ a.e. in $\zeta$ }. Moreover, since
$\zeta l_{k}$ $:=\{x\in S2; \theta(x)>1-z_{k}(x, s_{k})\}$ , there exists a positive constant $K_{5}$

such that

$|\theta_{k}-\theta|_{H_{0}^{1}(tl)}^{2}$ $= \int_{fl_{k}}|\nabla z_{k}(x, s_{k})|^{2}dx$

$\leq 2\int_{tl_{k}}|\nabla f_{0}(x)|^{2}dx+2K_{3}\int_{Jl_{k}}(J_{0}^{s_{k}}|\nabla w_{k}(x, \tau)|d\tau)^{2}dx$

$\leq 2|\nabla f_{0}|_{C(\overline{fl_{k}})}^{2}|fl_{k}|+2K_{3}T|\zeta 1_{k}|^{\frac{1}{2}}\int_{0}^{t}|\nabla w_{k}(\tau)|_{L^{4}(\ddagger l_{k})}^{2}d\tau$

$\leq K_{5}|\zeta l_{k}|^{\frac{1}{2}}$ ,

which implies that $\theta_{k}arrow\theta$ in $H_{0}^{1}(\zeta])$ , that is $\varphi^{s_{k}}(v_{k};\theta_{k})arrow\varphi^{s}(v;\theta)$ as
$karrow\infty.\blacksquare$

Lemma 3.2. There are non-negative functions $\alpha\in L^{2}(0, T)$ and $\beta\in$

$L^{1}(0, T)$ such that the following condition is fulfilled:
For any $t\in[0, T],$ $v\in \mathcal{V}_{+}^{t},$ $s_{1},$ $s_{2}\in[0, t]$ and any $z\in D(\varphi^{s_{1}}(v;\cdot))$ , there

exists $\tilde{z}\in D(\varphi^{s_{2}}(v;\cdot))$ such that

$| \tilde{z}-z|_{L^{2}(\zeta l)}\leq\int_{s_{1}}^{s_{2}}\alpha(\tau)d\tau(1+\varphi^{s_{1}}(v;z)^{\frac{1}{2}})$

and
$\varphi^{s_{2}}(v;\tilde{z})-\varphi^{s_{1}}(v;z)\leq\int_{s_{1}}^{s_{2}}\beta(\tau)d\tau(1+\varphi^{s_{1}}(v;z))$.

(Proof) We put $\tilde{z}(x)$ $:=z(x)-[\Lambda v](s_{1}, x)+[\Lambda v](s_{2}, x)$ . There is a
positive number $K_{6}$ such that

$|\tilde{z}-z|_{L^{2}(\sigma i)}$ $=|[\Lambda(t)v](s_{1})-.[\Lambda(t)v](s_{2})|_{L^{2}(fl)}$

$\leq|s_{2}-s_{1}|^{\frac{1}{2}}(J_{s_{1}}^{s_{2}}|\frac{d}{d\tau}([\Lambda(t)v](\tau))|_{L^{2}(\ddagger l)}^{2}d\tau)^{\frac{1}{2}}$
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$\leq|s_{2}-s_{1}|^{\frac{1}{2}}(\int_{s_{1}}^{s_{2}}\delta^{2}|[\Lambda_{1}(t)v](\tau)|_{L^{2}(tl)}^{2}d\tau)^{\frac{1}{2}}$

$\leq|s_{2}-s_{1}|^{\frac{1}{2}}(\int_{s_{1}}^{s2}\delta^{2}(|m_{0}|_{L^{2}(\zeta l)}^{2}+K_{6}T|fl|)d\tau)^{\frac{1}{2}}$

