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Abstract. This is the secondpart ofthe paper with the same title. A concept
ofMendel algebra $wth$ mutation is introduced and it is proved that a certain
class of (non-commutative) Jordan algebras and flexible algebras can be
found in the algebra and that a classification theory of non-associative
algebras based on the Mendel algebras is given from a point of view in
genetics.

Introduction
In the previous paper we have introduced a method ofgenetics to non-associative

algebras and generate them by use ofthe mathematical formulations ofMendel’s law
systematically and classify them based on these laws ([6]). There we have not
included the concept ofmutation in genetics. In this paper we introduce a concept of
mutation in the Mendel’s laws and find a generation scheme ofnon-associative
algebras including flexible algebra and Jordan algebra by Mendel’s laws
systematically. Hence we may expect to find a new field ofnon-associative algebras
in genetics.
We introduce a concept ofMendel algebras with mutations following the Mendel’s
separation law in genetics. We call the linear space $M$ generated by generators
$S_{1},S_{2},\ldots,S_{n}$ Mendel algebra, when generators satisfi, the following commutation
relations and the distributive law:

$S_{\dot{i}}*S_{j}= \frac{1}{2}\{pS_{j}+qS_{j}\}(p>0, q>0,p+q=1)$

We notice that in the case where $p=q=1/2$ , the Mendel algebra is called of
mutation ffee. We call the Mendel algebra with mutation Mendel algebra simply.
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At first we notice that the Mendel algebra is non-associative and non-commutative
when it has mutations. We want to find non-associative algebras including the
flexible algebras and Jordan algebras in Mendel algebras. We recall the following
definitions:

flexible algebra: $(XY)X=X(l\chi)$

Jordan algebra: $(((A:\gamma)Y)X)=(\lambda:Y)(IK)$

for any pair ofelements $\forall_{X^{\forall}Y}$ ofthe algebras.

The main results ofthis paper can be stated as follows:
(1)$Mendel$ algebra is flexible algebra and Jordan algebra(Theorem I and II).
(2)$A$ family of flexible algebras and Jordan algebras can be generated by
mathematical formulation ofMendel’s laws: Separation law, mating law and
independent law and mutation (Theorem III).
(3) We can give a classification ofnon-associative algebras by use ofthe shift
invariance condition in Mendel algebras. We can discuss these commutation
relations in terms of,,shift invariant elements“of an algebra. Then we can show that
the shift invariant algebras on Mendel algebras automatically derive a family ofnon-
associative algebras including flexible algebras and Jordan algebras.

1. Mendel’s laws
In this section we recall some basic facts on Mendel’s law ([4]). In 1860, Mendel

has discovered the ffindamental laws in genetics, which are called Mendel’s laws.
They constitute three laws: (l)Separation law, (2) Mating law, (3) Independent law.
Later (4) Mutation is discovered. Here we include this law in Mendel’s law. We
describe the laws by use of figures and we omit its description expect the description
on mutation.

(1) Separation law

$–$ $\cdot$ ’

–

(2) Mating law

Mendel’s
separation law

$\ovalbox{\tt\small REJECT} X[X_{2}\ovalbox{\tt\small REJECT}[xI\ovalbox{\tt\small REJECT}_{\backslash }|\rfloor 1’Sep\delta ratio\cap|_{\backslash }^{1aw}$

$x$ $\mathscr{H}\prod x_{2}\ovalbox{\tt\small REJECT}[X\sum \mathscr{H}$

$\sim$

Mating process
$x$ $\mathscr{F}Dx_{2}\rceil \mathscr{F}$ $x$ ue

$\lrcorner 1$ mating

$\overline{\mathscr{K}x\}$ $|\overline{\mathscr{L}X_{2}^{\Psi}}$ $\overline{\mathscr{T}^{\ovalbox{\tt\small REJECT}}X}$

(Each element is commutative)
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(3) Independent law

Mendel $s$

independent aw
$\underline{\prod d}$ $\blacksquare$

$k\overline{\mathscr{J}}$

$a$ $\overline{\ovalbox{\tt\small REJECT}}$

$J_{\vee}^{\sim}t$

KIIIi $\Xi^{A}F^{\ell}A:^{t}f::$. fi
(4) Mutation

Here we have to say that our condition ofthe mutation on the algebra is artificial
ffom the biological view point. Hence we have to make some comments on
mutations. In this paper we regard the causes ofmutations as the recombinations
or the Holiday stmctures in genetics([4]).

