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1 Introduction
The spreading (migration) of an invasive or new species is one of the most

important topics in mathematical ecology. A lot of mathematicians have made
efforts to develop various invasion models and investigated them from a view-
point of mathematical ecology. For example, invasion problem was first stud-
ied mathematically by Skellam [12]. After Fisher $s$ work [5], travelling wave
solutions for reaction-diffusion equations have been much used to model the
successful invasions. See [11] for more detailed information.

Recently, Du and Lin [4] have proposed a new mathematical model to un-
derstand the spreading of an invasive or new species. Their model is described
as a free boundary problem for a logistic diffusion equation:

$\{\begin{array}{ll}u_{t}-du_{xx}=u(a-\dagger yu), t>0,0<x<h(t),u_{x}(t, 0)=0, u(t, h(t))=0, t>0,h’(t)=-\mu u_{x}(t, h(t)), t>0,h(O)=h_{0}, u(0, x)=u_{0}(x), 0\leq x\leq h_{0},\end{array}$ (1.1)

where $\mu,$ $h_{0},$ $d,$ $a$ and $b$ are given positive numbers and $u_{0}$ is a given nonnega-
tive initial function. In (1.1), $u=u(t, x)$ represents a population density of an
invasive or new species in one dimensional habitat. A free boundary $x=h(t)$

is a spreading front of the species, while $x=0$ is the fixed boundary where
no-flux boundary condition is imposed. The dynamics of the free boundary
is determined by Stefan-like condition $h’(t)=-\mu u_{x}(t, h(t))$ . This condition
means that the population pressure at the free boundary is a driving force of
the free boundary.

They derived various results about the asymptotic behavior of solutions for
(1.1) as $tarrow\infty$ . One of very remarkable results is a spreading-vanishing di-
chotomy of the species; any solution $(u, h)$ of (1.1) satisfies one of the following
properties:

(a) $h(t)arrow\infty$ and $u(t, x)arrow a/b$ as $tarrow\infty$ (called spreading of species);

(b) $h(t)arrow h_{\infty}\leq(\pi/2)\sqrt{d}/1i$ and $u(t, x)arrow 0$ as $tarrow\infty$ (called vanishing of
species).
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When the spreading occurs, it is also proved that the spreading speed ap-
proaches to a positive constant $k_{0}$ , i.e., $h(t)=(k_{0}+o(1))t$ as $tarrow\infty$ . See
also the paper of Du and Guo [3], where a free boundary problem similar to
(1.1) is studied in higher space dimension and the same spreading-vanishing
dichotomy is established. Moreover, free boundary problems for two species
model are considered by [8] and [10].

Stimulated by the work of Du and Lin, we will study a free boundary
problem for a reaction-diffusion equation with general nonlinearity and find
the underlying principle to determine spreading or vanishing of species. Our
free boundary problem is given by

(FBP) $\{\begin{array}{ll}u_{t}-du_{xx}=uf(u), t>0,0<x<h(t),u(t, 0)=0, u(t, h(t))=0, t>0,h’(t)=-\mu u_{x}(t, h(t)), t>0,h(O)=h_{0}, u(0, x)=u_{0}(x), 0\leq x\leq h_{0},\end{array}$

where $\mu,$
$h_{0}$ and $d$ are positive constants and $f$ is a locally Lipschitz continuous

function satisfying
$f(u)<0$ for $u>K$ (1.2)

with a positive constant $K$ . Initial data $(u_{0}, h_{0})$ satisfies

$u_{0}\in C^{2}[0, h_{0}]$ (1.3)

with
$u_{0}(0)=u_{0}(h_{0})=0$ and $u_{0}\geq 0(\not\equiv 0)$ in $(0, h_{0})$ . (1.4)

Differently from (1.1), we put zero Dirichlet boundary condition at the fixed
boundary. This condition means that the habitat is restricted by a hostile
environment from the left and that the species cannot survive on the fixed
boundary.