$\leq|s_{2}-s_{1}|\delta(|m_{0}|_{L^{2}(tl)}+K^{\frac{1}{62}}T^{\frac{1}{2}}|fl|^{\frac{1}{2}})$

and
$\varphi^{s_{2}}(v;\tilde{z})-\varphi^{s_{1}}(v;z)$

$\leq\frac{1}{2}\int_{tl}k_{n}(s_{2},x, [\Lambda(t)v](s_{2}, x))|\nabla\tilde{z}|^{2}dx-\frac{1}{2}\int_{tl}k_{n}(s_{1}, x, [\Lambda(t)v](s_{1},x))|\nabla z|^{2}dx$

$\leq\frac{1}{2}\int_{c\iota}k_{n}(s_{2}, x, [\Lambda(t)v](s_{2},x))(|\nabla\tilde{z}|^{2}-|\nabla z|^{2})dx$.

$+ \frac{1}{2}\int_{tl}\{k_{n}(s_{2},x, [\Lambda(t)v](s_{2}, x))-k_{n}(s_{1}, x, [\Lambda(t)v](s_{1}, x))\}|\nabla z|^{2}dx$ .

We have the following inequalities by the above first term,

$\frac{1}{2}\int_{\zeta l}k_{n}(s_{2},x, [\Lambda(t)v](s_{2}, x))(|\nabla\tilde{z}|^{2}-|\nabla z|^{2})dx$

$= \frac{1}{2}\int_{l}k_{n}(s_{2}, x, [\Lambda(t)v](s_{2},x))(|\nabla(z-[\Lambda v](s_{1},x)+[\Lambda v](s_{2}, x))|^{2}-|\nabla z|^{2})dx$

$\leq\frac{C_{1}}{2}J_{l}k_{n}(s_{2},x, [\Lambda(t)v](s_{2}, x))(|\nabla([\Lambda v](s_{1},x)-[\Lambda v](s_{2}, x))|^{2})dx$

$\leq\frac{C_{1}K_{1}}{2}J_{fl}|\nabla([\Lambda v](s_{1},x)-[\Lambda v](s_{2}, x))|^{2}dx$

$\leq\frac{C_{1}K_{1}}{2}\int_{tl}\int_{s_{1}}^{S2}|\frac{d}{dr}(\nabla([\Lambda v](s_{1}, x)))|^{2}drdx$

$\leq\frac{C_{1}K_{1}}{2}J_{s_{1}}^{s_{2}}|\frac{d}{dr}(\nabla([\Lambda v](s_{1}, \cdot)))|_{L^{2}(l)}^{2}dr$

$\leq\frac{C_{1}K_{1}}{2}C_{2}(|f_{0}|_{W^{1,\infty}(l)}^{2}|m_{0}|_{L^{2}(l)}^{2}+|m_{0}|_{H^{1}(Jl)}^{4}+|m_{0}|_{H^{1}(l)}^{2})\int_{s1}^{s_{2}}|\nabla v|_{L^{2}(l)}^{2}ds$

$\leq C_{3}\int_{s_{1}}^{\epsilon_{2}}|\nabla v|_{L^{2}(f1)}^{2}ds$,
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and the second term,

$\frac{1}{2}\int_{\zeta l}\{k_{n}(s_{2}, x, [\Lambda(t)v](s_{2}, x))-k_{n}(s_{1}, x, [\Lambda(t)v](s_{1}, x))\}|\nabla z|^{2}dx$

$\leq\frac{1}{2}J_{t1}|k_{n}(s_{2}, x, [\Lambda(t)v](s_{2}, x))-k_{n}(s_{2}, x, [\Lambda(t)v](s_{1}, x))||\nabla z|^{2}dx$

$+ \frac{1}{2}l_{fl}|k_{n}(s_{2}, x, [\Lambda(t)v](s_{1}, x))-k_{n}(s_{1}, x, [\Lambda(t)v](s_{1}, x))||\nabla z|^{2}dx$

$\leq\frac{1}{2}\int_{tl}K_{2}|[\Lambda(t)v](s_{2}, x)-[\Lambda(t)v](s_{1}, x)||\nabla z|^{2}dx$