$(\cdot!_{0\epsilon r}\_{\overline{\overline{fot}}}?ql\overline{\overline{f\cdot\prime}}$

; $(b\underline{)}-$

$\{r^{H\cdot\infty\underline{d}\cup}-.8^{1\nu xre,on}--$

$(e|$

$D$

$\prime\prime g-3$ $\downarrow\iota_{l9}\},-y$

$s_{*},sx_{\overline{\overline{\aleph*0t r\mu*x\epsilon Mr\propto omb\mathfrak{n}*ns}}}s \frac{\nu}{dPP}6$ $*l3\overline{\overline{\overline{d\prime N^{\circ}H*\dot{ro}\alpha uu\Re orumWnm}}e}$

2. Mendel algebra M(p,q)
In this section we introduce a several non-associative algebras which are motivated

by Mendel’s law ([5]):

(1) Mendel algebra M(p,q)
Let $A(=R[S_{1},S_{2},\ldots,S.])$ be an algebra. Introducing the product by

$\{\begin{array}{l}S_{i}*S_{j}=\frac{1}{2}\{pS_{i}+qS_{j}\}(p+q=l(p>0,q>0))X^{*}Y=\sum_{i,j=1}^{n}\alpha_{i}\beta_{j}S_{i}^{*}S_{j}(X=\sum_{i=1}^{n}\alpha_{i}S_{i},Y=\sum_{i=1}^{n}\beta_{i}S_{i})\end{array}$

we have an algebra $M_{p,q}^{(n)}(R)$ which is called n-dimensional Mendel algebra simply.
We see that $M_{p,q}^{(n)}(R)$ is a non-commutative and non-associative algebra in the case
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of $p\neq q$ . Otherwise it is commutative.

We notice a basic property holds on Mendel algebras which might be a mathematical
formulation ofHardy-Weinberg’s law ([4]):

$( \sum_{l=1}^{n}\alpha_{i}S_{i})^{2}=\sum_{j=1}^{n}\alpha_{i}S_{j}(\sum_{i=1}^{n}\alpha_{j}=1)$

(2)Original Mendel algebra $M(1l2,1/2)$

The algebra $M(1/2,1/2)$ is called Mendel algebra mutation ffee. Putting

$[x]_{\rfloor 1}^{/}[x]\ovalbox{\tt\small REJECT}_{\mathscr{P}}$

$\{X^{*}Y=\sum_{j=1}^{n}\alpha_{i}\beta_{j}S_{i}^{*}S_{j}(X=\sum_{i-- 1}^{n}\alpha_{i}S_{i},Y=\sum_{i\overline{-}1}^{n}\beta_{i}S_{i})S_{i}*S_{j}=\frac{l}{2}\{S_{i}+S_{j}\}$

$X_{1}^{*}Y_{1}= \frac{1}{2}(X_{1}+Y_{1})$

we have an algebra $M^{(n)}(1/2,1/2)$ which is called n-dimensional mutation ffee
Mendel algebra.

