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Abstract

We survey the author’s recent development of Jefferies and Johnson‘s theory of Feynman’s opera-
tional calculi. Extraction of a linear factor in Feynman‘s operational calculi can simplify disentangling
under various conditions. We also introduce a first order infinitesimal calculus for a function of $n$ noncom-
muting operators. Further, we consider a measure permutation formula and its applications in Feynman’s
operational calculi.

\S 1. Introduction

It is important in several areas of mathematics and its applications to be able to form func-
tions of operators. If one has a single self-adjoint operator or several commuting self-adjoint
operators, the spectral theorem provides an extremely rich functional calculus. However, as
soon as we have two or more noncommuting operators, the functional calculus becomes much
more complicated even if the operators are self-adjoint.

Feynman‘s 1951 paper [3] on the operational calculus for noncommuting operators arose out

of his ingenious work on quantum electrodynamics and was inspired in part by his earlier work
on the Feynman path integral. Indeed, Feynman thought of his operational calculus as a kind
of generalized path integral. Much surprisingly varied work on the subject has been done since
by mathematicians and physicists. References can be found in the recent books of Johnson and
Lapidus [11] and Nazaikinskii, Shatalov and Stemin [13].

Recently, Jefferies and Johnson [4], [5], [6] introduced a mathematically rigorous approach
to Feynman‘s operational calculi. The central objects of this theory are the disentangling alge-
bra, a commutative Banach algebra, and the disentangling map which carnies the commutative
stmcture into the noncommutative algebra of operators.
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This paper is a survey article on the author’s recent development of the Jefferies and John-
son’s theory of Feynman‘s operational calculi. We summarize the results in [1], [2], [7], [9],
[10]. Sections 2 and 3 are concemed with the formulas which simplify disentangling in Feyn-
man’s operational calculi under various conditions. In Section 4, we explores the differential
calculus associated with the disentangled operators arising from Feynman‘s operational calculi.
Sections 5 and 6 are concemed with a measure permutation formula, which correspond to the
index permutation formula in Maslov’s discretized version of Feynman’s operational calculus.
We will not give the detailed proof and just state the properties.

We tum now to reviewing the basic definitions of the Jefferies and Johnson‘s theory of
Feynman‘s operational calculi.

Given a positive integer $n$ and $n$ positive numbers $\gamma_{l},$ $\ldots,\gamma_{n}$ , let $A(\gamma_{1}, \ldots, r_{n})$ be the space of
complex-valued functions of $n$ complex variables $f(z1, \ldots,z_{n})$, which are analytic at $(0, \ldots,0)$ ,
and are such that their power series expansion

(1.1) $f(Z1, \ldots,Z_{n})=\sum^{\infty}c_{m_{1},\ldots,m_{n}}z_{1}^{m_{1}}\cdots d_{n}^{n_{n}}m_{1},\ldots,m_{n}=0$

converges absolutely, at least on the closed polydisk $|zl|\leq rl,$
$\ldots,$

$|z_{n}|\leq r_{n}$ .
For $f\in A(r_{1}, \ldots, r_{n})$ given by (1.1), let

(1.2)
$\Vert f\Vert=\Vert f\Vert_{A(r_{1},\ldots,r_{n})}=\sum^{\infty}|C_{m_{1},\ldots,m_{n}}m_{1},\ldots,m_{n}=0|r_{1}^{m_{1}}\cdots r_{n}^{m_{n}}$.

The functions on $A(r_{1}, \ldots,r_{n})$ defined by (1.1) and (1.2) make $A(r_{1}, \ldots,r_{n})$ into a Banach
algebra with identity under pointwise multiplication of the functions involved [4].

Let $X$ be a Banach space and $A_{1},$ $\ldots,A_{n}$ nonzero operators from $\mathcal{L}(X)$ , the space of bounded
linear operators acting on $X$ . Except for the numbers $\Vert A_{1}\Vert,$

$\ldots,$
$\Vert A_{n}\Vert$ , which will serve as

weights, we ignore for the present the nature of $A_{1},$ $\ldots,A_{n}$ as operators and introduce a com-
mutative Banach algebra consisting of“analytic functions” $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$ , where $\tilde{A}_{1},$ $\ldots,\tilde{A}_{n}$ are
treated as purely formal commuting objects.

Now consider the collection $D(A_{1}, \ldots,A_{n})$ of all expressions of the form

(1.3)
$f( \tilde{A}_{1}, \ldots,\tilde{A}_{n})=\sum^{\infty}c_{m_{1},\ldots,m_{n}}\tilde{A}_{1}^{m_{1}}\cdots\tilde{A}_{n}^{m_{n}}m_{1},\ldots,m_{n}=0$

where $c_{m_{1},\ldots,m_{n}}\in \mathbb{C}$ for all $m1,$ $\ldots,m_{n}=0,1,$ $\ldots$ , and

$\Vert f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\Vert=\Vert f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\Vert_{D(A_{1},\ldots A_{n})}$

(1.4)
$= \sum^{\infty}|c_{m_{1},\ldots,m_{n}}|\Vert A_{1}\Vert^{m_{1}}\cdots\Vert A_{n}\Vert^{m_{n}}<\infty m_{1},\ldots,m_{n}=0^{\cdot}$
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The space $D(A_{1}, \ldots,A_{n})$ equipped with pointwise operations and the norm (1.4) is a commuta-
tive Banach algebra with identity. In fact, if we take $\Vert\tilde{A}_{j}\Vert=\Vert A_{j}\Vert=r_{j}$ for $j=1,$ $\ldots,n$ , then

the two Banach algebras are the same except for a renaming of the indeterminants. We refer to
$D(A_{1}, \ldots,A_{n})$ as the disentangling algebra associated with the n-tuple $(A_{1}, \ldots,A_{n})$ of bounded
linear operators acting on $X$ .

Let $A_{1},$ $\ldots,A_{n}$ be nonzero operators from $\mathcal{L}(X)$ and $\mu_{1},$ $\ldots,\mu_{n}$ continuous probability mea-
sures defined at least on $\mathcal{B}[0, T]$ , the Borel class of $[0, T]$ (such measures are continuous pro-
vided that each single point set has measure $0$). We wish to define the disentangling mapping

(1.5) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}:D(A_{1}, \ldots,A_{n})arrow \mathcal{L}(X)$

according to the mle determined by the measures $\mu_{1},$ $\ldots,\mu_{n}$ . Putting it another way, given any
analytic function $f\in A(\Vert A_{1}\Vert, \ldots, \Vert A_{n}\Vert)$, we wish to form the function $f_{\mu_{1},\ldots,\mu_{n}}(A_{1}, \ldots,A_{n})$ of

not necessarily commuting operators $A_{1},$ $\ldots,A_{n}$ as directed by $\mu_{1},$ $\ldots,\mu_{n}$ .
Given nonnegative integers $m_{1},$ $\ldots,m_{n}$ , let

(1.6) $P^{m_{1},\ldots,m_{n}}(z1, \ldots,z_{n})=z_{1}^{m_{1}}\cdots d_{n}^{n_{n}}$

so that

(1.7) $P^{m_{1},\ldots,m_{n}}(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\tilde{A}_{1}^{m_{1}}\cdots\tilde{A}_{n}^{m_{n}}$ .

For each $m=0,1,$ $\ldots$ , let $S_{m}$ denote the set of all permutations of the integers $\{$ 1, $\ldots$ , $m\}$ , and
given $\pi\in S_{m}$ , we set

(1.8) $\Delta_{m}(\pi)=\{(sl, \ldots,S_{m})\in[0,T]^{m};0<s_{\pi(1)}<\cdots<s_{\pi(m)}<T\}$ .

We now define the mapping $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}$ . For $j=1,$ $\ldots,n$ and all $s\in[0,T]$ , let

(1.9) $A_{j}(s)=A_{j}$

and for $i=1,$ $\ldots,m$ , we define

(1.10) $C_{i}(s):=\{\begin{array}{l}A_{1}(s) if i\in\{1, \ldots,ml\},A_{2}(s) if i\in\{m1+1, \ldots,m_{1}+m_{2}\},:A_{n}(s) if i\in\{ml+\cdots+m_{n-1}+1, \ldots,m\},\end{array}$

for all $0\leq s\leq T$ .
Note that $A_{j}$ in (1.9) is time independent. This implies that the integrands can be pulled

outside of the integral in all of the cases involved. The measures effect the weights on the

various terms as usual but, even more centrally for this theory, the measures effect the ordering

of the operators (the time dependent setting has been developed elsewhere, for example, in [8],

[14], [15] $)$ .
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Definition 1.1. For any nonnegative integers $m_{1},$ $\ldots,m_{n}$ and $m=m_{1}+\cdots+m_{n}$ ,

$\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}P^{m_{1},\ldots,m_{n}}(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$

(1.11)
$= \sum_{\pi\in S_{m}}\int_{\Delta_{m}(\pi)}C_{\pi(m)}(s_{\pi(m)})\cdots C_{\pi(1)}(s_{\pi(1)})(\mu_{1}^{m_{1}}\cross\cdots\cross\mu_{n}^{m_{n}})(ds\iota, \ldots,ds_{m})$ .

Then, for $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\in D(A_{1}, \ldots,A_{n})$ given by

(1.12) $f( \tilde{A}_{1}, \ldots,\tilde{A}_{n})=\sum^{\infty}c_{m_{1},\ldots,m_{n}}\tilde{A}_{1}^{m_{1}}\cdots\tilde{A}_{n}^{m_{n}}m_{1},\ldots,m_{n}=0$ ’

we set

(1.13) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\sum^{\infty}c_{m_{1},\ldots,m_{n}}\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}P^{m_{1},\ldots,m_{n}}(\tilde{A}_{1}, \ldots,\tilde{A}_{n})m_{1},\ldots,m_{n}=0^{\cdot}$

We will often use the altemative notation:

(1.14) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=\mathcal{T}_{\mu l,\ldots,\mu_{n}}P^{m_{1},\ldots,m_{n}}(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$

and

(1.15) $f_{\mu_{1},,\mu_{n}}(A_{1}, \ldots,A_{n})=\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$.