$+ \frac{1}{2}\int_{t2}\int_{s_{1}}^{s_{2}}|\frac{d}{dr}(k_{n}(r, x, [\Lambda(t)v](s_{1}, x)))||\nabla z|^{2}dx$

$\leq\frac{K_{2}+1}{2}l_{s_{1}}^{s_{2}}l_{f1}\{|\frac{d}{dr}[\Lambda(t)v](r, x)|+|\frac{d}{dr}(k_{n}(r, x, [\Lambda(t)v](s_{1}, x)))|\}|\nabla z|^{2}dxdr$

$\leq\frac{K_{2}+1}{2}l_{s_{1}}^{s_{2}}\{|\frac{d}{dr}[\Lambda(t)v](r, \cdot)|L\infty(tl) +| \frac{d}{dr}(k_{n}(r, \cdot, [\Lambda(t)v](s_{1}, \cdot)))|_{L(l)}\infty\}|\nabla z|_{L^{2}(tl)}^{2}dr$

$\leq\frac{K_{2}+1}{2}J_{s_{1}}^{s_{2}}\{C_{4}|\nabla v|_{L^{2}(tl)}+|\frac{d}{dr}(k_{n}(r, \cdot, [\Lambda(t)v](s_{1}, \cdot)))|_{L(tl)}\infty\}|\nabla z|_{L^{2}(tl)}^{2}dr$

$\leq J_{s_{1}}^{s2}C_{5}\{|\nabla v|_{L^{2}(fl)}+|\frac{d}{dr}(k_{n}(r, \cdot, [\Lambda(t)v](s_{1}, \cdot)))|_{L(tl)}\infty\}|\nabla z|_{L^{2}(l)}^{2}dr$,

where, $C_{i}(i=1,2,3,4,5)$ are some constants.
Then, we put the functions $\alpha(\tau)$ $:=\delta(|m_{0}|_{L^{2}(tl)}+K^{\frac{1}{62}}T^{\frac{1}{2}}|\zeta l|^{\frac{1}{2}})$ and

$\beta(\tau):=(C_{5}+1)|\nabla v(\tau)|_{L^{2}(tl)}+|\frac{d}{d\tau}(k_{n}(\tau, \cdot, [\Lambda(t)v](s_{1}, \cdot)))|_{L\infty(\zeta\})}$ ,

the above inequalities are satisfied. $\blacksquare$

4 The auxiliary problem
We corisider the following initial value problem with subdifferential

operator. For each $t\in[0, T],$ $v\in V(-\delta_{0}, t)$ and $w\in L^{\infty}(0, T;H_{0}^{1}(f1))$ ,

(APl) $\{\begin{array}{l}n’(s)+\partial\varphi^{s}(v;n(s))\ni G(s, w(s), [\Lambda(t)w](s)) in L^{2}(\zeta\}), a.e. s\in(0, t),n(s)=n_{0}(s) in L^{2}( ), \forall s\in[-\delta_{0},0],\end{array}$
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where $\varphi^{s}(v;\cdot)$ is defined corlvex function in above sectiorl, $\partial\varphi^{s}(v;\cdot)$ is
subdifferential operator of $\varphi^{s}(v;\cdot)$ with respect to the second variable
and $G$ is the functional defined by

$G(s,w(s), [\Lambda(t)w](s)):=-\lambda\nabla\cdot(w\nabla[\lambda(t)w])+\mu w(1-w-[\Lambda(t)w])$ in $L^{2}(fl)$ .

Proposition 4.1. (cf.[14]) The problem (APl) has a unique solution $n$ .
And there exists a positive number $K_{7}$ such that

1 $n’|_{L^{2}(Q_{t})}^{2}+ \sup_{0\leq s\leq t}\varphi^{s}(v;n(s))\leq K_{7}(1+|n_{0}|_{H_{0}^{1}(t1)}^{2}+|G(\cdot, w, [\Lambda(t)w])|_{L^{2}(Q_{t})}^{2})$ .

