A definition of a field for Euclid＇s Elements without any set theories

法政大学 村上 雅彦（Masahiko MURAKAMI）
Hosei University

We introduce a definition of a field for Euclid＇s Elements［E］without any set theories．Precisely，we define the non－negative part of a ordered field．

Since we never use any notion of set theory，we never say the language is $\{+, \cdot, 0,1\}$ ，but we say the symbols of binary operations＂+ ＂and＂．＂ and the symbols of constants＂ 0 ＂and＂ 1 ＂．

Since we never use any notion of set theory，we never say infinitely many variable symbols v_{1}, v_{2}, \ldots ，but we say variable symbols a, b, c, \ldots etc．as many as we need．because the words＂infinite＂and＂finite＂are notions of set theories．We introduce a unary predicate $\mathbb{N}(\bullet)$ ，and we say n is a natural number if $\mathbb{N}(n)$ ．

The symbol of equality is＂$=$＂，and the logical connections are＂\wedge＂， $" V$＂，＂\Rightarrow＂and＂\neg＂and the quantifiers are＂\forall＂and＂\exists＂．

By usual way of BNF，we define terms，equations，formulas．They are not sets but they are on a paper，in our brain，in storages of computers， or etc．．We never say a set of formulas against model theory．

By usual way we adopt the axiom of equality－replacing the terms which are connected by＂$=$＂．

Finally，we work on the classical predicate logic．any proofs or Any deductions are never set．

Here are the definition．Every free variable is bound by universal quan－ tifier．

A0 $\mathbb{N}(0) \wedge \mathbb{N}(1)$ ．

A1 $(a+b)+c=a+(b+c)$.
A3 $a+b=b=1$
A4 $[P(0, a, b, c, d, e) \wedge \forall n[[\mathbb{N}(n) \wedge P(n, a, b, c, d, e)] \Rightarrow P(n+1, a, b, c, d, e)]]]$ $\Rightarrow \forall n[\mathbb{N}(n) \Rightarrow P(n, a, b, c, d, e)]$, where $P(x, u, v, w, y, z)$ is a formula on a paper, in our brain, in storages of computers, or etc., and x, u, v, w, y, z are meta-symbols to replace terms.

A5 $a+c=b+c \Rightarrow a=b$.
A6 $\neg[a+1=0]$.
A7 $a \cdot 1=a$.
$\mathrm{A8}(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
$\mathrm{A} 9 a \cdot b=b \cdot a$.
A10 $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.
A11 $\exists c[a=0 \vee a \cdot c=b]$.
A12 $\exists b a=b \cdot b$.
$\mathbf{A 1 3} \exists n \exists b[\mathbb{N}(n) \wedge a+b=n]$.
We denote $\exists c a+c=b$ by $a \leq b$ and denote $\exists n[\mathbb{N}(n) \wedge a \cdot n=b]$ by $a \mid b$.

Reference

[E] Evk $\lambda \epsilon \iota \delta$ ov $\Sigma \tau o \iota \chi \epsilon \iota \alpha$, translation to Japanese by K.Nakamura H.Terasaka S.Ito M.Ikeda, Kyoritsu Shuppan, 1971.
[H] D.Hilbert Grundlagen der Geometrie. 7 Aufl. translation to Japanese by K.Nakamura Chikuma Shobou, 2005.