For elementary properties of the disentangling algebra $D(A_{1}, \ldots,A_{n})$ and the disentangling
map $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}$ , see the introductory papers [4], [5], [6], [8].

\S 2. Extraction of a Linear Factor

The operation of ’disentangling’ is the key to Feynman’s operational calculi for noncom-
muting operators. Hence, formulas which simplify this procedure under various conditions are
central to the subject. The main results of this section make it possible to carry out the disen-
tangling in an iterative manner. In this section we summarize the results in [9].

Let $A_{1},$ $\ldots,A_{n}$ belong to $\mathcal{L}(X)$ , where $X$ is a Banach space and $\mu_{1},$ $\ldots,\mu_{n}$ be continuous
probability measures on $\mathcal{B}[0, T]$ .

Theorem 2.1. Suppose that the probability measures $\mu_{1},$ $\ldots,\mu_{k}$ are supported by $[a,b]\subset$

$[0, T]$ and that the probability measures $\mu_{k+1},$ $\ldots,\mu_{n}$ are supported by $[0,a]\cup[b, T]$ . Let $m_{1},$ $\ldots,m_{n}$

be nonnegative integers. Let

(2.1) $K_{m_{1},\ldots,m_{k}}=P_{\mu l,,\mu_{k}}^{m_{1}.’.\cdot.\cdot\cdot,m_{k}}(A_{1}, \ldots,A_{k})$

and $\mu 0$ any continuous probability measure supported by $[a,b]$ . Then

(2.2) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=P_{\mu\circ,\mu_{k}+1\mu_{n}}^{1,m_{k+\cdots,m_{n}}}1,,\ldots,(K_{m_{1},\cdots,m_{k}},A_{k+1}, \ldots,A_{n})$.
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Theorem 2.2 (Extraction of a Linear Factor). $Let\mu_{1},$ $\ldots,\mu_{n}$ be given as in Theorem 2.1. As-
sume that $g(\tilde{A}_{1}, \ldots,\tilde{A}_{k})\in D(A_{1}, \ldots,A_{k})$ and $h(\tilde{A}_{k+1}, \ldots,\tilde{A}_{n})\in D(A_{k+1}, \ldots,A_{n})$ . Let

(2.3) $f(z1, \ldots,z_{n})=g(z,.,z)h(z_{k+1}, \ldots,z_{n})$ .

Let $K=\mathcal{T}_{\mu_{1},\ldots,\mu_{k}}g(\tilde{A}_{1}, \ldots,\tilde{A}_{k})$ and $\mu_{0}$ any continuous probability measure supported by $[a,b]$ .
Then $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\in D(A_{1}, \ldots,A_{n})$ and

(2.4) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\mathcal{T}_{\mu_{0},\mu_{k+1},\ldots,\mu_{n}}F(\tilde{K},\tilde{A}_{k+1}, \ldots,\tilde{A}_{n})$,

where $F(zo,z_{k+1}, \ldots,z_{n})=zoh(z_{k+1}, \ldots,z_{n})$ .

Theorem 2.2 extends to Jefferies and Johnson‘s theory of Feynman’s operational calculi a
computational technique which is due to Maslov and which is used many times both in his book
[12] and in the book by Nazaikinskii, Shatalov and Stemin [13]. The technique is referred to

in [13] as “the extraction of a linear factor” and is used in conjunction with the “autonomous
bracket” notation of Maslov.

The technique of extracting a linear factor is used in [12], [13] to establish equalities while
doing calculations with noncommuting operators. Of course, such calculations can be organized
so that the goal is to show that a related operator expression is equal to the zero operator. Our
first corollary below will make it easy to apply Theorem 2.2 in the manner which we have just
discussed.

Corollary 2.3. Let the hypotheses ofTheorem 2.2 be satisfied and suppose that

(2.5) $K=\mathcal{T}_{\mu_{1},\ldots,\mu_{k}}g(\tilde{A}_{1}, \ldots,\tilde{A}_{k})=O$.

Then $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$ also equals the zero opemtor

Next we give an example illustrating the use of Theorem 2.2 and Corollary 2.3. This exam-
ple depends on a special relationship between $A_{1},$ $\ldots,A_{k}$ .

Example 2.4. Let bounded operators $A_{1},$ $\ldots,A_{4}$ be given and suppose that $g(Z1,Z2)=z_{1}^{3}-$

$Z_{1}^{2}Z2+z\iota z_{2}^{2}-z_{2}^{3}$ and $h(Z3,Z4)\in A(\Vert A_{3}\Vert, \Vert A_{4}\Vert)$ . Further, assume that $\mu_{1},$ $\ldots,\mu_{4}$ are continuous
probability measures on $[0, T]$ with the supports of $\mu_{1}$ and $\mu_{2}$ being subsets of $[a,b]$ and the
supports of $\mu_{3}$ and $\mu_{4}$ being subsets of $[0,a]\cup[b, T]$ where $0<a<b<T$ . Finally, we take
$f(Z1,Z2,Z3,Z4)=g(Z1,Z2)h(Z3,Z4)$ and ask for the computation of $\mathcal{T}_{\mu_{1},\ldots,\mu_{4}}f(\tilde{A}_{1},\tilde{A}_{2},\tilde{A}_{3},\tilde{A}_{4})$ in the
case where $A_{2}=A_{1}$ . Since $A_{2}=A_{1},$ $A_{1}$ and $A_{2}$ certainly commute. Hence, by Proposition 3.1
of [4], all of the functional calculi $\mathcal{T}_{v_{1},v_{2}}$ acting on $(\tilde{A}_{1},\tilde{A}_{2})$ agree with the usual commutative
functional calculus. Thus,

$\mathcal{T}_{\mu_{1},\mu_{2}}g(\tilde{A}_{1},\tilde{A}_{2})=g(A_{1},A_{2})=A_{1}^{3}-A_{1}^{2}A_{2}+A_{1}A_{2}^{2}-A_{2}^{3}=O$

where the last equality comes ffom the fact that $A_{2}=A_{1}$ . It follows immediately from Corollary
2.3 that $\mathcal{T}_{\mu_{1},\ldots,\mu_{4}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{4})$ equals the zero operator.
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Corollary 2.5. Suppose that the probability measures $\mu_{1},$ $\ldots,\mu_{k}$ are supported by $[0,a]$ and
that the probability measures $\mu_{k+1},$ $\ldots,\mu_{n}$ are supported by $[a, T]$ . Let $f,g$ and $h$ be given as in
Theorem 2.2. Then

(2.6) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\mathcal{T}_{\mu_{k+1},\ldots,\mu_{n}}h(\tilde{A}_{k+1}, \ldots,\tilde{A}_{n})\mathcal{T}_{\mu_{1},\ldots,\mu_{k}}g(\tilde{A}_{1}, \ldots,\tilde{A}_{k})$.

Results in this section can be combined with various results in [4], [5], [6] to yield further
corollaries.

\S 3. Methods for Iterative Disentangling

The results of this section permit us, under appropriate assumptions, to disentangle in an
iterative manner. The main result ’extraction of a multilinear factor’, Theorem 3.3, is a mul-
tilinear version of Theorem 2.2. Theorem 3.7 also produces a linear term at each stage of the
iteration but, unlike Theorem 3.3, the new linear term depends on the previous one. In this
section we summanze the results in [7].

Let $d$ be a positive integer. For each $j=1,$ $\ldots,d$ , let $I_{j}$ be the nonempty subset of $I=$

$\{1, \ldots,n\}$ such that
$I_{j}=\{i_{j-1}+1, \ldots,i_{j}\}$

where $i_{0}=0$ and let
$I_{0}=I-(I_{1}\cup\cdots\cup I_{d})$ .

Now we introduce the abbreviated notation.

Notation. We write

$P_{\mu_{i},i\in I}^{n_{i},i\in l}(A_{i}, i\in I)=P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})$ ,

as well as

$f(\tilde{A}_{i}, i\in I)=f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$, $D(A_{i},$ $i\in D=D(A_{1}, \ldots,A_{n})$ ,

$f(z_{i},i\in I)=f(z_{1}, \ldots,z_{n})$ , $\mathcal{T}_{\mu_{i},i\in I}=\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}$ .

Theorems 3.3 and 3.7 below can be established via induction and Theorem 2.2. The two
monomial cases Theorems 3.1 and 3.5 could be obtained as special cases of Theorems 3.3 and
3.7 respectively. However the monomial cases are easier to understand, and so we will state
them as separate theorems.

Theorem 3.1. Let $a_{j},b_{j},j=1,$ $\ldots,d$ be real numbers such that

(3.1) $0\leq a_{1}<b_{1}\leq a2<b_{2}\leq\cdots\leq a_{d}<b_{d}\leq T$ .
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Suppose that $\mu_{i},i\in I_{j}$ have supports contained within $[a_{j},b_{j}]$ for $j=1,$ $\ldots,d$ . Let $v_{j},$ $j=$

$1,$ $\ldots,d$, be any continuous probability measures having supports contained within $[a_{j},b_{j}]$ .
Given nonnegative integers $m_{1},$ $\ldots,m_{n}$ , let

(3.2) $K_{j}=P_{\mu_{i},i\in I_{j}}^{m_{i},i\in l_{j}}(A_{i},i\in I_{j})$

for $j=1,$ $\ldots,d$. Then

(3.3) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=P_{v_{1},\ldots,v_{d};\mu_{i},i\in I_{0}}^{1,\ldots,1;m_{i},i\in I_{0}}(K_{1}, \ldots,K_{d};A_{i}, i\in I_{0})$ .

