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Abstract

Coherent vortices, being durable for some time, are often observed nature. These vor-
tices may be modeled as steady solutions ofthe Euler equations for an inviscid incompress-
ible fluid. A steady incompressible Euler flow is characterized as an extremal of the total
kinetic energy with respect to perturbations constrained to an isovortical sheet (coadjoint
orbits). Kelvin (1878) argued that an elongated vortex of circular cross-section is realized
as a maximum energy state, and recently his conjecmre has been numerically and math-
ematically confirmed. This guarantees its stability if the disturbances are restricted two-
dimensional isovortical ones. An isovollical perturbation preserves vortex-line topology
and is expressible most efficiently by the Lagrangian variables. We show how topological
ideas work in the variational formulation for characterizing a steady solution of the Euler
equation.

This is generalized to a steadily moving vortical flow. According to Kelvin-Benjamin’s
principle, a steady distribution of vorticity, relative to a moving ffame, is realized as the
state that maximizes the total kinetic energy, under the constraint of constant hydrodynamic
impulse, with respect to variations preserving the vorticity-field topology. Combined with
an asymptotic solution of the Euler equations for a family of vortex rings, we can skip the
detailed solution for the flow field to obtain the translation velocity ofa vortex ring valid to
third order in a small parameter, the ratio of the core radius to the ring radius.

1 Introduction

Coherent structures formed in natural and practical flows are commonly characterized by domi-
nance ofvorticity in the cores over in the surrounding region. A century and a half ago, the field
of vortex dynamics started with a single piece of paper written by Helmholtz. In his seminal
paper [1], Helmholtz proved a distinguishing feature of the vorticity that vortex lines are ffozen
into the fluid. In the same paper, he studied motion of vortex rings. By an elaboration ffom the
Euler equations, now being widely known through Lamb’s textbook [2], Helmholtz had reached
an identity for traveling speed of a thin axisymmetric vortex ring, steadily translating in an in-
viscid incompressible fluid of infinite extent. Helmholtz-Lamb’s method is recapitulated in a
recent article [3]. On those days, vortex rings were hot as possible entities of atoms embedded
in the ether. The implication ofHelmholtz’ laws, invariance in time of the circulation and link-
ages of vortex lines, led Kelvin to this belief. The idea of the vortex atoms was pursued by J. J.
Thomson [4].
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By a deep insight into the formation of a columnar vortex along the central line of a rotating
tank filled with water, Kelvin [5] envisioned that a columnar vortex should be a state of the
maximum of the kinetic energy, with respect to perturbations that maintain the circulation. An
almost century passed before Kelvin’s variational principle was mathematically formulated and
proved. Amol’d [6] proved that a steady solution of the Euler equations of an incompressible
fluid is an extremal of the total kinetic energy with respect to the kinematically accessible per-
turbations. We mean by kinematically accessible perturbations the perturbation flow field for
which the perturbed vorticity is frozen into the perturbed flow field. The kinematically acces-
sible permrbations may be altematively said to be the isovorticalperturbations or occasionally
the rearrangements. For planar flows, numerical method for relaxing the flow field to the state
of the maximum energy was developed by Vallis et al. [7, 8], and Kelvin’s envision that an
isolated vortex is a maximum-energy state was numerically demonstrated. Mathematical proof
for steady isolated vortex as the maximum-energy states has been given, by inventing rearrange-
ment inequalities, in various setting (see, for example, [9, 10, 11]).

The main theme of this conference is a statistical approach to collection of vortices, being
pioneered by Onsager [12], by which characteristics of coherent structures are well described.
Energetics of an isolated vortex may provide us with a complimentary view to formation of
coherent stmctures, though the relation of the energetics with statistical behavior is yet to be
clarified. This article gives a rough sketch ofhow to use the energetics to find the steady vortices
and travelling speed of a steadily moving vortex rin$g$ .

