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Feynman’s Operational Calculi for Noncommuting Operators

By

Byoung Soo KiM*

Abstract

We survey the author’s recent development of Jefferies and Johnson’s theory of Feynman’s opera-
tional calculi. Extraction of a linear factor in Feynman’s operational calculi can simplify disentangling
under various conditions. We also introduce a first order infinitesimal calculus for a function of n noncom-
muting operators. Further, we consider a measure permutation formula and its applications in Feynman’s
operational calculi.

§1. Introduction

It is important in several areas of mathematics and its applications to be able to form func-
tions of operators. If one has a single self-adjoint operator or several commuting self-adjoint
operators, the spectral theorem provides an extremely rich functional calculus. However, as
soon as we have two or more noncommuting operators, the functional calculus becomes much
more complicated even if the operators are self-adjoint.

Feynman’s 1951 paper [3] on the operational calculus for noncommuting operators arose out
of his ingenious work on quantum electrodynamics and was inspired in part by his earlier work
on the Feynman path integral. Indeed, Feynman thought of his operational calculus as a kind
of generalized path integral. Much surprisingly varied work on the subject has been done since
by mathematicians and physicists. References can be found in the recent books of Johnson and
Lapidus [11] and Nazaikinskii, Shatalov and Sternin [13].

Recently, Jefferies and Johnson [4], [5], [6] introduced a mathematically rigorous approach
to Feynman’s operational calculi. The central objects of this theory are the disentangling alge-
bra, a commutative Banach algebra, and the disentangling map which carries the commutative
structure into the noncommutative algebra of operators.
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This paper is a survey article on the author’s recent development of the Jefferies and John-
son’s theory of Feynman’s operational calculi. We summarize the results in (11, [2], [71, [9],
[10]. Sections 2 and 3 are concerned with the formulas which simplify disentangling in Feyn-
man’s operational calculi under various conditions. In Section 4, we explores the differential
calculus associated with the disentangled operators arising from Feynman'’s operational calculi.
Sections 5 and 6 are concerned with a measure permutation formula, which correspond to the
index permutation formula in Maslov’s discretized version of Feynman’s operational calculus.
We will not give the detailed proof and just state the properties.

We turn now to reviewing the basic definitions of the Jefferies and Johnson’s theory of
Feynman’s operational calculi.

Given a positive integer »n and n positive numbers ry,...,r,, let A(r1,...,r,) be the space of
complex-valued functions of n complex variables f(z,...,z,), which are analytic at (0,...,0),
and are such that their power series expansion

o0
(1.1) f@, )= mym
m ,...,mn=0
converges absolutely, at least on the closed polydisk |z1| < r1,...,|z.| < 7.

For f € A(r1,...,r,) given by (1.1), let

oo

(1.2) WA= U s = > s

my,...,mp=0

The functions on A(ry,...,r,) defined by (1.1) and (1.2) make A(ry,...,r,) into a Banach
algebra with identity under pointwise multiplication of the functions involved [4].

Let X be a Banach space and Ay, ..., A, nonzero operators from £(X), the space of bounded
linear operators acting on X. Except for the numbers ||A{]],...,||A,||, which will serve as
weights, we ignore for the present the nature of Ay,...,A, as operators and introduce a com-
mutative Banach algebra consisting of “analytic functions” f(Ay,...,A,), where A,,...,A, are
treated as purely formal commuting objects.

Now consider the collection D(Ay,...,A,) of all expressions of the form
x
(1.3) A, A= ) emy,m AT A
my ,...,mn=0
where ¢, ...m, € C forall my,...,m, =0,1,..., and

IF AL, Al = I f AL, .., ADlIpa, . an

(1.4) =
= Y lemml A" AW < oo.

my,...,mp=0
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The space D(A1,...,A,) equipped with pointwise operations and the norm (1.4) is a commuta-
tive Banach algebra with identity. In fact, if we take ||4|| = ||Aj|| = r) for j = 1,...,n, then
the two Banach algebras are the same except for a renaming of the indeterminants. We refer to
D(Ay,...,A,) as the disentangling algebra associated with the n-tuple (Ay,...,A,) of bounded
linear operators acting on X.

Let A;,...,A, be nonzero operators from £(X) and y;,...,u, continuous probability mea-
sures defined at least on B[0, T], the Borel class of [0, 7] (such measures are continuous pro-
vided that each single point set has measure 0). We wish to define the disentangling mapping

(1.5) Tuyon DAL, ..., An) — LX)

according to the rule determined by the measures uy, . ..,u,. Putting it another way, given any
analytic function f € A(||A1]|,..-,||Ax|]); we wish to form the function f,, . ..(A1,...,As) Of
not necessarily commuting operators Ay, .. .,A, as directed by uy,..., .

Given nonnegative integers my,...,my, let

(1.6) Pz, ) =2 Ty
so that
(1.7) priomn(Ay L Ay = AT AR

For eachm =0, 1,..., let S,, denote the set of all permutations of the integers {1,...,m}, and

given w € S,,, we set

(1.8) Am() = {(s1, - ,5m) € [0,TT™ 0 < sty < *++ < Saemy < T}
We now define the mapping 7, ..., For j=1,...,nand all s € [0, T}, let

(1.9) Aj(s) =A;

and fori =1,...,m, we define

(Av(s) ifie{l,...,m},

Axs) ifie{m+1,....m+m},
(1.10) Ci(s) := ¢

(An(s) ifie {mi+---+my_1 +1,...,m},

forall0<s<T.

Note that A; in (1.9) is time independent. This implies that the integrands can be pulled
outside of the integral in all of the cases involved. The measures effect the weights on the
various terms as usual but, even more centrally for this theory, the measures effect the ordering
of the operators (the time dependent setting has been developed elsewhere, for example, in [8],

[14], [15D).