(3) Altemative Mendel algebra
Let $A(=R[S_{1},S_{2},\ldots,S_{n}])$ be an algebra. Introducing the product by

$\{X^{*}Y=\sum_{i,j\approx 1}^{n}\alpha_{i}\beta_{j}S_{i}^{*}S_{j}(X=\sum_{-,- 1}^{n}\alpha_{i}S_{i},Y=\sum_{i=1}^{n}\beta_{i}S_{i})S_{i}*S_{j}=\frac{l}{2}\{S_{i}-S_{\dot{j}}\}$

we have an algebra $M_{(-)}^{(n)}(R)$ which is called n-dimensional altemative Mendel
algebra. Then we see that $M_{(-)}^{(n)}(R)$ is a non-commutative and non-associative algebra.

3. Mendel algebra is flexible algebra
In this section we treat flexible algebras ffom our point ofview. We begin with the
definition ([6]): An algebra $A$ is called flexible algebra, ifthe following commutation
relation is satisfied:

$\forall X,\forall Y\in A\Rightarrow(XY)X=X(lK)$.

Next we proceed to flexible algebras generated by Mendel algebras.

Theorem I
(1) A Mendel algebra $M(p,q)(n\geq 2)$ is a non-commutative, non-associative flexible
algebra if $p\neq q$ . Especially it is commutative when $p=q=1/2$ .
(2) $M_{(-)}^{(n)}(n\geq 2)$ is a non-commutative, non-associative flexible algebra.
Proof: Putting $X= \sum\alpha_{j}S_{l},Y=\sum\beta_{i}S_{i}$ , we see $((XY)X)= \sum\alpha_{i}\beta_{j}\alpha_{k}(S_{i}^{*}S_{j})^{*}S_{k}$ , and
$(X( IK))=\sum\alpha_{i}\beta_{j}\alpha_{k}S_{i}^{*}(S_{j}^{*}S_{k})$ . Hence to prove the assertion, it is enough to prove
the following equality:

$\sum\alpha_{i}\beta_{j}\alpha_{k}(S_{i}^{*}S_{j})^{*}S_{k}=\sum\alpha_{i}\beta_{j}\alpha_{k}S_{i}^{*}(S_{j}^{*}S_{k})$ .
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At first we notice the following equalities:

$(^{*})\{\begin{array}{l}(S_{i}^{*}S_{j})^{*}S_{k}=p^{2}S_{i}+pqS_{j}+qS_{k}S_{l}^{*}(s, *s_{k})=pS_{l}+pqS_{j}+q^{2}S_{k}\end{array}$

Hence we have

$\sum\alpha_{l}\beta_{j}\alpha_{k}(S_{j}^{*}S,)^{*}S_{k}-\sum\alpha_{i}\beta_{j}\alpha_{k}S^{*}(S_{j}^{*}S_{k})$

$= \sum\alpha_{i}\beta_{j}\alpha_{k}(pq(S_{i}-S_{k}))=0$

Hence we have proved the assertion.
The proof for altemative Mendel algebra is almost same and may be omitted.

4. Mendel algebra is Jordan algebra
In this section we make a Jordan algebra by a genetic method ([3], [7]): An algebra

$J$ is called Jordan algebra ifthe commutation relation holds for $\forall X,\forall Y\in J$ :
$(((A\ddagger Y)Y)X)=((\ovalbox{\tt\small REJECT})(IK))$ .

When it is commutative, it is called Jordan algebra simply. Otherwise it is called non-
commutative Jordan algebra. We can prove the following theorem:
Theorem II
(1) Mendel algebra $M^{(n)}(p,q)(n\geq 2)$ is a non-commutative Jordan algebra, when
$p\neq q$ . Otherwise it is commutative Jordan algebra.
(2) $M_{(-)}^{(n)}(n\geq 2)$ is a Jordan algebra.