Corollary 3.2. Let $\mu_{1},$ $\ldots,\mu_{n}$ be given as in Theorem 3.1. Suppose $I_{0}=\emptyset$ , that is, $I=$

$I_{1}\cup\cdots\cup I_{d}$ . For any nonnegative integers $m_{1},$ $\ldots,m_{n}$ ,

(3.4) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=K_{d}\cdots K_{1}=P_{\mu_{i},i\in I_{d}}^{m_{i},i\in l_{d}}(A_{i},i\in I_{d})\cdots P_{\mu_{i},i\in l_{1}}^{m_{i},i\in l_{1}}(A_{i},i\in I_{1})$ .

Now we come to the theorem which allows us to iteratively disentangle a multilinear factor
from $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})$ where $f(z1, \ldots,z_{n})$ is an appropriately factorable analytic function of
$z_{1},$ $\ldots,z_{n}$ . Note that the linear factors $K_{1}’,$ $\ldots,K_{d}’$ defined below can be computed independently
of one another; this will not be true of Theorem 3.7.

Theorem 3.3 (Extraction of a Multilinear Factor). Let $\mu_{1},$ $\ldots,\mu_{n}$ and $v_{1},$
$\ldots,$

$\nu_{d}$ be given as
in Theorem 3.1. Assume that $g_{j}(\tilde{A}_{i}, i\in I_{j})\in D(A_{i},i\in I_{j})$ for $j=1,$ $\ldots,d$ and $h(\tilde{A}_{i},i\in I_{0})\in$

$D(A_{i},i\in I_{0})$ . Let

(3.5) $f(z \iota, \ldots,z_{n})=[\prod_{j=1}^{d}g_{j}(z_{i},i\in I_{j})]h(z_{i},i\in I_{0})$

and

(3.6) $K_{j}’$ $:=\mathcal{T}_{\mu_{i},i\in I_{j}}g_{j}(\tilde{A}_{i},i\in I_{j})$

for $j=1,$ $\ldots,d$ . Then $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\in D(A_{1}, \ldots,A_{n})$ and

(3.7) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\mathcal{T}_{v_{1},\ldots,v_{d};\mu_{i},i\in l_{0}}F(\tilde{K}_{1}’, \ldots,\tilde{K}_{d}’;\tilde{A}_{i},i\in I_{0})$ ,

where $F(w1, \ldots,w_{d};z_{i},i\in I_{0})=w1\ldots w_{d}h(z_{i},i\in I_{0})$.

Corollary 3.4. Let $\mu_{1},$ $\ldots,\mu_{n}$ and $f(z_{1}, \ldots,z_{n})$ be given as in Theorem 3.3. Suppose $I=$

$I_{1}\cup\cdots\cup I_{d}$ . Then

(3.8) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=K_{d}’\cdots K_{1}’=\mathcal{T}_{\mu_{i},i\in I_{d}}g_{d}(\tilde{A}_{i},i\in I_{d})\cdots \mathcal{T}_{\mu_{i},i\in I_{1}}g_{1}(\tilde{A}_{i},i\in I_{1})$.

The results in the rest of this section are consequences of the main results of Section 2.
However, the supports of the clusters of measures beyond the first are in nonabutting pairs of
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intervals arranged so that Theorem 2.2 is applicable and there is linearity at each stage of the
disentangling but not multilinearity of the processes as a whole. The difference in the results
is perhaps most clearly seen by comparing the multilinear expression $K_{d}\cdots K_{1}$ in formula (3.4)
of Corollary 3.2 with (3.13) of Corollary 3.6 below. Perhaps the most cogent point is that the
operators $K_{1},$ $\ldots,K_{d}$ in Corollary 3.2 can be calculated independently of one another and in any
order whereas this is not tme of $L_{1},$ $\ldots,L_{d}$ in Corollary 3.6.

Theorem 3.5. Let $a_{j},b_{j},j=1,$ $\ldots,d$ be real numbers such that

(3.9) $0\leq a_{d}\leq\cdots\leq a_{2}\leq a_{1}<b_{1}\leq b_{2}\leq\cdots\leq b_{d}\leq T$ .

Suppose that $\mu;,i\in I_{j}$ have supports contained within $[a_{j},a_{j-1}]\cup[b_{j-1},b_{j}]$ for $j=1,$ $\ldots,d$

where $a_{0}=b_{1}$ and $b_{0}=a_{1}$ . Let $\eta_{j},$ $j=1,$ $\ldots,d$ , be any continuous probability measures having
suppons contained within $[a_{j},b_{j}]$ . Given nonnegative integers $m_{1},$ $\ldots,m_{n}$ , let

(3.10) $L_{j}=P_{\eta_{j-1};\mu_{i},i\in I_{j}}^{1;m_{i},i\in I_{j}}(L_{j-1};A_{i},i\in I_{j})$

for $j=1,$ $\ldots,d$ where $L_{0}$ is the identity operator and $\eta 0$ is any continuous probability measure
having suppon contained within $[a_{1},b_{1}]$ . Then

(3.11) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=P_{\eta_{d};\mu_{i},i\in I_{0}}^{1;m_{i},i\in I_{0}}(L_{d};A_{i},i\in I_{0})$ .

Corollary 3.6. Let $\mu_{1},$ $\ldots,\mu_{n}$ and $\eta_{1},$
$\ldots,$ $\eta_{d}$ be given as in Theorem 3.5. Suppose $I=I_{1}\cup$

$\cup I_{d}$ . For any nonnegative integers $m\iota,$ $\ldots,m_{n}$ ,

(3.12) $P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=L_{d}=P_{\eta_{d}-1,\mu_{i},i\in I_{d}}^{1m_{i},i\in J_{d}}(L_{d-1};A_{i},i\in I_{d})$

where $L_{d-1}$ is given inductively by the formula (3.10). Equation (3.12) can be expressed more
explicitly by the formula

$P_{\mu_{1},,\mu_{n}}^{m_{1}.’.\cdot.\cdot\cdot,m_{n}}(A_{1}, \ldots,A_{n})=P_{\eta_{d-1};\mu_{i},i\in I_{d}}^{1;m_{i},i\in I_{d}}(P_{\eta_{d-2};\mu_{i},i\in I_{d-1}}^{1;m_{i},i\in J_{d-1}}(\cdots$

(3.13) $(P_{\eta_{1};\mu_{i},i\in I_{2}}^{1;m_{i},i\in l_{2}}(P_{\mu_{i},i\in I_{1}}^{m_{i},i\in I_{1}}(A_{i},i\in I_{1});A_{i},i\in I_{2})$ ;

$);A_{i},i\in I_{d-1});A_{i},i\in I_{d})$ .

Now we come to one of the main result of this section.

Theorem 3.7. Let $\mu_{1},$ $\ldots,\mu_{n}$ and $\eta_{1},$ $\ldots,\eta_{d}$ be given as in Theorem 3.5 and $f(z1, \ldots,z_{n})$ be
given as in Theorem 3.3. For each $j=1,$ $\ldots,d$, let

(3.14) $F_{j-1}(w_{j-1};z_{i},i\in I_{j})=w_{j-1}g_{j}(z_{i},i\in I_{j})$

and

(3.15) $L_{j}’=\mathcal{T}_{\eta_{j-1};\mu_{i},i\in I_{j}}F_{j-1}(\tilde{L}_{j-1}’;\tilde{A}_{i}, i\in I_{j})$
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where $w_{0}=\iota,$ $h’$ is the identity operator and $\eta_{0}$ is any continuous probability measure having

support contained within $[a_{1},b_{1}]$ . Then

(3.16) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\mathcal{T}_{\eta_{d};\mu_{i},i\in 0}F(\tilde{L}_{d}’;\tilde{A}_{i},i\in I_{0})$

where $F(w_{d};z_{i},i\in I_{0})=w_{d}h(z_{i},i\in I_{0})$ .

Corollary 3.8. $\ t\mu_{1},$ $\ldots,\mu_{n},$ $\eta_{1},$ $\ldots,\eta_{d}$ and $f(z1, \ldots,z_{n})$ be given as in Theorem 3.7. Sup-
pose $I=I_{1}\cup\cdots\cup I_{d}$. Then we have

(3.17) $\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=L_{d}’=\mathcal{T}_{\eta_{d-1};\mu,i\in l_{d}}F_{d-1}(\tilde{L}_{d-1}’;\tilde{A}_{i},i\in I_{d})$

where $F_{d-1}$ and $L_{d-1}’$ are given inductively by the formulas (3.14) and (3.15), respectively.

We use the linearity of the disentangling mapping again to extend Theorem 3.3 to finite
sums of functions of the form (3.5). In the language of tensor products, the extension is from
elementary tensors to algebraic tensors.