147

Definition 1.1. For any nonnegative integers m;,...,m, and m = mj +--- +m,,
,Z;l],...,pnpnl’m’mn(A"h-' . ,An)

1.11
Wb _ s / Crtm)(Ssim)+Catty(Sn) (L™ X+ X f)(ds1 ... dsm).
TESm Am(m)

Then, for f(Ay,...,A,) € D(Ay,...,A,) given by

oo
(1.12) FAr. A= omy.m AL A
my,...,mp=0
we set
(1.13) Tay,oiin AL A= ooy TP A A).

ml,...,m,,———o

We will often use the alternative notation:

(1.14) PRmm(Ag,. . An) =Ty P AL, AR)
and
(1.15) Sirroin @iy A =Ty FAL . A).

For elementary properties of the disentangling algebra D(Ay,...,A,) and the disentangling
map 7, . .., see the introductory papers [4], [5], [6], [8].

§ 2. Extraction of a Linear Factor

The operation of ‘disentangling’ is the key to Feynman’s operational calculi for noncom-
muting operators. Hence, formulas which simplify this procedure under various conditions are
central to the subject. The main results of this section make it possible to carry out the disen-
tangling in an iterative manner. In this section we summarize the results in [9].

Let Ay,...,A, belong to £(X), where X is a Banach space and yy,...,u, be continuous
probability measures on B[0, T'].

Theorem 2.1. Suppose that the probability measures ui,. .., are supported by [a,b] C
[0, T'] and that the probability measures pi 1, - . . , fin are supported by [0,alU[b,T]. Let my,...,m,
be nonnegative integers. Let

(2'1) Kml,...,mk = P[Zl{,,/,::k(Al 7 7Ak)
and g any continuous probability measure supported by [a,b]. Then

Ly qyem
2.2) I'?'ij"’/""',’"(Al yeeAp) = Pﬂo,ﬂktll---,#:(Kmu--- gy Akt 15+ An).



148

Theorem 2.2 (Extraction of a Linear Factor). Let y1,...,un be given as in Theorem 2.1. As-
sume that g(A1,. .., Ay) € D(AL,...,Ar) and h(As1,. .., An) € D(Ags1, . .-, An). Let

(2.3) @, 20) = 821, - Z) Pkt 1, - - 20)-

Let K =T, g(Ay,...,Ay) and pg any continuous probability measure supported by [a,b].
Then f(A,,...,A,) € D(Ay,...,A,) and

(24) le,...,ﬂnf(gl g 7A~n) = T,uo,[lk+|,...,ﬂ,,F(kaAk+l g aAn)’
where F(20,2Zk+1,- - -2n) = 20M(Zk+15 - - - 1 Zn)-

Theorem 2.2 extends to Jefferies and Johnson’s theory of Feynman’s operational calculi a
computational technique which is due to Maslov and which is used many times both in his book
[12] and in the book by Nazaikinskii, Shatalov and Sternin [13]. The technique is referred to
in [13] as “the extraction of a linear factor” and is used in conjunction with the “autonomous
bracket” notation of Maslov.

The technique of extracting a linear factor is used in [12], [13] to establish equalities while
doing calculations with noncommuting operators. Of course, such calculations can be organized
so that the goal is to show that a related operator expression is equal to the zero operator. Our
first corollary below will make it easy to apply Theorem 2.2 in the manner which we have just
discussed.

Corollary 2.3. Let the hypotheses of Theorem 2.2 be satisfied and suppose that
(2.5) K=T,, uw8A1,...,A)=0.
Then Ty, .. u, [ (A1,...,A,) also equals the zero operator.

Next we give an example illustrating the use of Theorem 2.2 and Corollary 2.3. This exam-
ple depends on a special relationship between Ay, ..., A;.

Example 2.4. Let bounded operators Ay, ...,As be given and suppose that g(z1,22) = z% —
2 +uB — 2z and h(z3,24) € A(||As3|, ||A4l]). Further, assume that y,...,p4 are continuous
probability measures on [0,7] with the supports of y; and y; being subsets of [a,b] and the
supports of u3 and 4 being subsets of [0,a] U [b,T] where 0 < a < b < T. Finally, we take
f(z1,22,23,24) = 8(z1,22)h(z3, 24) and ask for the computation of T,,, ., f(A1,A2,A3,As) in the
case where A; = A;. Since Ay = A;, Ay and A certainly commute. Hence, by Proposition 3.1
of [4], all of the functional calculi 7,, ,, acting on (A1,A>) agree with the usual commutative

functional calculus. Thus,
Ty 841, A2) = g(A1,A2) = A} —AlAr + A1A3 — A =0

where the last equality comes from the fact that A, = A;. It follows immediately from Corollary
2.3 that 7,,, ..., f(A1,...,A4) equals the zero operator.



Corollary 2.5. Suppose that the probability measures 11, ..., are supported by [0,a] and
that the probability measures py.., ..., py are supported by [a,T). Let f,g and h be given as in
Theorem 2.2. Then

(2.6) Ty f AL A = Ty yhBiir, - AT 8L, . Ap).

Results in this section can be combined with various results in [4], [5], [6] to yield further

corollaries.

§3. Methods for Iterative Disentangling

The results of this section permit us, under appropriate assumptions, to disentangle in an
iterative manner. The main result ‘extraction of a multilinear factor’, Theorem 3.3, is a mul-
tilinear version of Theorem 2.2. Theorem 3.7 also produces a linear term at each stage of the
iteration but, unlike Theorem 3.3, the new linear term depends on the previous one. In this

section we summarize the results in [7].
Let d be a positive integer. For each j =1,...,d, let I; be the nonempty subset of I =

{1,...,n} such that
I = {ij_l +1,...,ij}

where iy = 0 and let
=1-(L1U---UIy).