Proof of (1): At first we notice the following identities:

$(^{**})\{\begin{array}{l}(((S_{i}^{*}S_{j})^{*}S_{k})*S_{l})=p^{3}S_{j}+p^{2}qS_{j}+pqS_{k}+qS((S_{i}^{*}S_{j})^{*}(S_{k}*S,))=p^{2}S_{i}+pqS_{j}+pqS_{k}+q^{2}S_{l}.\end{array}$

Putting $X= \sum\alpha,S_{l},Y=\sum\beta_{l}S_{l}$ , we have
$(((XY)Y)X)= \sum\alpha_{j}\alpha_{j}\beta_{k}\alpha_{l}((S_{j}^{*}S_{j})^{*}S_{k})^{*}S_{l}$ ,

((XI‘)(ICY)) $= \sum\alpha_{i}\alpha_{j}\beta_{k}\alpha_{l}(S_{i}^{*}S_{j})^{*}(S_{k}^{*}S_{l})$,

Hence to prove the assertion, it is enough to prove the following equality:
$\sum\alpha_{i}\alpha_{j}\beta_{k}\alpha_{l}((s_{i}*s,)^{*}S_{k})^{*}S_{l}=\sum\alpha_{l}\alpha_{j}\beta_{k}\alpha_{l}(s_{i}*s_{j})^{*}(s_{k}*s_{l})$ .

For this we decompose the both sides in the following manner:
$\sum\alpha_{j}\alpha_{j}\beta_{k}\alpha,((s_{i}*s_{j})^{*}S_{k})^{*}S,$ $= \sum_{j=}J^{arrow}\alpha_{l}\beta_{j}\alpha_{k}(s_{i}*s,)^{*}S_{k}+\sum’\alpha_{l}\alpha_{j}\beta_{k}\alpha,(s, *s_{j})^{*}(s_{k}*s,)$

$\sum\alpha_{j}\alpha_{j}\beta_{k}\alpha_{k}(S_{i}^{*}(s_{j}*s_{k}))^{*}S,$ $= \sum_{i=k\lrcorner-}\alpha_{j}\alpha_{j}\beta_{k}\alpha_{l}(s_{i}*s_{j})^{*}(s_{k}*s_{l})+\sum^{1}\alpha_{i}\alpha_{j}\beta_{k}\alpha_{l}(s_{i}*s_{j})^{*}(s_{k}*s_{l})$ ,

where the second sum is remained sum. Since $((s_{l}*s_{i})^{*}S_{k})^{*}S_{i}=((s_{j}*s_{\dot{i}})^{*}(s_{k}*s_{i}))$ ,

the first term ofthe both sides are identical. Next we decompose the remained sum
into two parts: $\Sigma’=\Sigma_{1}^{\dagger}+\Sigma_{2}$ ; The first sum is taken for the case oftwo ofthe
indices $(i,j,l)$ are identical and the remained sum is taken for three different indices.
The second tems ofthe both sides can be written as follows:
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$\sum_{2}\alpha_{j}\alpha_{j}\beta_{k}\alpha_{l}((S^{*}S_{j})^{*}S_{k})^{*}S_{l}=\sum_{\sigma}\alpha_{\sigma(j)}\alpha_{\sigma(j)}\beta_{k}\alpha_{\sigma(l)}\{(S_{\sigma(i)^{*}}S_{\sigma(j)})^{*}S_{k}^{*}S_{\sigma(l)}\}$

$\sum_{2}^{1}\alpha_{j}\alpha_{j}\beta_{k}\alpha_{l}(S^{*}S,)^{*}(S_{k}^{*}S_{l})=\sum_{\sigma}\alpha_{\sigma(i)}\alpha_{\sigma(j)}\beta_{k}\alpha_{\sigma(l)}\{(s_{\sigma(l)}*s_{\sigma(j)})^{*}(S_{k}^{*}S_{\sigma(l)})\}$,

where the sum is taken through the permutations ofthree words. By use ofthe
identities

$(^{**})$
, we can obtain the assertion.

Proof of (2): The proof can be performed in a completely similar manner and may
be omitted.