Corollary 3.9. Let the $a_{j}$ ’s and $b_{j}’ s,$ $A_{1},$ $\ldots,A_{n},\mu_{1},$ $\ldots,\mu_{n}$ and $v_{1},$ $\ldots,v_{d}$ be exactly as in
Theorem 3.3. Further, let

(3.18) $f(z1, \ldots,z_{n})=\sum_{l=1}^{N}f_{l}(z\iota, \ldots,z_{n})$

where each $f_{l}$ has the $fom$

(3.19) $f_{l}(z \iota, \ldots,z_{n})=\prod_{j=1}^{d}g_{jl}(z_{i},i\in I_{j})h_{l}(z_{i},i\in I_{0})$

and satisfies the conditions ofTheorem 3.3. For any $l\in\{1, \ldots,N\}$ , let

(3.20) $K_{jl}’$ $:=\mathcal{T}_{\mu_{i},i\in l_{j}}g_{jl}(\tilde{A}_{i},i\in I_{j})$

for $j=1,$ $\ldots,d$ . Then $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\in D(A_{1}, \ldots,A_{n})$ and

$\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})=\sum_{l=1}^{N}\mathcal{T}_{v_{1},\ldots,v_{d};\mu_{i},i\in l_{0}}F_{l}(\tilde{K}_{1l}’, \ldots,\tilde{K}_{dl}’;\tilde{A}_{i},i\in I_{0})$

(3.21)

$= \sum_{l=1}^{N}\mathcal{T}_{v_{1},\ldots,v_{d};\mu_{i},i\in I_{0}}[\tilde{K}_{1l}’\cdots\tilde{K}_{dl}’h_{l}(\tilde{A}_{i},i\in I_{0})]$ ,

where $F_{l}(w\iota, \ldots,w_{d};z_{i},i\in I_{0})=w_{1}\cdots w_{d}h_{l}(z_{i},i\in I_{0}),$ $l=1,$ $\ldots,N$.
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A variety of further corollaries could be written down using the results of this section either
by themselves or in conjunction with earlier results.

\S 4. The derivation formula and higher-order exapnsions

In this section we summanize the results in [10]. We explores the differential or derivational
calculus associated with the disentangled operators arising from Feynman‘s operational calculi
for noncommuting operators. We deal with a first order infinitesimal calculus for a function of
$n$ noncommuting operators. Here the first derivatives are replaced by the first order derivational
derivatives. The derivational derivatives of the first and higher order have been useful in, for ex-
ample, operator algebras, noncommutative geometry and Maslov’s discrete form of Feynman ’s
operational calculus.

Let $A$ be a nonzero operator in $\mathcal{L}(X)$ and let $f(x)= \sum_{m=0}^{\infty}c_{m}x^{m}$ be an entire function. Then
for any continuous probability measure $\mu$ on $\mathcal{B}[0, T]$ ,

$\mathcal{T}_{\mu}f(\tilde{A})=\sum_{m=0}^{\infty}c_{m}A^{m}$

and we let

$f(A)= \sum_{m=0}^{\infty}c_{m}A^{m}$ .

In this section we are interested in the term of order $\epsilon$ in the expression

(4.1) $f(A+\epsilon B)=f(A)+\epsilon C_{1}+\epsilon^{2}C_{2}+\cdots+O(\epsilon^{n})$

where $B$ is an operator in $\mathcal{L}(X)$ . The coefficient of $\epsilon$ can be obtained as

(4.2) $C_{1}= \frac{d}{d\epsilon}f(A+\epsilon B)|_{\epsilon=0}$ .

We will find an expression for a more general “derivative”, of which this is a particular case.
First order derivations will play the central role here.

A derivation of $\mathcal{L}(X)$ is an arbitrary linear mapping

$D:\mathcal{L}(X)arrow \mathcal{L}(X)$

satisfying the Leibniz mle

(4.3) $D(AB)=D(A)B+AD(B)$ , $A,B\in \mathcal{L}(X)$ .

Derivations of the form

(4.4) $D(A)=D_{B}(A)=BA-AB$ ,
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where $B$ is an arbitrary element of $\mathcal{L}(X)$ , are called inner derivations of $\mathcal{L}(X)$ .
Now we claim that

(4.5) $D[f(A)]=\mathcal{T}_{\mu,\mu}f_{1}(\tilde{A},\overline{D(A}))$ ,

where $\mu$ is any continuous probability measure on $\mathcal{B}[0, T]$ and $f_{1}(x,y)=f’(x)y$ . In fact we will
show a more general result in Theorems 4.1 and 4.3 below.

Theorem 4.1. For each $f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})\in D(A_{1}, \ldots,A_{n})$ and for an inner derivation $D$ of
$\mathcal{L}(X)$ , we have

$D[\mathcal{T}_{\mu_{1},\ldots,\mu_{n}}f(\tilde{A}_{1}, \ldots,\tilde{A}_{n})]$

(4.6)
$= \sum_{j=1}^{n}\mathcal{T}_{\mu_{1},\ldots,\mu_{j},\mu_{j},\mu_{j+}l,\ldots,\mu_{n}}F_{j}(\tilde{A}_{1}, \ldots,\tilde{A}_{j},\overline{D(A_{j})},\tilde{A}_{j+1}, \ldots,\tilde{A}_{n})$ ,

where

(4.7) $F_{j}(x_{1}, \ldots,x_{j},y,x_{j+1}, \ldots,x_{n})=\frac{\partial}{\partial x_{j}}f(x_{1}, \ldots,x_{n})y$ .

Lemma 4.2. Let $D$ be a derivation of $\mathcal{L}(X)$. Define $\mathcal{D};\mathcal{L}(\mathcal{L}(X))arrow \mathcal{L}(\mathcal{L}(X))$ by

(4.8) $D(T)=[D, T]=DT-TD$.

Then $\mathcal{D}$ is an inner derivation of $\mathcal{L}(\mathcal{L}(X))$ . Furthermore, for any $A\in \mathcal{L}(X)$,

(4.9) $D(L_{A})=L_{D(A)}$ .

Theorem 4.3. Fomula (4.6) is validfor an arbitmry derivation of $\mathcal{L}(X)$ .

Remark We have considered disentangling maps and derivations associated with the al-
gebra $\mathcal{L}(X)$ , where $X$ is a Banach space. In fact there is no change in the definitions of the
disentangling map and the derivation if we replace $\mathcal{L}(X)$ by an arbitrary algebra $\mathcal{A}$ . Moreover
Theorem 4.1 through Theorem 4.3 remain tme in this new setting.

Consider the algebra $\mathcal{L}(X)_{\{t\}}$ whose elements are (infinitely differentiable) families of ele-

ments of $\mathcal{L}(X)$ depending on a numerical parameter $t$ . Clearly, the mapping

(4.10) $\frac{d}{dt}$ : $\mathcal{L}(X)_{\{t\}}arrow \mathcal{L}(X)_{\{t\}}$

taking each family $A_{t}\in \mathcal{L}(X)_{\{t\}}$ into its t-derivative is a derivation of the algebra $\mathcal{L}(X)_{\{t\}}$ . Let
$f(x)= \sum_{m=0}^{\infty}c_{m}x^{m}$ be an entire function. Then by Theorem 4.3 and its remark, we obtain

(4.11) $\frac{d}{dt}f(A_{t})=\mathcal{T}_{\mu,\mu}f_{1}(\tilde{A}_{t},\overline{\frac{dA_{t}}{dt}})$ ,
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where $\mu$ is any continuous probability measure on $\mathcal{B}[0, T]$ and $f_{1}(x,y)=f’(x)y$ .
From (4.11) we easily derive a formula for the coefficient (4.2). Namely, take $A_{\epsilon}=A+\epsilon B$ ,

then $\frac{dA}{d\epsilon}\subseteq=B$ and

(4.12) $C_{1}=\mathcal{T}_{\mu,\mu}f_{1}(\tilde{A},\tilde{B})$ ,

i.e.,

(4.13) $f(A+\epsilon B)=f(A)+\epsilon \mathcal{T}_{\mu,\mu}f_{1}(\tilde{A},\tilde{B})+O(\epsilon^{2})$ .

We will develop here some special cases of higher order expansions.

Theorem 4.4. Let $f(x)= \sum_{m=0}^{\infty}c_{m}x^{m}$ be an entirefunction. For each $n=1,2,$ $\ldots$ ,

(4.14) $\frac{d^{n}}{dt^{n}}f(A+tB)=\mathcal{T}_{\mu,\mu}f_{n}(\overline{A+tB},\tilde{B})$,

where $\mu$ is any continuous probability measure on $\mathcal{B}[0, T]$ and $f_{n}(x,y)=f^{(n)}(x)y^{n}$ .

Thus we can write down the usual Maclaurin expansion

(4.15) $f(A+ \epsilon B)=f(A)+\sum_{n=1}^{N}\frac{\epsilon^{n}}{n!}\mathcal{T}_{\mu,\mu}f_{n}(\tilde{A},\tilde{B})+O(\epsilon^{N+1})$.

Our next theorem will give an expansion of arbitrarily high order accompanied by an explicit
remainder term.

Theorem 4.5. (Newton’s formula with remainder) Let $A,B$ be nonzero opemtors in $\mathcal{L}(X)$

and let $\epsilon>0$ . Let $\mu$ be a continuous probability measure on $\mathcal{B}[0, T]$ . For any positive integer
$N$, we have

(4.16) $f(A+ \epsilon B)-f(A)=\sum_{n=1}^{N}\frac{\epsilon^{n}}{n!}\mathcal{T}_{\mu,\mu}f_{n}(\tilde{A},\tilde{B})+Q_{N}$ ,

where $f_{n}(x,y)=f^{(n)}(x)y^{n}$ for $n=1,2,$ $\ldots,N$ and QN is given by the formula

(4.17) $Q_{N}= \frac{\epsilon^{N+1}}{(N+1)!}\mathcal{T}_{\mu,\mu}g_{N}(\tilde{A},\tilde{B})$ ,

where $g_{N}(x,y)=f^{(N+1)}(x+\epsilon_{1}y)y^{N+1}$ for some $0<\epsilon_{1}<\epsilon$.