Here it should be noted that the proof of the dichotomy theorem of Du and
Lin [4, Theorem 3.3] basically depends on the logistic nonlinearity. Therefore,
we have to develop new methods and ideas which enable us to study spreading
and vanishing properties in general situation.

In this article, we present recent results obtained by our work [7]; so the
proofs are shown in [7].

The main purposes of our work are as follows:

(i) Study global existence and uniqueness of solutions for a free boundary
problem with general nonlinear term;

(ii) Construct useful tools to analyze the asymptotic behaviors of solutions
for (FBP);

(iii) Make clear the mechanism of the asymptotic behaviors;

(iv) Make use of the results to get a better understanding for the invasion
phenomenon.
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Before giving the main results, we define spreading and vanishing of the
species. We can prove that the free boundary is strictly increasing with respect
to $t$ and there exists $h_{\infty}$ $:= \lim_{tarrow\infty}h(t)\in(O$ , oo$]$ .

Definition 1. Let $(u, h)$ be the solution of (FBP).

(I) Spreading of species is the case when

$h_{\infty}=\infty$ and $\lim\inf u(t,x)tarrow\infty>0$ for $0<x<\infty$ ;

(II) Vanishing of species is the case when

(i) $h_{\infty}<\infty$ and
or

(ii) $h_{\infty}=\infty$ and

2 Main Results

$\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$

$\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$ .

2.1 Fundamental Properties
We begin with the following global existence theorem for (FBP).

Theorem 1. The free boundary problem (FBP) has a unique solution $(u, h)$

satisfying

$0<u(t, x)\leq C_{1}$ , $0<h’(t)\leq\mu C_{2}$ for $0<x<h(t),$ $t\geq 0$ ,

where $C_{1}$ (resp. $C_{2}$ ) is a positive constant depending only on 1 $u_{0}\Vert_{C[0,h_{0}]}$ (resp.
$|u_{0}\Vert_{C^{1}[0,h_{0}]})$ .

We will show basic tools to investigate asymptotic behaviors of solutions
for (FBP). The following is a comparison principle.

Theorem 2. Let $\overline{h}\in C^{1}[0, T]$ and $\overline{u}\in C(\overline{\Omega}_{1})\cap C^{1,2}(\Omega_{1})$ with $\Omega_{1}=\{(t, x)\in$

$\mathbb{R}^{2}|0\leq x\leq\overline{h}(t)$ for $0<t\leq T$} satisfy

$\{\begin{array}{ll}\overline{u}_{t}-K\overline{u}_{xx}\geq\overline{u}f(\overline{u}), (t, x)\in\Omega_{1},\overline{u}(t, 0)\geq 0, \overline{u}(t,\overline{h}(t))=0, t\in(O, T],\overline{h}’(t)\geq-\mu\overline{u}_{x}(t,\overline{h}(t)), t\in(0, T].\end{array}$ (2.1)

Moreover, let $\underline{h}\in C^{1}[0, T]$ and $\underline{u}\in C(\overline{\Omega}_{2})\cap C^{1,2}(\Omega_{2})$ with $\Omega_{2}=\{(t, x)\in$

$\mathbb{R}^{2}|0\leq x\leq\underline{h}(t)$ for $0<t\leq T$} satisfy (2.1) with $”\geq$ “ and $\Omega_{1}$
“ replaced

$by$ $”\leq"$ and $\Omega_{2}$“, respectively. If $\underline{h}(0)\leq\overline{h}(0)$ and $\underline{u}(O, x)\leq 0(0, x)$ in
$[0,\underline{h}(O)]$ , then it holds that

$\underline{h}(t)\leq\overline{h}(t)$ in $[0, T]$ and $\underline{u}(t,x)\leq 0(t, x)$ in $\overline{\Omega}_{2}$ .
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Remark 1. When $(0,\mathscr{W}$ satisfies (2.1), $\overline{h}(0)\geq h_{0}$ and $0(0, x)\geq u_{0}(x)$ in
$[0, h_{0}]$ , such a pair is called an upper solution of (FBP) for $0\leq t\leq T.$ A lower
solution of (FBP) is defined in a similar manner.