We get a uniform estimate of perturbation $G$ for the following lemma.

Lemma 4.1. There exists a positive number $K_{8}$ and strictly increasing
functions $K_{9}(\cdot)$ on $[0, T]$ with $K_{8}(0)=0$ such that

$|G(\cdot,$ $w,$ $[\Lambda(t)w])|_{L^{2}(Q_{t})}^{2}\leq K_{8}(|\lambda|_{L^{\infty}(Q_{\ell})}|f_{0}|_{H^{2}(\zeta 1)}+|\mu|_{L}\infty(Q_{t}))$

$+K_{9}(t)|\lambda|\infty(|f_{0}|_{W^{1,\infty}}(tl)+1)(|f_{0}|_{W^{1,\infty}}$(S2) $+|m_{0}|_{H^{2}}$ (S2) $+|w|_{L^{\infty}}(0,T;H_{0}^{1}(\zeta l)))^{2}$ .

In this paper, we omit the proof of this Lemma, because that is already
proved by [3]. Using the above lemma, we can get the solution of the next
auxiliary problem.

Proposition 4.1. For each $t\in[0, T]$ and $v\in V(-\delta_{0}, t)$ , there are positive
numbers $M_{1}$ and $T_{0}\in(0, T]$ such that the following problem (AP2),

(AP2) $\{\begin{array}{l}n’(t)+\partial\varphi^{s}(v;n(t))\ni G(t,n(t), [\Lambda(T_{0})n](t)) in L^{2} (S2), a.e. s\in(0, T_{0}),n(t)=n_{0}(t) in L^{2}(\zeta l), \forall t\in[-\delta_{0},0],\end{array}$

has the unique solution $n_{v}$ satisfying

$|n_{v}’|_{L^{2}(Q_{T_{O}})}^{2}+ \sup_{0\leq t\leq T_{0}}\varphi^{t}(v;n_{v}(t))\leq M_{1}$ .

(Proof) We fix a positive nurnber $M_{1}$ such that

$M_{1}>K_{7}(1+|n_{0}|_{H_{0}^{1}(tl)}+K_{8}(|\lambda|_{L^{\infty}(Q_{T})}|f_{0}|_{H^{2}(l1)}+|\mu|_{L^{\infty}(Q_{T})}))$ ,

92



and define a non-empty, closed artd convex set by

$W_{M_{1}};= \{w\in V(-\delta_{0}, T);|w’|_{L^{2}(Q_{T_{0}})}^{2}+\sup_{0\leq t\leq T_{0}}\varphi_{0}(w(t))\leq M_{1}\}$ .

For each $t\in[0, T],$ $v\in V(-\delta_{0}^{-}, t)$ and $w\in W_{M_{1}}$ , by the proposition 4.1.
and Lemma 4.1., there is a positive number $T_{0}\in(0, T]$ such that

$K_{9}(T_{0}) \leq\frac{M_{1}-K_{7}(1+,|n_{0}|_{H_{0}^{1}(tl)}+K_{8}(|,\lambda|_{L^{\infty}(Q_{T})}|f_{0}|_{H^{2}(t1)}+|\mu|_{L^{\infty}(Q_{T})}))}{K_{7}|\lambda|_{L(Q_{t})}\infty(|f_{0}|_{W^{1\infty}(\zeta l)}+1)(|f_{0}|_{W^{1\infty}(Jl)}+|m_{0}|_{H^{2}(tl)}+|w|_{L^{\infty}(0,T;H_{0}^{1}(\zeta l))})^{2}}$,

hence, the solution of (AP2) is $n_{vw}\in W_{M_{1}}$ .
Next, we define the operator $S(v)$ on $W_{M_{1}}$ by