Theorem 4.6. (Taylor’s formula with remainder) Let $A,C$ be nonzero opemtors in $\mathcal{L}(X)$

and let $\mu_{1},\mu_{2}$ be continuous probability measures on $\mathcal{B}[0, T]$ . For any positive integer $N$, we
have

(4.18) $f(C)-f(A)= \sum_{n=1}^{N}\frac{1}{n!}\mathcal{T}_{\mu_{1},\mu_{2}}h_{n}(\tilde{A},\tilde{C})+R_{N}$ ,
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where $h_{n}(x,y)=f^{(n)}(x)(y-x)^{n}$ for $n=1,2,$ $\ldots,N$ and $R_{N}$ is given by the formula

(4.19) $R_{N}= \frac{1}{(N+1)!}\mathcal{T}_{\mu_{1},\mu_{2}}k_{N}(\tilde{A},\tilde{O}$ ,

where $k_{N}(x,y)=f^{(N+1)}(x+t(y-x))(y-x)^{N+1}$ for some $0<t<1$ .

Remark Unlike Newton’s formula with remainder in (4.16), Taylor’s formula with remain-
der in (4.18) does not generally provide an expression in power of $\epsilon$ if $C=A+\epsilon B$ .

\S 5. Measure permutation formulas

In this section we summarize the results in [2]. Let $A$ and $B$ belong to $\mathcal{L}(X)$ , where $X$ is
a Banach space. Let $\mu 1$ and $\mu_{2}$ be continuous probability measures and let $f(x,y)=x^{m}y^{m}$ for
nonnegative integer $m$ . Then, as one can expect, we have

(5.1) $\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})=\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{B},\tilde{A})$ ,

that is, the measures and operators can be exchanged simultaneously for $f(x,y)=x^{m}/n$ . Propo-
sition 2.11 of [4] is a generalization of the above identity. But we can not expect that

(5.2) $\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})=\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})$

in general. To understand this, let us consider a simple example. Let $f(x,y)=xy$. Then

$\mathcal{T}_{\mu_{1},\mu 2}f(\tilde{A},\tilde{B})=AB(p_{1}\cross\mu_{2})[s2<s_{1}]+BA(\mu_{l}\cross\mu_{2})[s1<s2]$

and
$\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})=AB(\mu\cross)[s<s_{1}]+BA(/12\cross\mu_{1})[s_{1}<s_{2}]$ ,

where, for example, $(\mu_{1}\cross\mu_{2})[s_{2}<s_{1}]$ denotes $(\mu_{1}\cross\mu_{2})\{(s_{1},s_{2}):s_{2}<s_{1}\}$ . Hence the equality
in (5.2) can not be tme unless

$(\mu_{1}\cross\mu_{2})[s2<s_{1}]=(\mu_{2}\cross\mu_{1})[s_{2}<s_{1}]$ .

Moreover, the conditions to ensure (5.2) are much more complicate if, for example, $f(x,y)=$
$y^{3}$ or $f(x,y)=\mathscr{H}+x^{2}y^{2}$ , etc.

In this section we are interested in the difference between the two operators $\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})$

and $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})$ . Our first lemma below is easy to obtain but it is useful to simplify the proof
of the Measure permutation formula I in Theorem 5.2.

Lemma 5.1. Let $m_{1}$ and $m2$ be positive integers and let $\mu$ be a continuous probability mea-
sure on $B[0,T]$ . Let

(5.3) $K_{m_{1}}=m{}_{1}P_{\mu,\mu}^{n_{1}-1,1}(A, [A,B])$ .
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Then the identity

(5.4) $A^{m_{1}}B^{m_{2}}-B^{m_{2}}A^{m_{1}}=B^{m_{2}-1}K_{m_{1}}+B^{m_{2}-2}K_{m_{1}}B+\cdots+K_{m_{1}}B^{m_{2}-1}$

holds

Now we are ready to prove measure permutation formulas, the main results in this section.

Theorem 5.2. (Measure permutation formula I) Let $\mu\iota$ and $\mu_{2}$ be continuous pmbability
measures on $\mathcal{B}[0, T]$ . Assume that $\mu_{1}$ is supported by $[0,a]$ and $\mu_{2}$ is supported by $[a, T]$ for
some $a\in[0, T]$ . Then for any positive integers $m\iota$ and $m2$ ,

(5.5) $P_{\mu_{2},\mu l}^{m_{1},m_{2}}(A,B)=P_{\mu_{1},\mu_{2}}^{m_{1},m_{2}}(A,B)+m2P_{\mu,\mu}^{m_{2}-1,1}(B,K_{m_{1}})$,

where $K_{m_{1}}$ is given by (5.3) and $\mu$ is any continuous pmbability measure on $\mathcal{B}[0,T]$ . Further
assume that $f(\tilde{A},\tilde{B})\in D(A,B)$ and let

(5.6) $f(x,y)= \sum_{m_{1},m_{2}=0}^{\infty}c_{m_{1},m_{2}}x^{m_{1}}y^{m_{2}}$ ,

then we have

(5.7) $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})+\sum_{m_{1},m_{2}=1}^{\infty}c_{m_{1},m_{2}}m_{2}P_{\mu,\mu}^{m_{2}-1,1}(B,K_{m_{1}})$ .

Let $\frac{\delta f}{\delta y}(x;y,y_{1})$ denote the difference derivative of $f(x,y)$ with respect to $y$, that is,

(5.8) $\frac{\delta f}{\delta y}(x;y,y_{1})=\{$ $\frac{f(x,y)-f(x,y_{1})}{\mathcal{T}_{\mathcal{Y}}^{f_{(x,y)}}\partial y-y_{1}}$

, if $y\neq y_{1}$

if $y=y1$ .

The infinite series of operators on the right hand side of (5.7) can be expressed as a disentan-
gling of a function which is related with $f$. We present it as Measure permutation formula II in
the following theorem. The technique of ’extraction of a linear factor’ [7, 9] plays an important
role in the next theorem.

Theorem 5.3. (Measure permutation formula II) Under the assumptions ofTheorem 5.2
one has

(5.9) $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})+\mathcal{T}v_{2},v_{2},v_{2},v_{1},v_{3^{\wedge}}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{A},\tilde{A};\tilde{B},\tilde{B})$

where $v_{1},$ $\gamma_{2}$ and $v3$ are continuous probability measures supported on $[0,b_{1}],$ $[b_{1},b_{2}]$ and
$[b_{2},T]$ for any $b_{1},b_{2}$ with $0<b_{1}<b_{2}<T$ , respectively. Moreover (5.9) can be simplified
$as$

(5.10) $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})+\mathcal{T}_{v_{2},v_{2},v_{1},v_{3}}[A,B]\frac{\delta f_{x}}{\delta y}(\tilde{A};\tilde{B},\tilde{B})\sim$ .
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Now we give some corollaries and an example of Measure permutation formulas I and II.
For $f(\tilde{A})\in D(A)$ , let us denote

$f(A)=f_{\mu}(A)=\mathcal{T}_{\mu}f(\tilde{A})$

for any continuous probability measure $\mu$ on $\mathcal{B}[0,T]$ . Our first corollary, called commutation
formula, gives a relationship between $f(A)B$ and $Bf(A)$ . It is an easy consequence of Theorems
5.2 or 5.3.

Corollary 5.4. (Commutation formula I) Let $f(\tilde{A})\in D(A)$ and let

(5.11) $f(x)= \sum_{m=0}^{\infty}c_{m}x^{m}$ .

Then we have

(5.12) $f(A)B=Bf(A)+\mathcal{T}_{\mu,\mu}f_{1}(\tilde{A},[A,B])\sim$ ,

where $\mu$ is any continuous probability measure on $\mathcal{B}[0,T]$ and $f_{1}(x,z)=f’(x)z$.

The following is a generalized commutation formula. If we take $g(y)=y$ in Corollary 5.5,
then Corollary 5.4 is immediate from CorollaIy 5.5.

Corollary 5.5. (Commutation formula II) Let $f(\tilde{A})\in D(A)$ and $g(\tilde{B})\in D(B)$ . Then we
have

(5.13) $f(A)g(B)=g(B)f(A)+\mathcal{T}_{v_{2},v_{2},v_{1},v_{3}}(f\otimes g)_{1}(\tilde{A},[A,B];\tilde{B},\tilde{B})\sim$,

where $\nu_{1},v2,v_{3}$ are the measures as in Theorem 5.3 and

(5.14) $(f \otimes g)_{1}(x,z;y,y_{1})=f’(x)z\frac{\delta g}{\delta y}(y,y_{1})$ .

Derivation formula (4.6) in Section 4 plays a key role in a differential calculus for Feynman‘s
operational calculi. (For details, see Sections 3 and 4 of [10].) In the following corollary we
obtain the derivation formula (4.6) as a corollary of the commutation formula (5.13) in Corollary
5.5.

Corollary 5.6. Let $D$ be a derivation of $\mathcal{L}(X)$ and let $f(\tilde{A})\in D(A)$ . Then we have

(5.15) $D[f(A)]=\mathcal{T}_{\mu,\mu}f_{1}(\tilde{A},\overline{D(A}))$ ,

where $\mu$ is any continuous probability measure on $\mathcal{B}[0, T]$ and $f_{1}(x,z)=f’(x)z$.

In our next example we illustrate the measure permutation formula for a function of the
Pauli matrices.
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Example 5.7. Let’s consider the simplest non-commuting example of the Pauli matrices

$\sigma_{1}=(\begin{array}{l}0110\end{array})$ , $\sigma_{2}=(\begin{array}{l}0-ii0\end{array})$ , $\sigma_{3}=(\begin{array}{ll}1 00-1 \end{array})$ .