4. Tensor product of Mendel algebras
We can define the tensor product $M_{1}\otimes M_{2}$ oftwo Mendel algebras $M_{1}$ and $M_{2}$ as

follows: Putting $M_{1}=R[S_{I},S_{2},..,S_{n}],$ $M_{2}=R[S_{1}^{\dagger},S_{2}^{\dagger},..,S_{m}’]$ , we define
$M_{1}\otimes M_{2}=R[S_{i}\otimes S_{j}’:i=1,2,..,n,j=1,2,..,m]$ .

We defme the product by
$(S_{j}\otimes S_{j})^{*}(S_{k}\wedge\otimes S_{l}^{\dagger})=(S_{i}^{*}S_{k})\otimes(S_{j}^{\dagger*\dagger}S_{l}^{t})$ .

Then we have the following formula:
(1) $(S, \otimes S_{j}^{\dagger})^{*}\wedge(S_{\iota}\otimes S_{l}^{\dagger})=1/2^{2}(S, \otimes S_{j}^{1}+S_{j}\otimes S_{l}^{1}+S_{k}\otimes S_{j}^{1}+S_{k}\otimes S‘ l)$

(2) Putting $X= \sum_{=1}\alpha_{i}S_{l},Y=\sum_{=1}^{m}\beta_{j}S_{J}^{1}$ and $U= \sum_{l--1}^{n}\alpha_{l}^{1}S_{i},$ $V= \sum_{j\overline{-}1}^{m}\beta,S_{1}^{\dagger}$ , we have

$X \otimes Y=\sum_{=1}^{n}\sum_{J^{=I}}^{m}\alpha,\beta_{J}S_{i}\otimes S_{J}^{I},$ $U \otimes V=\sum_{-,-1}^{n}g_{\overline{-}1}\alpha_{k}’\beta_{l}S_{k}\otimes S_{l}’$ . Then we have

$(X \otimes Y)^{*}(U\otimes V)=\sum_{=1}\sum_{=1}^{n}\sum_{-,-1}^{m}\sum_{=1}^{m}\alpha_{i}a_{k}^{1}\beta_{1}\beta_{l}^{1}(S_{l}\otimes S_{1}^{I}+S_{l}\otimes S_{l}^{t}+S_{k}\otimes S_{/}^{1}+S_{k}\otimes S’)$ . We can
prove the following theorem:

Theorem III
(1) The tensor product ofMendel algebras $M^{(n)}(p,q)(n\geq 2)$ is a flexible algebra.
(2) The tensor product ofMendel algebras $M^{(n)}(p,q)(n\geq 2)$ is a Jordan algebra.

5. Genetic generations of non-associative algebras
In the previous paper we have generated non-associative algebras by use of (1)
separation law, (2) mating law, (3) independent law in genetics ([6]). Here we shall
generate non-associative algebras four laws adding (4) mutations. By these
generation scheme, we can generate a wider class ofnon-commutative, non-
associative algebras including flexible and Jordan algebras systematically. We make
a comment only on generations by mutations and will not repeat other things.

Generation by mutation
We choose an algebra $A$ which is generated by elements $\{a_{1},a_{2},\ldots,a_{n}\}$ :We can make a
new Mendel algebra introducing the following product:

$\{\begin{array}{l}\Omega_{ji..j_{n}}^{*}\Omega_{j_{1}j_{2}\ldots j_{n}}=p_{i_{1}i_{2}..j_{\hslash}}\Omega_{i_{1}i_{2}..j_{n}}+q_{\dot{j}|j_{2}\ldots\dot{j}_{n}}\Omega_{\dot{j}_{1}j_{2}\ldots j_{n}},p_{i_{1}i_{2}..j_{n}}+q_{j_{1}\dot{j}_{2}..\dot{j}_{n}}=1\end{array}$

where $\Omega_{j_{12}\ldots j_{n}}$ is the product ofelements $a_{i_{n}},a_{i_{n-1}},\ldots,a_{i_{1}}$ . Following the discussions in
the previous paper, we can prove the following theorem:
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Theorem IV
(1) We can generate non-commutative Mendel algebras ffom a given Mendel algebra
by the genetic generations.
(2) We can obtain commutative and non-commutative flexible algebra and Jordan
algebra by each genetic generation systematically.