Now we introduce the abbreviated notation.

Notation. We write

i€l . -
Prs A i e D) = PMamn(Ay ., Ay),

as well as

f(A~i’i EI) =f(A17"',An)a 1]:))(14hl6 I) ZD(Al,*"7An)7
f(ziai eh= f(zla' .- azn), 7,:1,',1'61 = 7711,..‘,;1,,~

Theorems 3.3 and 3.7 below can be established via induction and Theorem 2.2. The two
monomial cases Theorems 3.1 and 3.5 could be obtained as special cases of Theorems 3.3 and
3.7 respectively. However the monomial cases are easier to understand, and so we will state

them as separate theorems.
Theorem 3.1. Letaj,bj,j=1,...,d be real numbers such that

3.1) 0<ai<b<ay<by<---<ag<by<T.
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Suppose that p;,i € I; have supports contained within [a;,bj] for j=1,...,d. Letvj, j=
1,...,d, be any continuous probability measures having supports contained within [aj,b;).
Given nonnegative integers mp,...,my, let

m,',iEI‘

(3.2) Kj =P e (Ani€l))
Jor j=1,...,d. Then
(3.3) PMymn(Ay, . Ag) =B Sl Ky, Ka3Aiyi € D).

Corollary 3.2. Let ui,...,u, be given as in Theorem 3.1. Suppose Ip = 0, that is, I =

Iy U---Ul,. For any nonnegative integers my,...,my,
. i i€l . i€l .
B4 BN, A = KoK = PG (A € 1)+ B (A € ).

Now we come to the theorem which allows us to iteratively disentangle a multilinear factor
from 7y, 4, f(A1,...,Aq) Where f(z1,...,2,) is an appropriately factorable analytic function of
21,--.,2s. Note that the linear factors K7, ..., K} defined below can be computed independently
of one another; this will not be true of Theorem 3.7.

Theorem 3.3 (Extraction of a Multilinear Factor). Let uy,...,pu, and v1,...,v4 be given as
in Theorem 3.1. Assume that gj(A;,i € I)) € D(A,i € I) for j=1,...,d and h(A;,i € k) €
D(A;,i € Ip). Let

d
(3.3) [, zm) = [ng(z,-,i € Ij)]h(Zi,i € lp)
j=1
and
(3.6) K} =T, ic1,8/Ani € 1))

for j=1,...,d. Then f(A;,...,Ay) € D(A1,...,A,) and
(3'7) 7;11,...,ynf(A~1 ’) 11&") = zl,...,vd;yi,ielop(‘k{y e )K&;A‘-iai e 10)7
where F(wy,...,wg;2i,i € Ip) = w1 ---wah(z;,i € Iy).

Corollary 3.4. Let uy,...,un and f(21,...,2,) be given as in Theorem 3.3. Suppose I =
LU---Uly. Then

(3-8) 7;11,..-,#nf(/§1 yoee ,An) = Ka,' e Kl, = ZIi,iEIdgd(Ai,i € Id) e 'Zl,',iEl]gl(Aiai e h).

The results in the rest of this section are consequences of the main results of Section 2.
However, the supports of the clusters of measures beyond the first are in nonabutting pairs of



intervals arranged so that Theorem 2.2 is applicable and there is linearity at each stage of the
disentangling but not multilinearity of the processes as a whole. The difference in the results
is perhaps most clearly seen by comparing the multilinear expression K - - - K; in formula (3.4)
of Corollary 3.2 with (3.13) of Corollary 3.6 below. Perhaps the most cogent point is that the
operators Kj, ..., K, in Corollary 3.2 can be calculated independently of one another and in any
order whereas this is not true of L;,..., Ly in Corollary 3.6.

Theorem 3.5. Letaj,b;,j=1,...,d be real numbers such that
(3.9) O0<aq < <am<a1<b<by<---<bhy<T.

Suppose that ;i € I; have supports contained within l[aj,a;-11Ubj_1,bj] for j=1,...,d
where a9 = by and by = ay. Let n;, j=1,...,d, be any continuous probability measures having

supports contained within [a;,b;]. Given nonnegative integers my,...,my,, let
_ l;m,',iélj . . )
(3.10) Li=F, e Li-AiLi € 1))

for j=1,...,d where Ly is the identity operator and ng is any continuous probability measure

having support contained within [a1,b1). Then
I; iy‘ I . ;
(3.11) PIL-n(A L Ay) = quifli,’fe i (La3 Ay € Ip).
Corollary 3.6. Let yy,...,un and m,...,n4 be given as in Theorem 3.5. Suppose I =1 U

---Uly. For any nonnegative integers my,...,my,

1; i I .
(3.12) B (AL, Ag) = La = P04 (Ly_ 13 A, € I)

where Ly_ 1 is given inductively by the formula (3.10). Equation (3.12) can be expressed more

explicitly by the formula

1;m; i€l Lmjiely
15e-+sMn — i Sid ; .
P/:’:r--v#n Ar,...,Ap) = P’7d—1;ﬂi:ield(Pﬂd——ZWiﬂEId—-l(
Limgiely , pm;icl . . , .
(3.13) (Pn] ,ﬂi,lEIZZ(P/l,:llEIII (Al’l 6 Il),Al)l e 12)1

) Al € Iy 1) A1 € Iy).
Now we come to one of the main result of this section.

Theorem 3.7. Let 1, ..., u, and m1,...,n4 be given as in Theorem 3.5 and f(z1,...,z,) be

given as in Theorem 3.3. For each j=1,...,d, let
(3.14) Fioiwj-izii€elj)=w;_18j(z,i €1))
and

(3.15) Li=Ty,_ et FiiL;_;Ani€ 1))
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where wo = 1, L], is the identity operator and 1q is any continuous probability measure having

support contained within [ay,b,]. Then
(3.16) Tireoginf A1y, An) = Ty icts F (L3 Aiyi € Io)

where F(wg;z;,i € Ip) = wah(zi,i € Iy).