Let $f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})\in D(\sigma_{1},\sigma_{2})$ and let $\mu_{1},\mu_{2}$ be the measures given as in Theorem 5.2. Now let us
rewrite the operator $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})$ in the form $\mathcal{T}_{\mu l,\mu_{2}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})$ so that the matrix $\sigma_{1}$ acts first
in every terms of the expression. Since $[\sigma_{1},\sigma_{2}]=2i\sigma_{3}$ ,

$\mathcal{T}_{\mu_{2},\mu 1}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})+2i\mathcal{T}_{v_{2},v_{2},v_{2},\nu_{1},v_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(\tilde{\sigma}_{1},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2})$ ,

where $v_{1,2}v,v_{3}$ are the measures given as in Theorem 5.3. Now let us investigate the second
term on the right hand side of the above equation. Assume that

$f(x,y)= \sum_{m_{1},m_{2}=0}^{\infty}c_{m_{1},m_{2}}x^{m_{1}}y^{m_{2}}$ .

Then we have

$\mathcal{T}_{v_{2},v_{2},v_{2},v_{1},v_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(\tilde{\sigma}_{1},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2})$

$= \sum_{m_{1},m_{2}=1}^{\infty}c_{m_{1},m_{2}}m_{1}(\sum_{l=0}^{m_{2}-1}P_{v_{2},v_{2},v_{1},v_{3}}^{1,m_{1}-1,l,m_{2}-l-1}(\tilde{\sigma}_{3},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2}))$ .

We can extract a linear factor to obtain

$P_{v_{2},\nu_{2},v_{1},v_{3}}^{1,m_{1}-1,l,m_{2}-l-1}(\tilde{\sigma}_{3},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2})=P_{v_{2},v_{1},v_{3}}^{1,l,m_{2}-l-1}(\tilde{H}_{m_{1}};\tilde{\sigma}_{2},\tilde{\sigma}_{2})$,

where
$H_{m_{1}}=P_{vv_{2}}^{1,m_{1}-1}(\tilde{\sigma}_{3},\tilde{\sigma}_{1})2,\cdot$

Note that the Pauli matrices $\sigma_{1}$ and $\sigma_{3}$ satisfy

$\sigma_{1}^{2}=id$ , $\sigma_{1}\sigma_{3}+\sigma_{3}\sigma_{1}=O$ , $\sigma_{3}+\sigma_{1}\sigma_{3}\sigma_{1}=O$ .

Hence if $m1$ is odd, then

$H_{m_{1}}= \frac{1}{m_{1}}(\sigma_{1}^{m_{1}-1}\sigma_{3}+\sigma_{1}^{m_{1}-2}\sigma_{3}\sigma_{1}+\cdots+\sigma_{1}\sigma_{3}\sigma_{1}^{m_{1}-2}+\sigma_{3}\sigma_{1}^{m_{1}-1})=\frac{1}{m_{1}}\sigma_{3}$.

Similarly, if $m1$ is even, then we know that $H_{m_{1}}=O$ . Hence

$m{}_{1}P_{v_{2},v_{2},v_{1},v_{3}}^{1,m_{1}-1,l,m_{2}-l-1}(\tilde{\sigma}_{3},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2})=\{\begin{array}{ll}P_{v_{2},v_{1^{\mathcal{V}}3}}^{1,l,m_{2}-l-1}(\tilde{\sigma}_{3};\tilde{\sigma}2,\tilde{\sigma}_{2}), if m_{1} is oddO, if m1 is even\end{array}$
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and so

$\mathcal{T}_{v_{2)}v_{2},v_{2},v_{1},v_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(\tilde{\sigma}_{1},\tilde{\sigma}_{1};\tilde{\sigma}_{2},\tilde{\sigma}_{2})$

$= \sum_{m_{1},m_{2}=1;m_{1}=odd}^{\infty}c_{m_{1},m_{2}}(\sum_{l=0}^{m_{2}-1}P_{v_{2},\nu_{1},v_{3}}^{1,l,m_{2}-l-1}(\tilde{\sigma}_{3};\tilde{\sigma}_{2}, ei 2))$

$= \mathcal{T}_{v_{2},\nu_{1},\nu_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}2,\tilde{\sigma}2)$ .

Finally, we have

$\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})+2i\mathcal{T}_{v_{2},v_{1},v_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})$.

\S 6. Generalized measure permutation formulas

In this section we summarize the results in [1]. Let $A$ and $B$ be bounded linear operators
acting on $X$ , where $X$ is a Banach space. Let $\mu_{1}$ and $\mu_{2}$ be continuous probability measures on
$\mathcal{B}[0,T]$ . In Section 5, we introduced relationships between the two operators $\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B})$ and
$\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B})$ , and called the relationships as measure permutation formulas. But in Section 5
we considered the case where the numbers of operators and measures involved are exactly two.
In this section we generalize the results for more than three operators and measures.

The technique of ‘extraction of a linear factor’ [7, 9] plays an important role not only in
Theorem 6.2 below but also in the rest of this paper. Let’s start with a simple lemma.

Lemma 6.1. Let $\mu$ and $v$ be continuous probability measures on $\mathcal{B}[0, T]$ . For any nonnega-
tive integer $n$, we have

(6.1) $P_{\mu,v}^{1,n}(A+B,C)=P_{\mu,v}^{1,n}(A,C)+P_{\mu,\nu}^{1,n}(B,C)$ .

Of course this lemma is an easy consequence as anyone can expect. But (6.1) may not be
tme if the power associated with the operator $A+B$ is greater than 1. Here is a simple example,
where we take the operator $C$ to be the identity operator $I$ and $n$ to be 1. Now it is obvious to
see that

$P_{\mu,v}^{m,1}(A+B,D=(A+B)^{m}$

and
$P_{\mu,v}^{m,1}(A,D+P_{\mu,v}^{m,1}(B,D=A^{m}+B^{m}$ ,

and these two operators may not be equal unless $m=1$ .
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Theorem 6.2. (Generalized measure permutation formula I) Let $a_{1},a_{2},a3$ be real num-
bers such that $0\leq a_{1}<a_{2}<a_{3}\leq T$. Suppose $that\mu_{1}$ and $\mu_{2}$ be continuous probability measures
on $\mathcal{B}[0, T]$ having supports contained in $[a_{1},a_{2}]$ and $[a_{2},a3]$ , respectively. Let $\lambda$ be any contin-
uous pmbability measure having support contained in $[0,a_{1}]\cup[a_{3}, T]$ . Then for any positive
integers $m_{1},m_{2}$ and nonnegative integer $n$, we have

(6.2) $P_{\mu_{2},\mu_{1},\lambda}^{m_{1},m_{2},n}(A,B,C)=P_{\mu_{1},\mu_{2},\lambda}^{m_{1},m_{2},n}(A,B,C)+m_{2}P_{\mu,\mu,\lambda}^{m_{2}-1,1,n}(B,K_{m_{1}},C)$,

where $\mu$ is any continuous pmbability measure having supports contained in $[a_{1},a3]$ and $K_{m_{1}}$

is given as in (5.3). Further assume that $f(\tilde{A},\tilde{B},\tilde{C})\in D(A,B,C)$ and let

(6.3) $f(x,y,z)= \sum_{m_{1},m_{2},n=0}^{\infty}c_{m_{1},m_{2},n}x^{m_{1}}y^{m_{2}}z^{n}$ .

Then we have

$\mathcal{T}_{\mu 2,\mu_{1},\lambda}f(\tilde{A},\tilde{B},\tilde{C})$

(6.4)
$= \mathcal{T}_{\mu l,\mu_{2},\lambda}f(\tilde{A},\tilde{B},\tilde{C})+\sum_{m_{1},m_{2}=1;n=0}^{\infty}c_{m_{1},m_{2},n}m{}_{2}P_{\mu,\mu,\lambda}^{m_{2}-1,1,n}(B,K_{m_{1}},C)$.

By introducing additional operators $C_{1},$ $\ldots,C_{k}$ and measures $1_{1},$ $\ldots,\lambda_{k}$ we obtain the fol-
lowing corollary. It is obtained simply by extracting a linear factor.

Corollary 6.3. Let $a_{1},a_{2},a_{3},\mu l$ and $\mu_{2}$ be given as in Theorem 6.2. Let $l_{1},$
$\ldots$ , ノ $k$ be any

continuous probability measures having suppons contained in $[0,a_{1}]\cup[a_{3}, T]$. For any positive
integers $m1,m_{2}$ and nonnegative integers $n_{1},$ $\ldots,n_{k}$ , we have

$P_{\mu_{2},\mu_{1},\lambda_{1},,\lambda_{k}}^{m_{1},m_{2},n_{1}.’.\cdot.\cdot,n_{k}}(A,B,C_{1}, \ldots,C_{k})$

(6.5)
$=P_{\mu_{1},\mu_{2},\Lambda_{1,.\prime}}^{m_{1},m_{2},n_{1}\prime}.\cdot.\cdot,\cdot|_{k}^{n_{k}}(A,B,C_{1}, \ldots,C_{k})+m_{2}P_{\mu,\mu,\lambda_{1^{j}},.,t_{k}}^{m_{2}-1,1..’ n_{1},\ldots,n_{k}}(B,K_{m_{1}},C_{1}, \ldots,C_{k})$ ,

where $\mu$ and $K_{m_{1}}$ are given as in (5.3). Further assume that $f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})\in D(A,B,C_{1}, \ldots,C_{k})$

and let

(6.6) $f(x,y_{Z1}, \ldots,z_{k})=\sum_{m_{1},m_{2},n_{1},.n_{k}=0}^{\infty}..,c_{m_{1},m_{2},n_{1},\ldots,n_{k}}x^{m_{1}}y^{m_{2}}z_{1}^{n_{1}}\cdots z_{k}^{n_{k}}$ .