6. Classifications of non-associative algebras based on Mendel
algebras
We have obtained flexible algebra and Jordan algebra ffom the shift invariant
conditions on Mendel algebras without mutations ([6]). We recall basic facts in the
previous paper and state the analogous results for Mendel algebras with mutations.
Details are omitted. We can describe any algebra in tems ofbrackets in the formal
languages. Shifi implies that the change ofthe neighboring brackets in an acceptable
manner in the sense of formal language and shift invariance implies the elements give
the same elements by the shifts ofbrackets.
Examples
We give two examples of shift invariant elements which are connected to non-
associative algebras([3]):

flexible algbera Jordan algbera
$(XY)X=X(JK)$ $(((xY)Y)X)=((XY)(PK))$ .

Based on this fact, we can get a group ofnon-associative algebras which are related to
Mendel algebras.

Proposition(Shift invariance of flexible algebra)
We assume the following shift invariant elements: $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ for
$\forall X,\forall Y,\forall Z\in M(A)$ . Then we have $X^{*}=Z^{*}$ . Hence we have a flexible algebra.

Proof: Putting $X= \sum\alpha_{i}S_{i},Y=\sum\beta_{i}S_{i},Z=\sum\gamma_{i}S_{i}$ we consider the shift invariant
condition: $X^{*}(Y^{*}Z)=(X^{*}Y)^{*}Z$ . Restricting special element, we consider
$((s_{i}*s_{j})^{*}S_{k})=((S_{i}^{*}(s_{j}*s_{k}))$ . Then ffom $(^{*})$ , we see that $S_{j}=S_{k}$ . Hence we obtain
$X^{*}(Y^{*}X)=(X^{*}Y)^{*}X$ .
Proposition(Shift invariance of Jordan algebra)
We assume that $((X^{*}Y)^{*}Z)^{*}W=(X^{*}Y)^{*}(Z^{*}W)$ . Then we have $X=Y=W$ . Hence we have a
Jordan algebra.

Proof:From $(^{**}),we$ have $S_{i}=S_{l}=S_{l}$ Rom $(((S_{i}^{*}S_{j})^{*}S_{k})*S_{l})=((s, *s,)^{*}(s_{k}*s_{l}))$ .

Hence putting $X= \sum\alpha_{i}S_{i},Y=\sum\beta_{i}S_{i}$ , we have the commutation relation of a Jordan
algebra.

Hence we see that the shift invariance condition chooses a class ofnon-associative
algebras in Mendel algebras. Therefore we may expect to list up non-associative
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algebras connected to Mendel algebras using the shift invariance ofelements in the
following table:
(The table of possible commutation relations)
(1)$The$ terms ofshift invariant conditions ofdegree 3
$((XY)Z),$ $(X(IZ))$

(2) The terms of shift invariant conditions ofdegree 4
$(((XY)Z)W),$ $((X(IZ))W),$ $((XY)(ZW)),$ $(X((Y(ZW)),$ $(X((1Z)W))$

(3) The terms of shift invariant conditions ofdegree 5
$(((XY)Z)W)U,$ $(X(IZ))W)U,$ $(X((1Z)W))U,$ $(X(Y(ZW)))U,$ $(X(Y(Z(WU))),$ $X(Y((ZW)U))$

$X((Y(ZW))U),$ $X(((IZ))W)U),$ $((XY)(ZW))U,$ $((XY)Z)(WU)$, $(XY)(Z(WU)),$ $X((IZ)(WU))$

Examples ofcalculations of shift invariant elements tell us that the commutation
relations of flexible algebra and Jordan algebra are basic and that we can get the
algebras with commutation relations which are generated by those of flexible algebras
and Jordan algebras.
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