Corollary 3.8. Let uy,...,tn, M,---,Nq and f(z21,...,2,) be given as in Theorem 3.7. Sup-

pose l =1 U---Ul,. Then we have

(317) 7;111---al»lnf(A~la e 7A~n) = L:i = Z)d_];ﬂi,iEIdFd—l(ilﬁi—l;Aiai € Id)

where Fy;_1 and L",_ | are given inductively by the formulas (3.14) and (3.15), respectively.

We use the linearity of the disentangling mapping again to extend Theorem 3.3 to finite
sums of functions of the form (3.5). In the language of tensor products, the extension is from

elementary tensors to algebraic tensors.

Corollary 3.9. Let the aj’s and bj’s, Ay,...,An,l1,...,n and vi,...,vq be exactly as in

Theorem 3.3. Further, let

N
(3.18) f@1ynzm) =Y filzt,- -1 20)

I=1

where each f; has the form

d
(3.19) fiz, . z0) = [ | 81zivi € Lhu(zisi € Io)
=

and satisfies the conditions of Theorem 3.3. Foranyl € {1,...,N}, let
(3-20) KJ,I = Zli,iEIjgﬂ(Aiai € I])

Jorj=1,...,d Thenf(/il,...,/i,,)elD)(Al,...,A,,)and

& 2
7:'l,...,Vd;ll,',iEI()l:}(Kll’ cee aKdIaAi)l € Ip)

M=

zllv"'vﬂnf(gl Yoo !AII) =
l

il
_

(3.21)
Ty, vgmict Kl - Kahi(4ii € B,

I
M=

T
I

1

where Fi(w1,...,wg;2;,i € Ip) = wy---wahy(z;,i € Ip), I = 1,...,N.



A variety of further corollaries could be written down using the results of this section either
by themselves or in conjunction with earlier results.

§4. The derivation formula and higher-order exapnsions

In this section we summarize the results in [10]. We explores the differential or derivational
calculus associated with the disentangled operators arising from Feynman’s operational calculi
for noncommuting operators. We deal with a first order infinitesimal calculus for a function of
n noncommuting operators. Here the first derivatives are replaced by the first order derivational
derivatives. The derivational derivatives of the first and higher order have been useful in, for ex-
ample, operator algebras, noncommutative geometry and Maslov’s discrete form of Feynman’s

operational calculus.
Let A be a nonzero operator in £(X) and let f(x) = Z;‘;O cmX™ be an entire function. Then

for any continuous probability measure u on B[0,T],

oo

TfE) =) cnA”

m=0

and we let

fA =) cnA™

m=0

In this section we are interested in the term of order € in the expression
.1 f(A+€B) = f(A)+ €C + €2Ca+ - -+ O(€")

where B is an operator in £(X). The coefficient of ¢ can be obtained as

“2) = di FA+ €B)|ozo.
. €

We will find an expression for a more general “derivative”, of which this is a particular case.

First order derivations will play the central role here.
A derivation of £(X) is an arbitrary linear mapping

D: LX) — LX)
satisfying the Leibniz rule
4.3) D(AB) = D(A)B+AD(B), A,Bc¢c L(X).
Derivations of the form

4.4) D(A) = Dg(A) = BA — AB,

153
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where B is an arbitrary element of £(X), are called inner derivations of £(X).
Now we claim that

(4.5) DLf(A)] = T, fi(A, D(A)),

where 4 is any continuous probability measure on B[0,T] and fi(x,y) = f'(x)y. In fact we will
show a more general result in Theorems 4.1 and 4.3 below.

Theorem 4.1. For each f(A,...,A,) € D(Ay,...,A,) and for an inner derivation D of
L(X), we have

DIT,,.. uf(Ay,...,AD)]

(4.6) “ - e —~— .
= TorospijitjorinFiAL - Aj, DA, A1, A,
j=1
where
d
(47) Fj(xl yer s X Yy Xj+ls- - axn) = é—f(xl yoo. axn)y'
Xj

Lemma 4.2. Let D be a derivation of L(X). Define D : L(L(X)) — L(L(X)) by
4.8) D(T)=(D,T1=DT —TD.
Then D is an inner derivation of L(L(X)). Furthermore, for any A € L(X),
4.9) D(La) = Lpa).

Theorem 4.3. Formula (4.6) is valid for an arbitrary derivation of L(X).

Remark. We have considered disentangling maps and derivations associated with the al-
gebra L£(X), where X is a Banach space. In fact there is no change in the definitions of the
disentangling map and the derivation if we replace £(X) by an arbitrary algebra A. Moreover
Theorem 4.1 through Theorem 4.3 remain true in this new setting.

Consider the algebra £(X);,; whose elements are (infinitely differentiable) families of ele-
ments of £(X) depending on a numerical parameter ¢. Clearly, the mapping
4.
dt
taking each family A, € £(X), into its t-derivative is a derivation of the algebra £(X)(;}. Let
fx)= Zf:f:o cmX™ be an entire function. Then by Theorem 4.3 and its remark, we obtain

(4.10) LX)y = LX)y

d ... _ . dA
@11 = fa) = Tufi (A, L),



where u is any continuous probability measure on B[0,T] and fi(x,y) = f'(x)y.
From (4.11) we easily derive a formula for the coefficient (4.2). Namely, take Ac = A + €B,
then ‘%ﬁ = Band

(4.12) C1 =T, .fi(A,B),
ie.,
(4.13) f(A+€B) = f(A)+ €T, . fi(A, B) + O(éD).

We will develop here some special cases of higher order expansions.