Then we have

$\mathcal{T}_{\mu_{2},\mu i}\iota,’\iota_{1},\ldots,\iota_{k}f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

$=\mathcal{T}_{\mu_{1},\mu_{2},\lambda_{1},\ldots,\lambda_{k}}f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

(6.7)

$+ \sum_{m_{1},m_{2}=1;n_{1},\ldots,n_{k}=0}^{\infty}c_{m_{1},m_{2},n_{1},\ldots,n_{k}}m{}_{2}P_{\mu,\mu,\lambda_{1},.,\lambda_{k}}^{m_{2}-1,1..’ n_{1},\ldots,n_{k}}(B,K_{m_{1}},C_{1}, \ldots,C_{k})$ .
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Measure permutation formula II in Theorem 5.3 can also be generalized as follows. That is,

the infinite series of operators on the right hand side of (6.4) can be expressed as a second order
difference derivative of $f$.

Theorem 6.4. (Generalized measure permutation formula II) Under the assumptions of
Theorem 6.2 one has

(6.8) $\mathcal{T}_{\mu_{2},\mu_{1},,t}f(\tilde{A},\tilde{B},\tilde{C})=\mathcal{T}_{\mu_{1},\mu_{2},\lambda}f(\tilde{A},\tilde{B},\tilde{\fbox{}}+\mathcal{T}_{\nu_{2},v_{2},v_{2},v_{1},\nu_{3},1^{\sim}}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{A},\tilde{A};\tilde{B},\tilde{B};\tilde{C})$ ,

where $v_{1},$ $v2$ and $v3$ are continuous probability measures supported on $[a_{1},b_{1}],$ $[b_{1},b_{2}]$ and
$[b_{2},a_{3}]$ for any $b_{1},b_{2}$ with $a_{1}<b_{1}<b_{2}<a_{3}$ , respectively. Moreover (6.8) can be simplified as

(6.9) $\mathcal{T}_{\mu_{2},\mu_{1},\lambda}f(\tilde{A},\tilde{B},\tilde{C})=\mathcal{T}_{\mu_{1},\mu_{2},\lambda}f(\tilde{A},\tilde{B},\tilde{C})+\mathcal{T}v_{2},v_{2},v_{1},\nu_{3},\lambda^{\wedge}[A,B]\frac{\delta f_{x}}{\delta y}(\tilde{A};\tilde{B},\tilde{B};\tilde{C})$ ,

Corollary 6.5. Under the assumptions ofCorollary 6.3 one has

$\mathcal{T}_{\mu_{2},\mu_{1},\lambda_{1},\ldots,\lambda_{k}}f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

$=\mathcal{T}_{\mu_{1},\mu_{2},\lambda_{I},\ldots,\lambda_{k}}f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

(6.10)
$+ \mathcal{T}_{\nu}2^{\nu_{2},\nu_{2},v_{1},\nu_{3^{J}},!_{1,\ldots,\prime}\iota_{k}^{\sim}}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{A},\tilde{A};\tilde{B},\tilde{B};\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

$=\mathcal{T}_{\mu_{1},\mu_{2},\lambda_{1},\ldots,\lambda_{k}}f(\tilde{A},\tilde{B},\tilde{C}_{1}, \ldots,\tilde{C}_{k})$

$+ \mathcal{T}_{v_{2},\nu_{2},\nu_{1},v_{3’},1_{1},\ldots,\lambda_{k}}[A,B]\frac{\delta f_{x}}{\delta y}(\tilde{A};\tilde{B},\tilde{B};\tilde{C}_{1}, \ldots,\tilde{C}_{k})\sim$,

where $v_{1},$ $v_{2}$ and $v3$ are the measures given as in Theorem 6.4.

In Theorem 6.2 through Corollary 6.5 we permute $\mu_{2}$ and $\mu_{1}$ where these are the first and the

second measures in the definition of the disentangling map. Theorem 6.6 below says that we
can permute the second and the third, or the first and the third measures to get similar formulas
as in Theorem 6.4.

Theorem 6.6. (Generalized measure permutation formula II) Under the assumptions of
Theorem 6.4 one has

$\mathcal{T}_{\lambda,\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B},\tilde{\fbox{}}=\mathcal{T}_{\lambda,\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B},\tilde{C})+\mathcal{T}_{\nu_{2},\lambda,\nu_{2},v_{2},v_{1},\nu_{3}}^{\sim}[B,C]\frac{\delta^{2}f}{\delta y\delta z}(\tilde{A};\tilde{B},\tilde{B};\tilde{C},\tilde{C})$

(6.11)
$= \mathcal{T}_{\lambda,\mu_{1},\mu_{2}}f(\tilde{A},\tilde{B},\tilde{C})+\mathcal{T}_{v_{2},\lambda,v_{2},v_{1},v_{3}}[B,C]\frac{\delta f_{y}}{\delta z}(\tilde{A};\tilde{B};\tilde{C},\tilde{C})\sim$

and

$\mathcal{T}_{\mu_{2},\lambda,\mu 1}f(\tilde{A},\tilde{B},\tilde{\fbox{}}=\mathcal{T}_{\mu_{1},\lambda,\mu_{2}}f(\tilde{A},\tilde{B},\tilde{C})+\mathcal{T}_{v_{2},\nu_{2},v_{2},\lambda,v_{1},v_{3}}^{\sim}[A,C]\frac{\delta^{2}f}{\delta x\delta z}(\tilde{A},\tilde{A};\tilde{B};\tilde{C},\tilde{C})$

(6.12)
$= \mathcal{T}_{\mu_{1},/l,\mu_{2}}f(\tilde{A},\tilde{B},\tilde{C})+\mathcal{T}_{\nu_{2},\nu_{2},\lambda,\nu_{1},v_{3}}[A,C]\frac{\delta f_{x}}{\delta z}(\tilde{A};\tilde{B};\tilde{C},\tilde{C})\sim$

where $v_{1},$ $v_{2}$ and $v3$ are given as in Theorem 6.4.
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By extracting a linear factor, the following corollary for additional operators and measures
are easy consequences of Theorem 6.6.

Corollary 6.7. Under the assumptions ofComllary 6.3 one has

$\mathcal{T}_{t_{1},\ldots,\lambda_{k},\mu_{2},\mu_{1}}f(\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{A},\tilde{B})$

$=\mathcal{T}_{\lambda_{1},\ldots,\lambda_{k},\mu_{1},\mu_{2}}f(\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{A},\tilde{B})$

(6.13)
$+ \mathcal{T}_{v_{2},\lambda_{1},\ldots,\lambda_{k},\nu_{2},\nu_{2},v_{1},v_{3}}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{C}_{1}, \ldots,\tilde{C}_{k}, ;\tilde{A},\tilde{A};\tilde{B},\tilde{B})\sim$

$=\mathcal{T}_{\lambda_{1},\ldots,\lambda_{k},\mu_{1},\mu_{2}}f(\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{A},\tilde{B})$

$+ \mathcal{T}_{v\lambda\lambda vvv}2,1,\ldots,k,2,1,3[A,B]\frac{\delta f_{x}}{\delta y}(\tilde{C}_{1}, \ldots,\tilde{C}_{k}, ;\tilde{A};\tilde{B},\tilde{B})\sim$

and
$\mathcal{T}_{\mu_{2},\lambda_{1},\ldots,\lambda_{k},\mu_{1}}f(\tilde{A},\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{B})$

$=\mathcal{T}_{\mu_{1^{l}},i}t_{1},\ldots,!_{k},\mu_{2}f(\tilde{A},\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{B})$

(6.14)
$+ \mathcal{T}_{v_{2},v_{2},v_{2},\lambda_{1},\ldots,\lambda_{k},v_{1},\nu_{3}}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{A},\tilde{A};\tilde{C}_{1}, \ldots,\tilde{C}_{k}, ;\tilde{B},\tilde{B})\sim$

$=\mathcal{T}_{\mu_{1},\lambda_{1},\ldots,t_{k},\mu_{2}}f(\tilde{A},\tilde{C}_{1}, \ldots,\tilde{C}_{k},\tilde{B})$

$+ \mathcal{T}_{v_{2},\nu_{2},\lambda_{1},\ldots,\lambda_{k},v_{1},v_{3}}[A,B]\frac{\delta f_{x}}{\delta y}(\tilde{A};\tilde{C}_{1}, \ldots,\tilde{C}_{k};\tilde{B},\tilde{B})\sim$ ,

where $v_{1},v_{2}$ and $v_{3}$ are given as in Theorem 6.4.

Until now in this section, we permute two measures in the disentangling map when the two
measures have supports in $[a_{1},a_{2}]$ and $[a_{2},a_{3}]$ , respectively, and none of the other measures
have supports in $[a_{1},a_{3}]$ . But in our next theorem we permute two measures when another
measure have support in between the supports of the two measures.

Theorem 6.8. (Iterative measure permutation formula) Suppose that $\mu_{1},\mu_{2}$ and $\mu_{3}$ are
continuous pmbability measures having supports contained in $[0,a_{1}],$ $[a_{1},a2]$ and $[a2, T]$ with
$0<a_{1}<a2<T$, respectively. Let $f(\tilde{A},\tilde{B},\tilde{C})\in D(A,B,C)$. Then we have

$\mathcal{T}_{\mu_{3},\mu_{2},\mu_{1}}f(\tilde{A},\tilde{B},\tilde{C})=\mathcal{T}_{\mu_{1},\mu_{2},\mu_{3}}f(\tilde{A},\tilde{B},\tilde{C})$

$+ \mathcal{T}_{v_{2},v_{2},v_{2},v_{1},v_{3},\mu_{1}}^{\sim}[A,B]\frac{\delta^{2}f}{\delta x\delta y}(\tilde{A},\tilde{A};\tilde{B},\tilde{B};\tilde{C})$

(6.15)
$+ \mathcal{T}_{v_{2},v_{2},v_{2},\mu_{3},v_{1},v_{3}}[A,C]\frac{\delta^{2}f}{\delta x\delta z}(\tilde{A},\tilde{A};\tilde{B};\tilde{C},\tilde{C})\sim$

$+\mathcal{T}_{v,\nu_{2^{V}2^{V}1^{V}3}}^{\sim}2,\mu\iota^{[B,C]\frac{\delta^{2}f}{\delta y\delta z}(\tilde{A};\tilde{B},\tilde{B};\tilde{C};\tilde{C})}$

’

where $v_{1},v2$ and $v_{3}$ are continuous pmbability measures having suppons on $[a_{1},b_{1}],$ $[b_{1},b_{2}]$

and $[b_{2},a2]$ for $b_{1},b_{2}$ with $a_{1}<b_{1}<b_{2}<a_{2}$ , respectively.
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Here are some comments on the above theorem.

