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1 Introduction
A diffusion coefficient of a two-dimensional (2D) point vortex system is analytically

derived with Klimontovich formalism.
The main motif of this international seminar is to provide an opportunity for collab-

oration between mathematician and physicist. In such case, jargons in a group prevent
the other group from active discussion. So, I will try to explain meanings of the words
which may be potentially jargons.

The $2D$ inviscid Euler equation has a formal solution of singular point vortices. How-
ever, the Euler equation is the macroscopic fluid equation and should have macroscopic
smooth solutions. We regard the Euler equation that has the singular point vortex solu-
tion as a kinetic equation. The kinetic equation is formally identical with the macroscopic
Euler equation. It happens that the macroscopic Euler equation and the kinetic equation
have the same form.

Similar case can be found in plasma physics. The Klomontovich-Dupree equation is a
kinetic equation that has a discretized exact solution by the Dirac delta function in a phase
space. By coarse-graining (averaging) the equation, the Fokker-Planck type collision term
is obtained. A kinetic equation with the Fokker-Planck type collision term is called the
Fokker-Planck equation, which is the version of the Boltzmann equation applicable to the
case of long-range interparticle forces. The above procedure is called the Klimontovich
formalism. This time, we apply the Klimontovich formalism to the point-vortex system,
and collision term is analytically obtained.
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The organization of this paper is as follows: In Sec. 2, the point vortex system is
introduced. In Sec. 3, outline of the Klimontovich formalism is given. In Sec. 4 our result
will be given. In Sec. 5 we give our conclusion.

2 Point vortex system
The $2D$ Euler equation is a partial differential equation which describes incompressible

flow in $2D$ plane.
$\frac{\partial u(r,t)}{\partial t}+u(r, t)\cdot\nabla u(r, t)=0$ . (1)

The vorticity equation is obtained by taking the rotation differential:

$\frac{\partial\omega_{z}(r,t)}{\partial t}+u(r, t)\cdot\nabla\omega_{z}(r, t)=0$, (2)

and it has a point vortex solution:

$\omega_{z}(r, t)=\sum_{i}\Omega_{i}\delta(r-r_{i}(t))$ , (3)

where $\omega_{z}(r, t),$ $u(r, t)$ are the nonzero component of the vorticity and the flow field in $2D$

plane pointed by $r=(x, y)$ . The circulation (strength) of the i-th point vortex at position
$r_{i}$ is denoted by $\Omega_{i}$ whose value is either $\Omega_{0}or-\Omega_{0}$ where $\Omega_{0}$ is a positive constant. This
solution (3) is discretized by the Dirac delta function. In general, macroscopic fluid
equation should have a smooth solution. Thus, we regard the point vortex solution is a
solution for a kinetic equation that is formally identical with the $2D$ Euler equation. We
call this equation the microscopic Euler equation. To distinguish the microscopic Euler
equation from the macroscopic one, we indicate the microscopic variable with a hat.

$\frac{\partial\hat{\omega}_{z}(r,t)}{\partial t}+\hat{u}(r, t)\cdot\nabla\hat{\omega}_{z}(r, t)=0$ (4)

The microscopic and macroscopic variables are related by (ensemble) average operator $\{\cdot\rangle$

$\omega_{z}(r, t)=\{\hat{\omega}_{z}(r, t)\}$ . (5)

The microscopic vorticity $\hat{\omega}_{z}(r, t)$ , velocity $\hat{u}(r, t)$ and stream function $\hat{\psi}(r, t)$ satisfy the
following relations,

$\hat{u}(r, t)$ $=$ $\nabla\cross(\hat{\psi}(r, t)\hat{z})=-\hat{z}\cross\nabla\hat{\psi}(r, t)$ , (6)

$\hat{\omega}_{z}(r, t)$ $=$ $\nabla\cross\hat{u}(r, t)=-\nabla^{2}\hat{\psi}(r, t)$ (7)

where $\hat{z}$ is a unit vector in $z$ direction. Positions of the point vortices are governed
by the microscopic Euler equation and by coarse-graining the distribution of the point
vortices, macroscopic vorticity distribution $\omega_{z}(r, t)$ is obtained. Here, a question arises.
The microscopic solution governed by the microscopic Euler equation and the macroscopic
solution governed by the macroscopic Euler equation is the same as is shown in Fig. 1?
To answer this question, we present a similar case in plasma physics in the next section.
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$\{\hat{\omega}_{z}(t=T)\}$ $=$ $\omega_{z}(t=T)$

Figure 1: The microscopic solution governed by the microscopic Euler equation and the
macroscopic solution governed by the macroscopic Euler equation is the same?