Theorem 4.4. Let f(x) = ZZO:O cmX™ be an entire function. For eachn=1,2,...,

n

d P -~
4.14) d7f(A+tB) =T, ufn(A+1tB,B),
where p1 is any continuous probability measure on B[0,T] and f,(x,y) = f™(x)y".

Thus we can write down the usual Maclaurin expansion

N
4.15) f(A+eB)=f(A)+ ;7;,,,, fo&,B)+ 0" ).
n=1 """

Our next theorem will give an expansion of arbitrarily high order accompanied by an explicit

remainder term.

Theorem 4.5. (Newton’s formula with remainder) Let A, B be nonzero operators in L(X)
and let € > 0. Let u be a continuous probability measure on B[0,T). For any positive integer
N, we have

N
e" -
(4.16) fA+eB) = fA) =) | ~Tuufu(A, B)+On,
n=1"
where f,(x,y) = f®x)y" forn=1,2,...,N and Qy is given by the formula
+1

= AB
(N+ 1)'7;1,/18N( 3 )a

(4.17) On

where gn(x,y) = fVD(x+ e y)yVt! for some 0 < < €.

Theorem 4.6. (Taylor’s formula with remainder) Let A,C be nonzero operators in L£(X)
and let py,pn be continuous probability measures on B[0,T). For any positive integer N, we

have

1

H,Z;q,/lzhn(g, C) + RNa

N
(4.18) fO)-fa)=Y
n=1
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where hu(x,y) = f™(x)(y —x)" forn =1,2,...,N and Ry is given by the formula

1 - o~
(4.19) RN = m%l,ﬂsz(AaC)a

where kn(x,y) = f“‘“’”(}«:-}—t(y—x))(y—x)N"'l forsome 0 <t < 1.

Remark. Unlike Newton’s formula with remainder in (4.16), Taylor’s formula with remain-
der in (4.18) does not generally provide an expression in power of € if C = A + €B.

§5. Measure permutation formulas

In this section we summarize the results in [2]. Let A and B belong to £(X), where X is
a Banach space. Let g and y be continuous probability measures and let f(x,y) = x™y™ for
nonnegative integer m. Then, as one can expect, we have

(5.1 Ty i fAB) =Ty, 1, f(B,A),

that is, the measures and operators can be exchanged simultaneously for f(x,y) = x™y™. Propo-
sition 2.11 of [4] is a generalization of the above identity. But we can not expect that

(5.2) 1y, ,#2f(A~’B) =T f(A,B)
in general. To understand this, let us consider a simple example. Let f(x,y) = xy. Then
Ty o (A, B) = AB(u1 X )2 < 511+ BAGu1 X pr2)[s1 < 52]

and
Ty f(A, B) = AB(uz x p)ls2 < 511+ BAQz x p)ls1 < 521,

where, for example, (u; x up)[s2 < s1] denotes (u; X u2){(s1,52) : 52 < s1}. Hence the equality
in (5.2) can not be true unless

(1 X p2)ls2 < s11= (U2 X p1)ls2 < s1).

Moreover, the conditions to ensure (5.2) are much more complicate if, for example, f(x,y) =

X%y or f(x,y) = xy° + x%y?, etc.

In this section we are interested in the difference between the two operators T, ., f(A, B)
and 7y, ,, f(A, B). Our first lemma below is easy to obtain but it is useful to simplify the proof
of the Measure permutation formula I in Theorem 5.2.

Lemma 5.1. Let m; and m; be positive integers and let u be a continuous probability mea-
sure on B[0,T). Let

(5.3) Km, =m P74, [A,B)).
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Then the identity
(5.4) AMIB™2 _ pm A — B”'Z—]Kml +Bm2—2KmlB+ .- +Km|Bm2_l
holds

Now we are ready to prove measure permutation formulas, the main results in this section.

Theorem 5.2. (Measure permutation formula I) Let y; and p» be continuous probability
measures on B[0,T]. Assume that y; is supported by [0,a] and p, is supported by [a,T] for
some a € [0,T]. Then for any positive integers mi and mo,

(5.5) P (A, B) = PTUm2(A, B) + myPr2~ (B, K,

where Ky, is given by (5.3) and p is any continuous probability measure on B[0,T). Further
assume that f(A,B) € D(A, B) and let

(5.6) flx,y) = Z Cmymy XY™,
ml,mz—O

then we have

(5.7) Ty fAB) =Ty 1, fA, B) + Z Cmy my 2 P2 (B, Kop).

ml,m2=l

Let %(x; ¥,y1) denote the difference derivative of f(x,y) with respect to y, that is,

fon—foy) i
(5.8) fs—f @wyy) =4 5, 77 Y7
y o &), ify=y1.

The infinite series of operators on the right hand side of (5.7) can be expressed as a disentan-
gling of a function which is related with f. We present it as Measure permutation formula II in
the following theorem. The technique of ‘extraction of a linear factor’ [7, 9] plays an important

role in the next theorem.

Theorem 5.3. (Measure permutation formula II) Under the assumptions of Theorem 5.2

one has
Zf .
(5-9) pz,ulf(A B) pl ,uzf(A B)"",Z; ,V2,V2,V1,V3 [A B]__( B B)

where vi,v, and v3 are continuous probability measures supported on [0,b1], [b1,b2] and
[b2,T] for any by,by with 0 < by < by < T, respectively. Moreover (5.9) can be simplified
as

5
(5.10) T i fABY = Ty o fA,B) + T,y vy A, B]—f-( B).
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Now we give some corollaries and an example of Measure permutation formulas I and II.
For f(A) € D(A), let us denote

fA) = f(A) = T,f(A)

for any continuous probability measure u on B[0,T]. Our first corollary, called commutation
formula, gives a relationship between f(A)B and Bf(A). It is an easy consequence of Theorems
5.20r53.