Remark 1. We can not permute $\mu_{1}$ and $\mu_{3}$ directly because the support of $\mu_{2}$ lies in be-
tween the supports of $\mu_{1}$ and $\mu_{3}$ .

2. In Theorem 6.8, we permute $\mu_{3}$ and $\mu_{2}$ in the first step, and then $\mu_{2}$ and $\mu_{1}$ , and final $Iy\mu_{3}$

and $\mu_{2}$ to obtain $\mathcal{T}_{\mu_{1},\mu 2,\mu_{3}}f(\tilde{A},\tilde{B},\tilde{C})$ from $\mathcal{T}_{\mu 3,\mu 2,\mu[}f(\tilde{A},\tilde{B},\tilde{C})$ . Of course this procedure is not

mandatory. That is, we can permute $\mu_{2}$ and $\mu_{1}$ in the first step, and then $\mu_{3}$ and $\mu_{2}$ , and
finally $\mu_{2}$ and $\mu_{1}$ . But this new steps induce the same identity as (6.15).

In Example 5.7 we applied measure permutation formula to derive an identity for a function
of the Pauli matrices. Our final example is a further investigation of the example.

Example 6.9. Consider the simplest noncommuting example of the Pauli matrices,

$\sigma_{1}=(\begin{array}{l}0110\end{array})$ , $\sigma 2^{=}(\begin{array}{l}0-ii0\end{array})$ , $\sigma_{3}=(\begin{array}{l}010-1\end{array})$ .

Let $f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})\in D(\sigma_{1},\sigma_{2})$ be given by $f(x,y)= \sum_{m_{1},m_{2}=0}^{\infty}c_{m_{1},m_{2}}x^{m_{1}}y^{m_{2}}$ and let $\mu_{1},\mu_{2}$ be the
measures supported on $[0,a]$ and $[a, T]$ , respectively. In Example 5.7, we permute the measures

$\mu_{1}$ and $\mu_{2}$ so that the matrix $\sigma_{1}$ acts first in every term of the expression, and obtained

(6.16) $\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})+2i\mathcal{T}_{v_{2},v_{1},\nu_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})$,

where $v_{l},v2$ and $v3$ are continuous probability measures supported on $[0,b_{1}],[b_{1},b_{2}]$ and $[b_{2},T]$

for $0<b_{1}<b_{2}<T$ , respectively. Let us permute the measures $v2$ and $v3$ in the second term on
the right hand side of (6.16), which are associated with the matrices $\sigma_{3}$ and $\sigma_{2}$ , respectively, so
that the matrix $\sigma_{2}$ acts first in every term of the expression. By Theorem 6.6, we have

$\mathcal{T}_{v_{2},\nu_{l},\nu_{3}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})$

(6.17)
$= \mathcal{T}_{\nu_{3},v_{1},v_{2}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})-\mathcal{T}_{\eta_{2},\eta_{2},\eta_{2},v_{1},\eta_{1},\eta_{3}}^{\sim}[\sigma_{3},\sigma_{2}]\frac{\delta^{2}g}{\delta z\delta y_{1}}(\tilde{\sigma}_{3},\tilde{\sigma}_{3};\tilde{\sigma}_{2};\tilde{\sigma}_{2},\tilde{\sigma}_{2})$,

where $\eta_{1},\eta_{2}$ and $\eta_{3}$ are continuous probability measures supported on $[b_{1,Cl}],$ $[c_{1},c_{2}]$ and
$[c_{2}, T]$ for any $b_{1}<c_{1}<c2<T$ , respectively, and $g$ is given by

$g(z,y,y_{1})=z \frac{\delta^{2}f}{\delta x\delta y}(1, -1;y,y_{1})$ .

Now let us investigate each terms on the right hand side of (6.17). By extracting a linear factor
we know that the first term on the right hand side of (6.17) is reduced to $\mathcal{T}_{v_{3},v_{2}}\tilde{\sigma}_{3}\tilde{K}=\sigma_{3}K$,

where
$K= \mathcal{T}_{\nu_{1},v_{2}}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})$ .
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But since

we have

and so

$\frac{\delta^{2}f}{\delta x\delta y}(1, -1;y,y_{1})=\sum_{m_{1},m_{2}=1,m_{1}=odd}^{\infty}c_{m_{1},m_{2}}(\sum_{l=0}^{m_{2}-1}y^{l}y_{1}^{m_{2}-l-1})$,

$K= \sum_{m_{1},m_{2}=1;m_{1}=odd}^{\infty}c_{m_{1},m_{2}}m_{2}\sigma_{2}^{m_{2}-1}=\mathcal{T}_{v_{2}}\frac{\delta f_{y}}{\delta x}(1, -1;\tilde{\sigma}_{2})$

$\mathcal{T}_{v_{3},v_{1},v_{2}}\tilde{\sigma}_{3}\frac{\delta^{2}f}{\delta x\delta y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})=\mathcal{T}_{v_{3},v_{2}}\tilde{\sigma}_{3}\frac{\delta f_{y}}{\delta x}(1, -1;\tilde{\sigma}_{2})=\mathcal{T}_{\mu_{2},\mu_{1}}\tilde{\sigma}_{3}\frac{\delta f_{y}}{\delta x}(1, -1;\tilde{\sigma}_{2})$.

For the second term on the right hand side of (6.17), note that $[\sigma_{3},\sigma_{2}]=-2i\sigma[$ and

$\frac{\delta^{2}g}{\delta z\delta y_{1}}(z,z1;y;y_{1},y_{2})=\frac{\delta^{3}f}{\delta x\delta y\delta_{\mathcal{Y}1}}(1, -1;y;y\iota,y_{2})$

$= \sum_{m_{1},m_{2}=1;m_{1}=odd}^{\infty}c_{m_{1},m_{2}}(\sum_{l=0}^{-2m}\sum_{r=0}^{-l-2}y^{l}y_{1}^{r}y_{2}^{m_{2}-l-r-2})m_{22}$ .

Hence the term is reduced to
$m_{2}-2m_{2}-l-2$

$M \equiv 2i\sum_{m_{1},m_{2}=1;m_{1}=odd}^{\infty}c_{m_{1},m_{2}}$ $( \sum_{l=0}$ $\sum_{r=0}$

$P_{\eta_{2,1},\eta_{1},\eta_{3}}^{1,l,r,m_{2}-l-r-2})’(\sigma_{1}, \sigma_{2}, \sigma_{2}, \sigma_{2}))$ .

We extract a linear factor to obtain

$P_{\eta_{2},v_{1},\eta_{1}^{2},\eta_{3}}^{1,l,r,m-l-r-2}(\sigma_{1},\sigma_{2},\sigma_{2},\sigma_{2})=P_{\eta_{2},\eta_{1},\eta_{3}}^{1,l+r,m_{2}-l-r-2}(\sigma_{1},\sigma_{2},\sigma_{2})$

and so
$M=2i\mathcal{T}_{\eta_{2},\eta_{1},\eta_{3}}k(\tilde{\sigma}_{1},\tilde{\sigma}_{2},\tilde{\sigma}_{2})=2i\mathcal{T}_{v_{2},v_{1},v_{3}}k(\tilde{\sigma}_{1},\tilde{\sigma}_{2},\tilde{\sigma}_{2})$,

where

$k(z,y,y_{2})= \sum_{m_{1},m_{2}=1;m_{1}=odd}^{\infty}c_{m_{1},m_{2}}(\sum_{l=0}^{-2m}\sum_{r=0}^{-l-2}zy^{l+r}y_{2}^{m_{2}-l-r-2})m_{22}$

$=z \sum_{m_{1},m_{2}=1,m_{1}=odd}^{\infty}c_{m_{1},m_{2}}(\sum_{s=1}^{m_{2}-1}s\gamma_{y_{2}^{m_{2}-s-1})}^{-1}$

$=z( \frac{\delta^{2}f}{\delta x\delta y})_{y}(1, -1;y,y_{2})$ .

Finally from (6.16) we have

$\mathcal{T}_{\mu_{2},\mu_{1}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})=\mathcal{T}_{\mu_{1},\mu_{2}}f(\tilde{\sigma}_{1},\tilde{\sigma}_{2})+2i\mathcal{T}_{\mu_{2},\mu_{1}}\tilde{\sigma}_{3}\frac{\delta f_{y}}{\delta x}(1, -1;\tilde{\sigma}_{2})$

$(6.18)$

$+(2i)^{2} \mathcal{T}_{vvv}\tilde{\sigma}_{1}2,1,3(\frac{\delta^{2}f}{\delta x\delta y})_{y}(1, -1;\tilde{\sigma}_{2},\tilde{\sigma}_{2})$.
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One can proceed with these manipulations. That is, using Theorem 6.4 we can permute $v_{2}$ and
$\nu_{1}$ in the third term of the right hand side of (6.18).
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