$[S(v)w](s)=\{\begin{array}{ll}n_{0}(s) if s\in[-\overline{\delta}_{0},0]n_{vw}(s) if s\in(0, T_{0}] for \forall w\in W_{M_{1}}.n_{vw}(T_{0}) if s\in(T_{0}, T]\end{array}$

Then, $S(v)$ : $W_{M_{1}}arrow W_{M_{1}}$ holds. We show that $S(v)$ is continuous in
$C([0, T];L^{2}(ft))$ . Let be $w_{k},$ $w\in W_{M_{1}}$ and $w_{k}arrow w$ in $C([0, T];L^{2}(ff))$ as
$karrow\infty$ . Then, we see that the following convergences hold:

$\Lambda_{1}(T)w_{k}arrow\Lambda_{1}(T)w$ $\{\begin{array}{l}in C([0, T];H^{1}(fl))\cap L^{2}(0, T;H^{2}(S2)),*- weakly in L^{\infty}(0, T;H^{2}(f1)),\end{array}$

$(\Lambda_{1}(T)w_{k})’arrow(\Lambda_{1}(T)w)’$ weakly in $L^{2}(0, T;H^{1}(\zeta\}))$ .

Then, we have that $G(\cdot, w_{k}, \Lambda(T_{0})w_{k})arrow G(\cdot, w, \Lambda(T_{0})w)$ weakly in $L^{2}(Q_{T_{0}})$ .
And We derive $S(v)w_{k}arrow S(v)w$ in $C([0, T];L^{2}(\zeta\}))$ .

Hence, we use the Schauder‘s fixed point theorern, we see that $S(v)$ has
at least one fixed point $\tilde{n}$ , i.e. $S(v)\tilde{n}=\tilde{n}$ in $W_{M_{1}}$ . Then, $\tilde{n}$ is a solution
of (AP2) on $[0, T_{0}]$ .

Finally, we show the uniqueness of solutions of (AP2). Let $n_{1},$ $n_{2}$ be
solutions of (AP2) on $[0, T_{0}]$ . We consider the following system with
$m_{i}=\Lambda_{1}(T_{0})n_{i},$ $(i=1,2)$ :

$(m_{1}-m_{2})’-k_{m}\triangle(m_{1}-m_{2})+C_{1}(m_{1}-m_{2})=C_{2}(n_{1}-n_{2})$ (1)

$\nabla(m_{1}-m_{2})\cdot\nabla n=0$

$(m_{1}-m_{2})(0)=0$
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We multiply (4.1) by $(m_{1}-m_{2})$ and $\nabla(4.1)$ by $\nabla(m_{1}-m_{2})$ , and the
following irlequality is satisfied:

$\sup_{0\leq s\leq t}|m_{1}(s)-m_{2}(s)|_{H^{1}(\zeta))}^{2}+\int_{0}^{t}|m_{1}(s)-m_{2}(s)|_{H^{2}(l1)}^{2}ds$

$\leq K_{10}\int_{0}^{t}|n_{1}(s)-n_{2}(s)|_{H_{0}^{1}(tl)}^{2}ds$,

for $\forall r\in[0, T_{0}]$ , where $K_{10}$ is a some positive constant. And we consider
the energy inequality for the tumor equation, the following inequality
holds:

$\frac{1}{2}\frac{d}{dt}|n_{1}-n_{2}|_{L^{2}(t1)}+2\varphi_{0}(n_{1}-n_{2})$

$\leq(G(n_{1}, \Lambda(T_{0})n_{1})-G(n_{2}, \Lambda(T_{0})n_{2}), n_{1}-n_{2})_{L^{2}(tl)}$ .
Next, we show the estimate of perturbation. Since the following inequal-
ities are satisfied;

$(G(n_{1}, \Lambda(T_{0})n_{1})-G(n_{2}, \Lambda(T_{0})n_{2}), n_{1}-n_{2})_{L^{2}(l)}$