Corollary 5.4. (Commutation formula I) Let f(A) € D(A) and let

(5.11) @)= cmt™
=0
Then we have
(5.12) f(A)B =Bf(A)+T,,.f1(A,[A,B)),

where i is any continuous probability measure on B[0,T] and fi(x,2) = f'(x)z.

The following is a generalized commutation formula. If we take g(y) = y in Corollary 5.5,
then Corollary 5.4 is immediate from Corollary 5.5.

Corollary 5.5. (Commutation formula IT) Let f(A) € D(A) and g(B) € D(B). Then we

have
(5.13) f(A)g(B) = gB)f(A) + Ty, v v vs (f @ 1 (A, [A, Bl; B, B),

where v\,v2,v3 are the measures as in Theorem 5.3 and
)
(5.14) (f®g)1(x,z;y,y1)=f(x)z(—s;(y,yl)-

Derivation formula (4.6) in Section 4 plays a key role in a differential calculus for Feynman’s
operational calculi. (For details, see Sections 3 and 4 of [10].) In the following corollary we
obtain the derivation formula (4.6) as a corollary of the commutation formula (5.13) in Corollary
5.5.

Corollary 5.6. Let D be a derivation of L(X) and let f(A) € D(A). Then we have
(5.15) DIf(A)] = T, fy(A, D(A),
where u is any continuous probability measure on B[0,T] and fi(x,2) = f'(x)z.

In our next example we illustrate the measure permutation formula for a function of the
Pauli matrices.



159

Example 5.7. Let’s consider the simplest non-commuting example of the Pauli matrices

g (00 o=\ _ _(10
“l10)” T \io ) P lo-1)

Let f(61,02) € D(01,07) and let p,u; be the measures given as in Theorem 5.2. Now let us
rewrite the operator 7, ,, f(61,672) in the form 7, ,, f(61,572) so that the matrix o7 acts first
in every terms of the expression. Since [0, 0] = 2io3,
62
Ty [(61,62) = Ty 1, £(51,52) + 2iT5, 3, vy vy vy 03 7= Gxdy (61,01;02,07),

where v1,v2,v3 are the measures given as in Theorem 5.3. Now let us investigate the second
term on the right hand side of the above equation. Assume that

oo

f(xa)’)= Z le,mzxmlymz'

my,my=0

Then we have

&2
7;2,v2,v2,v1,V30—36 (61,01;072,072)
my —1
= 3 mmm (X B 150 0).
my,my=1 1=0

We can extract a linear factor to obtain

Lmy—Vimy—I—1 n  ~ .~ =~ Limy—l—1,7 .~ =
PVz,V;,Vl,V:; 2 (0-3’0-1’0-2’0-2) ——PVZ Vi 2V3 (Hm1’0'270'2)a

where
Hy, = PLm=Y(65,6m).

V2,2

Note that the Pauli matrices o} and o3 satisfy
a‘% =id, oy03+0301 =0, o03+010301=0.

Hence if m; is odd, then

-1 ) -2 —1 1
o3+ 0 oo+ oo T oo T ) = —0.
mq 1

Similarly, if m; is even, then we know that H,,, = O. Hence

Vmy—l—1,n  ~ = : .
P, (63;07,02), ifmiisodd

1,my —1,0,my—1—1 AN
m PVZvyévVIaVS 2= (0-3’0-1a0-2)0-2) - 0 f is even
11 my
I
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and so
2
L Of
7;2:V27V27V11V30-3 6x6y(0-1’0-1’0-210-2)

o0 m2—l

Wmy—l-1/~ .~ =
= Z le*mZ ( Z PV2,V':I,2V3 (0-370-250-2))

my my=1;m;=o0dd 1=0

2
=7, &°f

V2,Vi ,V36-3 dx—é};(l, _1;6-275-2)-

Finally, we have

2

7;12,/.” .f(a-l a&Z) = Zl],ﬂzf(&] 7&2) +2l7.\'/ RY ,V36-3 S—X;S;(l, _1;6-276-2)

§6. Generalized measure permutation formulas

In this section we summarize the results in [1]. Let A and B be bounded linear operators
acting on X, where X is a Banach space. Let y; and y; be continuous probability measures on
B[0,T). In Section 5, we introduced relationships between the two operators 7, ,,, (4, B) and
Ty 1y f(A, B), and called the relationships as measure permutation formulas. But in Section 5
we considered the case where the numbers of operators and measures involved are exactly two.
In this section we generalize the results for more than three operators and measures.

The technique of ‘extraction of a linear factor’ [7, 9] plays an important role not only in
Theorem 6.2 below but also in the rest of this paper. Let’s start with a simple lemma.

Lemma 6.1. Let u and v be continuous probability measures on B[0,T]. For any nonnega-

tive integer n, we have
6.1) P}(A+B,C) = Pi7(A,C) + P (B,C).

Of course this lemma is an easy consequence as anyone can expect. But (6.1) may not be
true if the power associated with the operator A + B is greater than 1. Here is a simple example,
where we take the operator C to be the identity operator I and n to be 1. Now it is obvious to
see that

1
Bl (A+B.D)=(A+B)"

and

P7\A,D+PL (B, =A™+ B",

and these two operators may not be equal unless m = 1.