3 Klimontovich formalism
Klimontovich-Dupree equation

$\frac{\partial\hat{f}(r,v,t)}{\partial t}+v\cdot\nabla\hat{f}(r, v, t)+\frac{q}{m}(\hat{E}+v\cross\hat{B})\cdot\frac{\partial}{\partial v}\hat{f}(r, v, t)=0$ (8)

is an equation for 6-dimensional phase space with $(r, v)$ and has an exact solution for a
particle density function $\hat{f}(r, v, t)[1]$ .

$f(r, v, t)= \sum_{i}\delta(r-r_{i}(t))\delta(v-v_{i}(t))$ (9)

The hat on the particle density function $f$ means this function microscopic. The mi-
croscopic electric and magnetic fields $\hat{E}$ and $\hat{B}$ obey the microscopic Maxwell equation
that is identical with the macroscopic (usual) Maxwell equation as the Maxwell equation
does not have nonlinear term. It is assumed that the microscopic quantity consists of a
macroscopic part and a fluctuation.

$f(r, v, t)$ $=$ $\{f(r, v, t)\}+\delta f(r, v, t)=f(r, v, t)+\delta f(r, v, t)$ (10)
$\hat{E}(r, v, t)$ $=$ $E(r, v, t)\}+\delta\hat{E}(r, v, t)$ (11)
$\hat{B}(r, v, t)$ $=$ $B(r, v, t)+\delta\hat{B}(r, v, t)$ (12)

Note that a macroscopic quantity is obtained by averaging a microscopic quantity with
a hat as shown in Eq. (5). Substituting the above microscopic variables into the
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Figure 2: Klimontovich equation is related to the microscopic Euler equation that has
the point vortex solution. By averaging Klimontovich equation, macroscopic Fokker-
Planck equation is obtained. Ignoring the Fokker-Planck collision term, Vlasov equation
is obtained. We regard that the macroscopic Euler equation is related to the macroscopic
Vlasov equation. There is no related equation for the Fokker-Planck equation.

(13)

Klimontovich-Dupree equation and averaging the equation, the following macroscopic
equation is obtained.

$\frac{\partial f}{\partial t}+v\cdot\nabla f+\frac{q}{m}(E+v\cross B)\cdot\frac{\partial f}{\partial v}=\frac{q}{m}\{(\delta\hat{E}+v\cross\delta\hat{B}\cdot\frac{\partial}{\partial\delta v}\delta\hat{f})\}$

Further calculation yields the Fokker-Planck collision term from the right hand side of
Eq. (13) and a kinetic equation with Fokker-Planck collision term is called Fokker-Planck
equation:

$\frac{\partial f}{\partial t}+v\cdot\nabla f+\frac{q}{m}(E+v\cross B)\cdot\frac{\partial f}{\partial v}=\frac{\partial}{\partial v}\cdot(\overline{D}\cdot\frac{\partial f}{\partial v})$ . (14)

If the collision term is dropped completely, it is called Vlasov equation:

$\frac{\partial f}{\partial t}+v\cdot\nabla f+\frac{q}{m}(E+v\cross B)\cdot\frac{\partial f}{\partial v}=0$ (15)

We summarize the relation between the Klimontovich equation and the point vortex
equation in Fig. 2. Klimontovich equation is related to the microscopic Euler equation
that has the point vortex solution. By averaging Klimontovich equation, macroscopic
Fokker-Planck equation is obtained. Ignoring the Fokker-Planck collision term, Vlasov
equation is obtained. We regard that the macroscopic Euler equation is related to the
macroscopic Vlasov equation. There is no related equation for the Fokker-Planck equation.
This time, we focus ourselves to obtain the corresponding macroscopic equation that may
include collision term.
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4 Kinetic theory for $2D$ point vortex system
To obtain the Fokker-Planck type collision term for the $2D$ point vortex system, the

same procedure as the Klimontovich formalism is applied. Microscopic vorticity is as-
sumed to consist of the macroscopic vorticity and the fluctuation.