$=- \int_{l}\lambda\nabla\cdot(n_{1}-n_{2})\nabla(\Lambda(T_{0})n_{1}-\Lambda(T_{0})n_{2})(n_{1}-n_{2})dx$

$+J_{\iota\iota^{\mu(n_{1}-n_{2})^{2}(1-}}(n_{1}-n_{2})-(\Lambda(T_{0})n_{1}-\Lambda(T_{0})n_{2}))dx$

$\leq\frac{|\lambda|_{L^{\infty}(1l)}}{2K_{0}}\int_{l}|\nabla(\Lambda(T_{0})n_{1}-\Lambda(T_{0})n_{2})|^{2}dx+\varphi_{0}(n_{1}-n_{2})+\int_{t1}|\mu|dx$ ,

and

$\int_{\zeta l}|\nabla(\Lambda(T_{0})n_{1}-\Lambda(T_{0})n_{2})|^{2}dx\leq 2t\delta^{2}J_{0}^{t}|\nabla(m_{1}-m_{2})|_{L^{2}(11)}2ds$ ,

there are a positive constants $K_{11}$ which depend on some constants $K_{0}$ ,
$k_{m},$ $C_{1},$ $\delta,$ $C_{2}^{Y},$ $T,$ $|fl|,$ $|\lambda|_{L^{\infty}(Q_{T_{O}})}$ and $|\mu|_{L^{\infty}(Q_{T_{O}})}$ , such that

$\frac{d}{dt}|n_{1}-n_{2}|_{L^{2}(Jl)}+\varphi_{0}(n_{1}-n_{2})\leq K_{11}\int_{0}^{t}|n_{1}-n_{2}|_{L^{2}(t1)}^{2}ds$.

We put the functional $\Phi(t)$ by

$\Phi(t)=|n_{1}-n_{2}|_{L^{2}(tl)}^{2}+K_{11}J_{0}^{t}|n_{1}-n_{2}|_{L^{2}(t1)}^{2}ds$ .

By the $Gro\iota 1_{Wd}11’ sir$lequality, $\Phi(t)\leq e^{K_{11}T}\Phi(0)=0$ holds. Narnely,

$|n_{1}-n_{2}|_{L^{2}(t1)}^{2}+K_{11} \int_{0}^{t}|n_{1}-n_{2}|_{L^{2}(1)}^{2}ds\leq 0$.

Hence $n_{1}(t)=n_{2}(t)$ in $L^{2}(\zeta))$ for $t\in[0, T_{0}].\blacksquare$
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5 Proof of Theorem 2.1.
Let $M_{1}$ and $T_{0}$ be the same one as the above section. We define a

non-empty, closed and convex set $\mathcal{W}_{M_{1}}(T_{0})$ too, by

$\mathcal{W}_{M_{1}}(T_{0}):=\{v\in V(-\delta_{0}, T_{0});|v^{l}|_{L^{2}(Q_{T_{0}})}^{2}+\sup_{0\leq t\leq T_{0}}\varphi_{0}(v(t))\leq M_{1}\}$ ,

and the solution operator 6 from $\mathcal{W}_{M_{1}}(T_{0})$ by $\mathfrak{S}v=n_{v}$ for all $v\in$

$\mathcal{W}_{M_{1}}(T_{0})$ ( $n_{v}$ is the solution of (AP2) by the proposition 4.1.).
It is clear that $\mathfrak{S}v\in \mathcal{W}_{M_{1}}(T_{0})$ . Next, we show that the operator (f5 is

continuous in $C([0, T_{0}];L^{2}(\zeta]))$ . Take $\{v_{k}\}\subset \mathcal{W}_{M_{1}}(T_{0})$ and $v\in \mathcal{W}_{M_{1}}(T_{0})$

so that

$v_{k}arrow v$ $\{\begin{array}{l}in C([0, T_{0}];L^{2}(fl)),weakly in W^{1,2}(0, T_{0};L^{2}(S2)),*- weakly in L^{\infty}(0, T_{0};H_{0}^{1}(\zeta l)).\end{array}$