Theorem 6.2. (Generalized measure permutation formula I) Let ay,a;,a3 be real num-
bers such that 0 < ay < ap < a3 < T. Suppose that py and py be continuous probability measures
on B[0,T] having supports contained in [a;,a3] and [ay,a3), respectively. Let A be any contin-
uous probability measure having support contained in [0,a;1U [a3,T]. Then for any positive
integers m1,my and nonnegative integer n, we have

6.2) P\, B,C) = P (A, B,C) + moPy2 3 (B, Koy, C),

where i is any continuous probability measure having supports contained in [ay,a3] and K,
is given as in (5.3). Further assume that f(A,B,C) € D(A, B,C) and let

oo

(6.3) FERD= D CmpmyaX™Y™2"

mymy ,n=0

Then we have

7;‘21/1] 7’1f(A’B’ é)

(6.4) - = = _
=7:111/127/lf(A7B’ C) + Z le 7m27nm2P[.’l'jfl,/11’l’n(B7 Km1 I C)
my,my=1;n=0
By introducing additional operators Cy,...,C; and measures Ay, ...,A; we obtain the fol-

lowing corollary. It is obtained simply by extracting a linear factor.

Corollary 6.3. Let aj,az,a3,p1 and up be given as in Theorem 6.2. Let Ay,...,A; be any
continuous probability measures having supports contained in [0,a1]1U[a3,T]. For any positive
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integers mi,my and nonnegative integers ni, ... ,n;, we have
NN I )
(6 5) PIZ{FI :2'11 71-~-7/1kk(A7B’C1 L 7Ck)
: MmNy ,..., my—1,1,n1,...,n
=P’#’:§”272,[1}___,,{:k(AaB7 Cl yeee JCk) +m2P#,/217,[1,m7/[lk k(Ba Kml 1Cl ERE 7Ck)7

where yand K,,, are given as in (5.3). Further assume that f(A,B,C,,...,Cy) e D(A,B,Cy,...,Ci)
and let

o0

n n

(6'6) f(x,%Zl,---aZk) = Z cml,mz,nl,...,nkfnlymzzll "'Zkk-

my,my,ny,...,n;=0
Then we have

ﬁz,pl,dl,...,dkf(gaga CN'l soee aék)

(6.7) =T .y, S A, B, G, .., C)

o
—L1,ny,...,n
2 IER1A PRIRLL 4
+ Z cml7m2inl7"'7nkm2P/Zl[l,/11,...,/lk (B7 Kml 7C] y e 7Ck)'

my my=1;ny,...,n;=0
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Measure permutation formula II in Theorem 5.3 can also be generalized as follows. That is,
the infinite series of operators on the right hand side of (6.4) can be expressed as a second order

difference derivative of f.

Theorem 6.4. (Generalized measure permutation formula II) Under the assumptions of

Theorem 6.2 one has
o o 3f - o oo
(6.8) Ty A ’B’ #1 ﬂz»/lf(A B,O)+1T, V2,V2, ,Vs,fl[A B] (A A;B,B;C),

where vy,vy and v3 are continuous probability measures supported on [a;,bl], [b1,b2] and
[b2,a3] for any by, by with a; < by < by < a3, respectively. Moreover (6.8) can be simplified as

éfx =

(6.9) Pz M1 ﬂf(A B C) #1 M2, lf(A B C) +7:’2 V2,V1,V3, J[A B] C)

Corollary 6.5. Under the assumptions of Corollary 6.3 one has
7;12,}1] ,/ll,...,/lkf(A?B-’él 9. ,Ck)
=7;11,ﬂ2,/l|,..,,/1kf(ga§aél g 1Ck)

OCf + x o = a
(6.10) +7; ,V2,V2,V|,V3,/{1, 7/lk[A B] f (A A B B Cl’ ')C )

Z%,,yz,dl,...,dkf(A7B7C17 aC )
) ~
+ Ty va i wadi g lAs B]—E(A B,B;C,,...,Cp),

2,V2,
where v1,v2 and v3 are the measures given as in Theorem 6.4.

In Theorem 6.2 through Corollary 6.5 we permute u; and u; where these are the first and the
second measures in the definition of the disentangling map. Theorem 6.6 below says that we
can permute the second and the third, or the first and the third measures to get similar formulas

as in Theorem 6.4.

Theorem 6.6. (Generalized measure permutation formula II) Under the assumptions of

Theorem 6.4 one has

2
Tinain S, B,C) =i in BB C)+ Tty B I of L8800

(6.11)
—7:1/11 pzf(A B C)+7; ,A,v2,v1 V3[B C] fy(A B C‘-‘)

and

~ Cf « 2 o x x
7;12, ,ﬂ]f C) /.l]l,uzf(ABc)-}_?:’,vz,Vz/lw V3[A C] f(AABCC)

(6.12) 6f
=<y, /!,uzf(A B C)+7:' RCWARYN V3[A C] :

B,C,C)

where vy, V> and v3 are given as in Theorem 6.4.
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By extracting a linear factor, the following corollary for additional operators and measures

are easy consequences of Theorem 6.6.
Corollary 6.7. Under the assumptions of Corollary 6.3 one has

’Z—/’ll,...,/lk,/lz,ﬂlf(c.‘l’ e ’ék,A,B)
=Ty, apgn i f (€1, .. ,Ci, A, B)

Zf - e

(6.13) +7; AL A V2,V2,V1,V3 [A B] (Cl’ Ck’ ;A’A;B’ B)
=7:11,...,lk,;11,y2f(clv o aCkvA B)

1) e o~ s
+ Doy .o lra v3 1A, B fx(C1, 1Ck,3A; B, B)

and
7;12,/11,...,/1k,ﬂ1f(Aaél IERE 1C'kaB)
:7;1] ,/i],...,/lk,/lzf(g’ él g 7C~'kvg)
&2 f ~ o~ =~
(6.14) + Ty vy g oA 3 LA B] (A A;Gy,...,Cy,3B,B)

Zle,ﬂ],...,ﬂk,ﬂzf(A,Cl 9 Ck7B)
+’Z:/ ,V2,/11, ,llk,V] V3[A B] f;c(A C17 Ck;éaﬁ)7

where vi,v, and v3 are given as in Theorem 6.4.