We can derive an important energy identity for any global solution.

Theorem 3. Let $(u, h)$ be any solution of (FBP). Then the following identity
holds true:

$\frac{d}{2}\Vert u_{x}(t, \cdot)\Vert_{L^{2}(0,h(t))}^{2}+\int_{0}^{t}\Vert u_{t}(s, \cdot)\Vert_{L^{2}(0,h(s))}^{2}ds+\frac{d}{2\mu^{2}}\int_{0}^{t}h’(s)^{3}ds$

$= \frac{d}{2}\Vert u_{0}’\Vert_{L^{2}(0,h_{0})}^{2}+\int_{0}^{h(t)}F(u(t, x))dx-\int_{0}^{h_{0}}F(u_{0}(x))dx$,

where $F(u)= \int_{0}^{u}sf(s)ds$ .

Remark 2. Theorems 1 and 3 also hold true if zero Diri chlet boundary con-
dition on the fixed boundary in (FBP) is replaced by zero Neumann boundary
condition.

2.2 Asymptotic Behaviors of Solutions for (FBP)
By Theorem 1, $h’(t)>0$ ; so that $h_{\infty}$

$:= \lim_{tarrow\infty}h(t)$ exists with $h_{\infty}\in(0, \infty]$ .
The following theorem implies the vanishing property.

Theorem 4. Let $(u, h)$ be any solution of (FBP). If $h_{\infty}<\infty$ , then

$\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$ .

In the following theorem, we will give a sufficient condition of spreading.

Theorem 5. Suppose that $q(x)$ is a positive solution of

$\{\begin{array}{l}dq’’+qf(q)=0, 0<x<h_{0},q(O)=q(h_{0})=0, q(x)>0, 0<x<h_{0}.\end{array}$ (2.2)

Let $(u, h)$ be the solution of (FBP) with initial data $(q, h_{0})$ . Then the following
properties hold true:

(i) $h_{\infty}=\infty$ ;

(ii) $u_{t}(t, x)\geq 0$ for $0<x<h(t)$ and $t>0$ ;

(iii) $\lim_{tarrow\infty}u(t, x)=v^{*}(x)$ uniformly in any compact subset of $[0, \infty)$ ,

where $v^{*}$ is a minimal positive solution of

$\{\begin{array}{l}dv’’+vf(v)=0, x>0,v(O)=0, v(x)>0, x>0\end{array}$ (2.3)

satisfying $v^{*}(x)\geq q(x)$ in $[0, h_{0}]$ .

111



We can prove the following spreading property as an immediate conse-
quence of Theorems 2 and 5.
Corollary 1. Let $q(x)$ be a positive solution of (2.2) and let $(u, h)$ be the
solution of (FBP) with initial data $(u_{0}, h_{0})$ . If $u_{0}(x)\geq q(x)$ in $[0, h_{0}]$ , then

$h_{\infty}=$ oo and $\lim\inf u(t, x)tarrow\infty\geq v^{*}(x)$ for $x\geq 0$ ,

where $v^{*}$ is a minimal positive solution of (2.3) satisfying $v^{*}(x)\geq q(x)$ in
$[0, h_{0}]$ .

Here is an estimate for the asymptotic speed of the free boundary in the
spreading case. From Theorem 1, we can prove the following.

Proposition 1. Let $(u, h)$ be any solution for (FBP). If $h_{\infty}=\infty$ , then there
$sts$ a constant $C$ such that

$\lim_{tarrow}\sup_{\infty}\frac{h(t)}{t}\leq\mu C$.

2.3 Application I : Asymptotic Behaviors in the Logistic
Type

As an application of the main results, we will consider the following free
boundary problem with a logistic reaction term:

$\{\begin{array}{ll}u_{t}=du_{xx}+u(a-bu), t>0,0<x<h(t),u(t, 0)=u(t, h(t))=0, t>0,h’(t)=-\mu u_{x}(t, h(t)), t>0,h(O)=h_{0}, u(0, x)=u_{0}(x), 0\leq x\leq h_{0}.\end{array}$ (2.4)

Here $\mu,$ $h_{0},$ $d,$ $a$ and $b$ are given positive constants and $(u_{0}, h_{0})$ satisfies (1.3)
and (1.4).

