A definition of a field for Euclid's Elements without any set theories

法政大学 村上 雅彦 (Masahiko MURAKAMI) Hosei University

We introduce a definition of a field for Euclid's Elements [E] without any set theories. Precisely, we define the non-negative part of a ordered field.

Since we never use any notion of set theory, we never say the language is $\{+, \cdot, 0, 1\}$, but we say the symbols of binary operations "+" and "." and the symbols of constants "0" and "1".

Since we never use any notion of set theory, we never say *infinitely* many variable symbols v_1, v_2, \ldots , but we say variable symbols a, b, c, \ldots etc. as many as we need. because the words "infinite" and "finite" are notions of set theories. We introduce a unary predicate $\mathbb{N}(\bullet)$, and we say n is a natural number if $\mathbb{N}(n)$.

The symbol of equality is "=", and the logical connections are " \wedge ", " \vee ", " \Rightarrow " and " \neg " and the quantifiers are " \forall " and " \exists ".

By usual way of BNF, we define *terms*, *equations*, *formulas*. They are not sets but they are on a paper, in our brain, in storages of computers, or etc.. We never say a *set* of formulas against model theory.

By usual way we adopt the axiom of equality — replacing the terms which are connected by "=".

Finally, we work on the classical predicate logic. any proofs or Any deductions are never set.

Here are the definition. Every free variable is bound by universal quantifier.

A0 $\mathbb{N}(0) \wedge \mathbb{N}(1)$.

A1 (a+b) + c = a + (b+c).

A3 a + b = b = 1

 $\mathbf{A4} \ \left[P(0, a, b, c, d, e) \land \forall n \big[[\mathbb{N}(n) \land P(n, a, b, c, d, e)] \Rightarrow P(n + 1, a, b, c, d, e) \big] \right] \\ \Rightarrow \forall n [\mathbb{N}(n) \Rightarrow P(n, a, b, c, d, e)], \text{ where } P(x, u, v, w, y, z) \text{ is a formula on a paper, in our brain, in storages of computers, or etc., and } x, u, v, w, y, z \text{ are meta-symbols to replace terms.}$

A5
$$a + c = b + c \Rightarrow a = b$$

- A6 $\neg [a + 1 = 0]$.
- **A7** $a \cdot 1 = a$.
- A8 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- A9 $a \cdot b = b \cdot a$.
- **A10** $a \cdot (b + c) = (a \cdot b) + (a \cdot c).$
- A11 $\exists c \ [a = 0 \lor a \cdot c = b].$
- A12 $\exists b \ a = b \cdot b$.
- **A13** $\exists n \exists b [\mathbb{N}(n) \land a + b = n].$

We denote $\exists c \ a + c = b$ by $a \leq b$ and denote $\exists n \ [\mathbb{N}(n) \land a \cdot n = b]$ by $a \mid b$.

Reference

- [E] $E \upsilon \kappa \lambda \epsilon \iota \delta \circ \upsilon \Sigma \tau \circ \iota \chi \epsilon \iota \alpha$, translation to Japanese by K.Nakamura H.Terasaka S.Ito M.Ikeda, Kyoritsu Shuppan, 1971.
- [H] D.Hilbert Grundlagen der Geometrie. 7 Aufl. translation to Japanese by K.Nakamura Chikuma Shobou, 2005.