For each $k\in N$ , we define $n_{k}$ $:=6v_{k}$ . By the definition of closed set
$\mathcal{W}_{M_{1}}(T_{0})$ , there exists $n$ such that

$n_{k}arrow n$
$\{\begin{array}{l}in C([0, T_{0}];L^{2}(\zeta l)),weakly in W^{1,2}(0, T_{0};L^{2}(\zeta\})),*- weakly in L^{\infty}(0, T_{0};H_{0}^{1} (S2)).\end{array}$

For each $k\in N$ , we define $m_{k}$ $:=\Lambda_{1}(T_{0})n_{k}$ , and $f_{k}$ $:=\Lambda(T_{0})n_{k}$ , we observe
that

$m_{k}arrow m$ $\{\begin{array}{l}in C([0, T_{0}];H^{1}(\zeta\})),weakly in W^{1,2}(0, T_{0};H^{1}(fl)),*- weakly in L^{\infty}(0, T_{0};H^{2}(\zeta\})),\end{array}$

and

$f_{k}arrow f$ $\{\begin{array}{l}in C([0, T_{0}];H^{1}(\zeta\})),*- weakly in L^{\infty}(0, T_{0};H^{2}(S2)),\end{array}$

$f_{k}’arrow f’$ weakly in $W^{1,2}(0, T_{0};H^{1}(\zeta l))$ ,

where $m:=\Lambda_{1}(T_{0})n$ and $f$ $:=\Lambda(T_{0})n$ . Furthermore, the perturbation $G$

has the following continuous;

$G(n_{k}, f_{k})arrow G(n, f)$ weakly in $L^{2}(Q_{T_{0}})$ ,
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by the estimate of $G$ in the above section. For any $\eta\in L^{2}(0,T_{0};H_{0}^{1}(\zeta]))$

with $\eta\in K(t,n)$ , we put $\eta_{k}:=\min\{\eta, 1-\Lambda(T_{0})n_{k}\}$ , then $\eta_{k}\in K(t, n_{k})$ .
Herice, the followirlg inequality is satisfied;

$l_{0}^{T_{0}}(n_{k}^{l}, n_{k}-z_{k})_{L^{2}(tl)}dt+ \int_{0}^{T_{0}}(k_{n}\nabla n_{k}, \nabla(n_{k}-\eta_{k}))_{L^{2}(t1)}dt$

$\leq\int_{0}^{T_{0}}(G(n_{k}, \Lambda(T_{0})n_{k}), n_{k}-\eta_{k})dt$ .

Sirlce $\Lambda(T_{0})n_{k}arrow\Lambda(T_{0})n$ in $C([0, T_{0}];H^{1}(fl))ae’karrow\infty$ , we take the limit
in the above inequality. We see that the following inequality holds;

$\int_{0}^{T_{0}}(n’, n-z)_{L^{2}(tl)}dt+\int_{0}^{T_{0}}(k_{n}\nabla n, \nabla(n-\eta))_{L^{2}(t1)}dt$

$\leq\int_{0}^{T_{0}}(G(n, \Lambda(T_{0})n), n-\eta)dt$ .

Hence, $n$ is the solution of (P) on $[0, T_{0}]$ . Namely, $n=\mathfrak{S}v$ . Therefore,
the operator C5 : $\mathcal{W}_{M_{1}}(T_{0})arrow \mathcal{W}_{M_{1}}(T_{0})$ is continuous in $C([0, T_{0}];L^{2}(\zeta f))$ .

Using the Schauder $s$ fixed point theorem, C5 has at least one fixed
point $n$ in $\mathcal{W}_{M_{1}}(T_{0})$ i.e. $n=\mathfrak{S}n$ . We cari dieck from Definition 2.2. that
$\{n, f, m\}$ is a solution of (P) on $[0, T_{0}]$ , easily. $\blacksquare$
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