The purpose is to study asymptotic behavior of the solution of (2.4) in more
detail. We will prepare some results on an auxiliary fixed boundary problem
with logistic nonlinearity:

$\{\begin{array}{ll}u_{t}=du_{xx}+u(a-t_{J}u), t>0,0<x<l,u(t, 0)=u(t, l)=0, t>0,u(0, x)=\varphi(x), 0\leq x\leq l,\end{array}$ (2.5)

where $l$ is a positive number and $\varphi$ is a nonnegative continuous function such
that $\varphi\not\equiv 0$ . Since this is a gradient system, any solution $u(t,x)$ of (2.5)
converges to a solution of the corresponding stationary problem as $tarrow\infty$ (see
[1] and [6] $)$ :

$\{\begin{array}{l}dq’’+q(a-bq)=0, 0<x<l,q(0)=q(l)=0,q(x)\geq 0, 0<x<l.\end{array}$ (2.6)

To be more precise, we have the following result.
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Proposition 2. Let $u=u(t, x)$ be any solution of (2.5).

(I) If $a\leq d(\pi/l)^{2}$ , then $q\equiv 0$ is a unique solution of (2.6) and $\lim_{tarrow\infty}u(t, x)=$

$0$ uniformly in $[0, l]$ ;

(II) If $a>d(\pi/l)^{2}$ , then (2.6) has a unique positive solution $q=q_{l}(x)$ and
$\lim_{tarrow\infty}u(t, x)=q_{l}(x)$ uniformly in $[0, l]$ .

For the proof, see, e.g., Cantrell and Cosner [2, Corollary 3.4].

We are now ready to study spreading and vanishing properties. The fol-
lowing theorem implies the vanishing.

Theorem 6. Let $(u, h)$ be any solution of (2.4). If $h_{\infty}<\infty$ , then

$h_{\infty}\leq\pi\sqrt{\frac{d}{a}}$ and $tarrow\infty 1\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$.

The spreading in the logistic case is given by the following theorem.

Theorem 7. Let $(u, h)$ be any solution for (2.4). If $h_{\infty}=\infty$ , then $\lim_{tarrow\infty}$

$u(t, x)=v_{L}(x)$ uniformly in any compact subset of $[0, \infty)$ , where $v_{L}$ is a unique
positive solution of

$\{\begin{array}{l}dv’’+v(a-b\eta j)=0, x>0,v(0)=0.\end{array}$ (2.7)

Combining Theorems 6 and 7, we have the following dichotomy theorem
in the logistic case.

Theorem 8. Let $(u, h)$ be any solution of (2.4). Then, either (I) or (II) holds
true:

(I) Spreading: $h_{\infty}=\infty$ and $\lim_{tarrow\infty}u(t, x)=v_{L}(x)$ uniformly in any compact
subset of $[0, \infty)$ , where $v_{L}$ is a positive solution of (2.7);

(II) Vanishing: $h_{\infty}\leq\pi\sqrt{d/a}$ and $\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$ .

In the latter part, we will prove that both spreading and vanishing can
happen depending on initial data.

Proposition 3. If $h_{0}\geq\pi\sqrt{d}/a$ , then $h_{\infty}=\infty$ .

Proof. If we assume $h_{\infty}<\infty$ , Theorem 6 implies $h_{\infty}\leq\pi\sqrt{d}/a$. However, it
follows from $h’(t)>0$ and $h_{0}\geq\pi\sqrt{d}/a$ that $h_{\infty}$ must satisfy $h_{\infty}>\pi\sqrt{d}/a$.
This is a contradiction. $\square$

Proposition 4. Suppose $h_{0}<\pi\sqrt{d}/a$ and define
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$\overline{\mu}=\max\{1,$ $\frac{b}{a}\Vert u_{0}\Vert_{C[0,h_{0}]}\}d(\frac{\pi^{2}d}{a}-h_{0}^{2})(2\int_{0}^{h_{0}}xu_{0}(x)dx)^{-1}$ .