$\hat{\omega}_{z}(r, t)$ $=$ $\{\hat{\omega}_{z}(r, t)\}+\delta\hat{\omega}_{z}(r, t)=\omega_{z}(r, t)+\delta\hat{\omega}_{z}(r, t)$ (16)
$\hat{u}(r, t)$ $=$ $u(r, t)+\delta\hat{u}(r, t)$ (17)

Same as before, substituting the microscopic variables into the microscopic Euler equation
and averaging it, the following macroscopic equation is obtained.

$\frac{\partial\omega_{z}(r,t)}{\partial t}+u(r, t)\cdot\nabla\omega_{z}(r, t)=-\nabla\cdot\langle\delta\hat{u}(r, t)\delta\omega_{z}(r, t)\rangle$ (18)

To evaluate the diffusion term on the right hand side, we need an evolution equation
for $\delta\omega_{z}(r, t)$ . For this purpose, linearlized equation is introduced, which is obtained by
substituting the microscopic variables (16) and (17) into the microscopic Euler equation
(4) and dropping the zero-th order macroscopic terms. The obtained linearlized equation
is given by

$\frac{\partial}{\partial t}\delta\hat{\omega}_{z}(r, t)+u(r, t)\cdot\nabla\delta\hat{\omega}_{z}(r, t)=-\delta\hat{u}(r, t)\cdot\nabla\omega_{z}(r, t)$ . (19)

This linearlized equation can be integrated as $u(r, t)$ in the second term on the left hand
side and $\omega_{z}(r, t)$ are assumed to be constant in the microscopic scale:

$\delta\hat{\omega}_{z}(r, t)=-\int_{-\infty}^{t}d\tau\delta\hat{u}(r-(t-\tau)u, \tau)\cdot\nabla\omega_{z}(r, t)$ (20)

Finally, the corresponding macroscopic equation is obtained:

$\frac{\partial}{\partial t}\omega_{z}(r, t)+u(r, t)\cdot\nabla\omega_{z}(r, t)=\nabla\cdot(\etarightarrow\cdot\nabla\omega_{z}(r, t))$ (21)

$\etarightarrow=\int_{-\infty}^{t}\langle\delta\hat{u}(r, t)\delta\hat{u}(r-(t-\tau)u, \tau)\}d\tau^{\sim}$ (22)

The right hand side is the diffusion term due to the discreteness of the vorticity. It may
be an extension of the well-known Green-Kubo formula. This result includes the position
and time correlations, while Green-Kubo formula includes the time correlation only.

5 Conclusion
We have derived the diffusion term implicitly included in $2D$ Euler equation. On the

analogy with plasma physics, the obtained equation is similar to Fokker-Planck equation.
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In general, collision term in Fokker-Planck equation consists of two parts: the diffusion
term and the friction term.

$\nabla\cdot(\etarightarrow\cdot\nabla\omega_{z}+A\omega_{z})$ (23)

In our result, friction term is not included. The friction term may be derived by rewriting
Eq. (20) as

$\delta\hat{\omega}_{z}(r, t)$ $=$ $- \int_{t_{0}}^{t}d\tau\delta\hat{u}(r-(t-\tau)u, \tau)\cdot\nabla\omega_{z}(r, t)$

$+\delta\omega_{z}(r-(t-t_{0})u, t_{0})$ . (24)

Further calculation reveals that the second term is proportional to $\omega_{z}$ . As this effect is,

however, evaluated negligible as compared with the diffusion term, we ignore the term.
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