Until now in this section, we permute two measures in the disentangling map when the two
measures have supports in [a;,a;] and [a;,a3], respectively, and none of the other measures
have supports in [a;,a3]. But in our next theorem we permute two measures when another
measure have support in between the supports of the two measures.

Theorem 6.8. (Iterative measure permutation formula) Suppose that u;,u; and ps are
continuous probability measures having supports contained in [0,a1],[a1,a2] and [a2,T] with
0 < a; < ap < T, respectively. Let f(A,B,C) € D(A, B,C). Then we have

T3 o 1 J(As B,C) =Ty 1y 4 f(A, B, C)
Cf - o oo
+7, V2.V2,V],V3,H1 [A B] (A A;B,B;C)

(6.15) 52f ~~~~~
+7:'2 v2,V2,H43,V1,V3 [A C]6 (5 (A A B C C)

f - o oo o~
+7—‘; H1:V2,V2,V1,Y3 [B C] (A B B C C)a

2

where v1,v2 and v3 are continuous probability measures having supports on [a1,b1], [b1,b2]
and [ba,az] for by,by with ay < by < by < ay, respectively.
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Here are some comments on the above theorem.

Remark. 1. We can not permute y; and u3 directly because the support of u lies in be-
tween the supports of u; and u3.

2. In Theorem 6.8, we permute u3 and y; in the first step, and then uy and 1, and finally 3
and 1, to obtain Ty, 4, 4, f(A, B,C) from Ty, 4, 4, F(A, B,C). Of course this procedure is not
mandatory. That is, we can permute u, and y; in the first step, and then y3 and 2, and
finally y; and y;. But this new steps induce the same identity as (6.15).

In Example 5.7 we applied measure permutation formula to derive an identity for a function
of the Pauli matrices. Our final example is a further investigation of the example.

Example 6.9. Consider the simplest noncommuting example of the Pauli matrices,

(oY o _fo-\ _._(10
“\10) 2T \lio) T \o-1)

Let f(6y,62) € D(oy,07) be given by f(x,y) = Z;:an=0 Cmy mpX™ Y™ and let py, 3 be the
measures supported on [0,a] and [a, T], respectively. In Example 5.7, we permute the measures
i1 and y; so that the matrix o acts first in every term of the expression, and obtained

2

o
(616) 7;l2,;l] f(5'1,5'2) = 'I].'ll,/.lzf(a’laa?) +217; ,V|.,V36-3 %_f}:(l’ —1;6-2s 6—2)7

where vy, v; and v3 are continuous probability measures supported on [0, 5,],[b1,b2] and [b3,T]
for 0 < by < by < T, respectively. Let us permute the measures v, and v3 in the second term on
the right hand side of (6.16), which are associated with the matrices o3 and o, respectively, so
that the matrix o acts first in every term of the expression. By Theorem 6.6, we have

2
T 0,v303 5}6_y(1’ —1;62,072)
6.17) 5 2
=T03 0,9, 03 m(l, —1;62,62) — Ty o moviomioms [0'3,0'2]%1-(5'3,5'3;5'2; 02,07),

where 11,72 and 73 are continuous probability measures supported on [bj,c1],[c1,c2] and
[c2,T] for any b; < ¢1 < ¢ < T, respectively, and g is given by

2
0x0y

g(Za)’,J’l)=Z (1,—1,)’,)’1)

Now let us investigate each terms on the right hand side of (6.17). By extracting a linear factor
we know that the first term on the right hand side of (6.17) is reduced to ’2:,3,‘,26'31? = 03K,
where

2
K=1, of

Vi,V 5}3}(1) _1;&2’&2)-
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But since
2 o0 m2—1
_( ay’yl)_ le,mz Z)’}’] ’
my,my=1;my=0dd =0
we have
= 6,
m 1 “Jy .=
K= Y cmmmoy? =T, —(1,-1;62)
my,my=1;m;=0dd
and so

2
< 5 < ~ Of; -
7:/3,V1,V20'3 (5x6y(1 -1 0-270-2) - V3 V20-3 6.;(1’ —1’0-2) = 7;12,[11 g3 6.;(1, —1’0.2)

For the second term on the right hand side of (6.17), note that [03,03] = —2io; and
(52g 3
52071 (z,21555¥1,¥2) =6x6y6y1
o0 m2—2m2—l~2

= Y cml,mz(z > ).
=0 r=0

my,my=1;m =o0dd

(1, =Ly;y1,¥2)

Hence the term is reduced to

o0 m2~2m2—l 2
— s E : E : § : 1,l,rrmy—1—r—2
M=2i le’mz ( P7727Vl:7’2h’73 (0170-2a 0-270-2)) .
my,my=1;m=odd =0 r=0

We extract a linear factor to obtain

l,l,r,mz—l-r—Z(o_l,0_2,0_270_2) _ Pl I+rmy—l—r— 2(0_1,0.2’0.2)

72:Y1,M.13 72,111,713
and so
M= 2iTT)2,I]|,T]3k(5-1a5-276-2) = 2i7;2,V1,V3k(5-176-2a6-2)’
where
o0 my —2m2—l -2
2 : l+r m —{—r=2
k(z7y)y2) = Z le,mz ( Z Zy - )
ml,m2=1;m1=odd =0 r=0
o0 my— 1
z : 1 m —s—1
my ,m2=1 mi =odd s=1

—(2L) a1

Finally from (6.16) we have

9 ~
7;12,/11 f(a.l ,02) =7;11,/12f(5—1 3 6-2) + 2i7;12,/11 03 —6!'}(1, —1;67)
(6.18) &/
O Ty (55 ) (1,-1562,02)
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One can proceed with these manipulations. That is, using Theorem 6.4 we can permute v; and
v1 in the third term of the right hand side of (6.18).
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