If $\mu\geq\overline{\mu}$ , then $h_{\infty}=$ oo.

The following theorem shows the existence of a threshold number $\mu^{*}\geq 0$ ,
which separates the spreading and vanishing in case $h_{0}<\pi\sqrt{d}/a$.

Theorem 9. Assume $h_{0}<\pi\sqrt{d}/a$ . Then there enists a constant $\mu^{*}\in[0,\overline{\mu})$

depending on $u_{0}$ and $h_{0}$ such that, if $\mu\leq\mu^{*}$ , then $h_{\infty}\leq\pi\sqrt{d}/a$ , while if
$\mu>\mu^{*}$ , then $h_{\infty}=\infty$ . Here $\overline{\mu}$ is a positive number given in Proposition 4.
Moreover, if $h_{0}<(\pi/2)\sqrt{d}/a$ , then $\mu^{*}>0$ .

2.4 Application II : Asymptotic Behaviors in the Bistable
Type

We will apply the preceding results to the following free boundary problem
with a bistable reaction term:

$\{\begin{array}{ll}u_{t}=du_{xx}+u(u-c)(1-u), t>0,0<x<h(t),u(t, 0)=u(t, h(t))=0, t>0,h’(t)=-\mu u_{x}(t, h(t)), t>0,h(O)=h_{0}, u(0, x)=u_{0}(x), 0\leq x\leq h_{0},\end{array}$ (2.8)

where $\mu,$
$h_{0}$ and $d$ are positive constants and $c$ is a constant satisfying $0<c<$

$1/2$ . In addition, $(u_{0}, h_{0})$ is assumed to satisfy (1.3) and (1.4).
To study the asymptotic behavior of solutions for (2.8), we will prepare

some results on auxiliary fixed boundary problems. Let $l$ be any positive
number and let $\varphi$ be a nonnegative continuous function such that $\varphi\not\equiv 0$ . We
consider

$\{\begin{array}{ll}u_{t}=du_{xx}+u(u-c)(1-u), t>0,0<x<l,u(t, 0)=u(t, l)=0, t>0,u(0, x)=\varphi(x), 0<x<l\end{array}$ (2.9)

and the related stationary problem:

$\{\begin{array}{l}dq’’+q(q-c)(1-q)=0, 0<x<l,q(0)=q(l)=0,q(x)\geq 0, 0<x<l.\end{array}$ (210)

Here it should be noted that (2.9) is a gradient system; so that any solution
$u(t, x)$ of (2.9) converges to a stationary solution of (2.10) as $tarrow$ oo (see
Brunovsky and Chow [1] and Hale and Massatt [6] $)$ .

As to the structure of solutions to (2.10), we have the following results.

Proposition 5. There exists a positive number $L$ with the following properties.
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(i) If $l<L$ , then $q\equiv 0$ is a unique solution of (2.10);

(ii) If $l=L$ , then there exists a unique positive solution $q(x;L)$ of (2.10);

(iii) If $l>L$ , then (2.10) has two positive solutions $q_{1}(x;l)$ and $q_{2}(x;l)$ such
that $q_{1}(x;l)<q_{2}(x;l)m(0, l)$ .

For the proof of this proposition, see Smoller [13, Theorem 24.13] or Smoller
and Wasserman [14].

The stability of $q_{i}(x;l)(i=1,2)$ with $l>L$ can be stated as follows.
Proposition 6. For $l>L$ , let $u=u(t, x)$ be the solution of (2.9). If $\varphi$ satisfies
$\varphi(x)>q_{1}(x;l)$ $($ resp. $0<\varphi(x)<q_{1}(x;l))$ in $(0, l)$ , then

$\lim_{tarrow\infty}u(t, x)=q_{2}(x;l)$ (resp. $0$ ) $unif$ormly in $[0, l]$ .

For the proof, see Matano [9] and Smoller [13].

We will study spreading and vanishing in the bistable case. Applying Corol-
lary 1, we can prove the following theorem on spreading.

Theorem 10. Suppose $h_{0}>L$ and $u_{0}(x)\geq q_{1}(x;h_{0})$ in $[0, h_{0}]$ . Then the
solution $(u, h)$ of (2.8) satisfies $h_{\infty}=\infty$ and

$\lim_{tarrow\infty}u(t, x)=v_{B}(x)$ uniformly in any compact subset of $[0, \infty)$ ,

where $v_{B}$ is a unique positive solution of

$\{\begin{array}{l}dv’’+v(v-c)(1-v)=0, x>0,v(0)=0.\end{array}$ (2.11)

The following proposition is useful to construct an upper solution of (2.8).

Proposition 7. Define $F(u)= \int_{0}^{u}s(s-c)(1-s)ds$ and $a^{*}= \min\{a>$

$0;F(a)=0\}$ . Then

$\{\begin{array}{l}dw’’+w(w-c)(1-w)=0 in\mathbb{R},w(0)=a^{*}, w’(0)=0\end{array}$ (2.12)

has a unique solution $w(x)$ . Moreover, $w(x)$ is monotone decreasing (resp.
monotone increasing) for $x\geq 0$ (resp. $x\leq 0$ ) with $w(x)=w(-x)$ and
$\lim_{xarrow\pm\infty}w(x)=0$ .

We now prove the vanishing property in the bistable case.
Theorem 11. Let $0<h_{0}\leq\infty$ and assume $0\leq u_{0}(x)\leq w(x-x_{0})$ for
$x\in(0, h_{0})$ with some $x_{0}\in \mathbb{R}$ , where $w(x)$ is the unique solution of (2.12).
Then the solution $(u, h)$ of (2.8) satisfies

$\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$ .
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Remark 3. The assertions of Proposition 7 and Theorem 11 also hold true if
the bistable term is replaced by a more geneml function $uf(u)$ in (FBP) which
behaves like a bistable term. For geneml function $f$, define $F(u)= \int_{0}^{u}sf(s)ds$

and $a^{*}= \min\{a>0;F(a)=0\}$ . Then $F$ takes its local maximum at $0$ and $F’$

is positive at $a^{*}$ ; so we can construct a unique positive solution of

$\{\begin{array}{l}dw’’+wf(w)=0 in\mathbb{R},w(0)=a^{*}, w’(0)=0\end{array}$

with the same properties as $w$ in Proposition 7.

In the bistable case, vanishing of type (i) (of (II)) can happen if $h_{0}$ and $\mu$

are sufficiently small.

Proposition 8. Let $(u, h)$ be any solution of (2.8) with $h_{0}<\pi\sqrt{d/(1-c)}$ .
There exists $\mu^{*}\geq 0$ depending on $u_{0}$ and $h_{0}$ such that, if $\mu\leq\mu^{*}$ , then $h_{\infty}\leq$

$\pi\sqrt{d/(1-c)}$ and $tarrow\infty 1\Vert u(t, \cdot)\Vert_{C[0,h(t)]}=0$.

3 Summary
In this section, we will consider our results from a biological point of view.

The results implies that. if the free boundary (spreading front of species) stays in a bounded in-
terval, then the species must vanish eventually.. if initial population density is larger than the solution of elliptic problem
(2.2) in initial habitat, then the spreading is successful in the whole region
$(0, \infty)$ . The eventual distribution of the species obeys the solution of the
elliptic problem (2.3).

More detailed information is obtained when we take an individual nonlin-
earity. For example, in the logistic case, spreading always occurs regardless of
the initial population size in case $h_{0}\geq\pi\sqrt{d}/a$ . In the bistable case, even if
$h_{0}$ is large, the vanishing occurs for small $u_{0}$ . This is due to “Allee effect” of
bistable nonlinearity, which means that the growth rate is negative for small
population density.

Figure 1 : Asymptotic Behaviors (logistic type, bistable type)
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