In \S 2, we give an outline of the relaxation method to detect a steady flow corresponding to
the state ofenergy maximum. Kelvin’s variational principle can be extended to make allowance
for motion by adding a constraint of constant impulse [13, 14, 15]; a stationary configuration
of vorticity in an inviscid incompressible fluid, in a steadily moving frame, is realizable as an
extremal of energy on an isovortical sheet under the constraint of constant impulse. The rest of
article is concemed with the variational principle for motion ofvortex rings. Kelvin-Benjamin’s
variational principle is adapted to find the traveling speed of steady vortices [15, 16, 17, 18].
This variational principle is applied to motion of vortex rings.

Take the density offluid to be $\rho_{f}=1$ and define the hydrodynamic impulse by

$P= \frac{1}{2}\int\int\int x\cross\omega dV$. (1)

The translation velocity $U$ of a vortex ring is then calculable through the variation

$\delta H-U\cdot\delta P=0$ , (2)

under the constraint that, for any smooth Lagrangian displacement of fluid particles, the vor-
ticity is frozen into the fluid. Section 4 touches upon this principle, which is the theme of
ref. [15]. Intriguingly, the same principle encompasses motion of a vortex ring ruled by the
cubic nonlinear Schr\"odinger equation, which serves as a model for superfluid liquid helium and
a Bose-Einstein condensate, at zero temperature [19].

The relaxation scheme toward the maximum-energy state by monotonically increasing en-
ergy relies upon the existence of an upper bound of the kinetic energy, given an initial config-
uration. This upper bound is provided by the Casimir invariants as generalizing the enstrophy
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[7, 8, 14]. For a barotropic fluid, all the topological invariants, like the Casimir invariants and
the helicity, are variants ofthe cross helicity [20]. Section 3 gives a brief account ofthis unified
view of the topological invariants. After stating Kelvin-Benjamin’s variational principle in \S 4,
we show in \S 5 how the kinematic variational principle is used to calculate the travelling speed
of a vortex ring. The variational principle enables us to derive a higher-order correction, in
the ratio of core and ring-radii, a small parameter, to the travelling speed of an inviscid vortex
ring. At high Reynolds numbers, the viscosity plays only a secondary role of selecting the vor-
ticity profile in the core. With incorporating this profile, the inviscid formula is applicable to
vortex rings in the regime of high Reynolds numbers [15]. Our formula significantly improves
Saffman’s first-order formula [21, 22], and fits well with the result of numerical simulation at a
moderate Reynolds number.

The last section (\S 6) discusses Onsager‘s statistical theory ofpoint vortices [12], along with
its difference ffom and similarity with Kelvin’s variational principle.

2 Steady vortical flows of the Euler equations
A steady solution of the Euler equations is known to be a state of energy maximum with respect
to kinematically accessible perturbations or a state of an energy extremizing rearrangement
for which the Casimir invariants are fixed [6]. Here, we give a proof of this theorem in three
dimensions to gain an insight into the variational stmcmre.

Under the assumption that the fluid is incompressible, we can introduce the vector potential
$A$ for the velocity field $u(u=\nabla\cross A)$ . We assume that the vorticity の $=\nabla\cross u$ is localized
in some finite region in such a way that the velocity decreases sufficiently rapidly. These as-
sumptions admit a representation ofthe total kinetic energy $H$ ofthe fluid, filling an unbounded
space, as

$H= \frac{1}{2}\int\int\int u^{2}dV=\frac{1}{2}\int\int\int\omega\cdot AdV$ , (3)

where the density of fluid is set to be unity. We confine ourselves to steady motion $\overline{u}$ , which
obeys

V $\cross(\overline{u}\cross\omega)=0$ . (4)

Consequently, there exists a globally defined spatial function $h(x)$ such that

$\overline{u}\cross$ の $=\nabla h$ . (5)

Suppose that fluid particles undergo an infinitesimal displacement $\delta\xi$ while preserving the
volume of an arbitraly fluid element:

$xarrow\tilde{x}=x+\delta\xi(x)$ ; $\nabla\cdot\delta\xi=0$ . (6)

We impose the condition that the flux of vorticity through an arbitrary material surface be un-
changed throughout the process of the displacement. Its local representation is [7, 14]

$\delta\omega=\nabla\cross$ $(\delta\xi\cross$ の $)$ . (7)
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Using the definition $\overline{u}=\nabla\cross\overline{A}$ of the vector potential, we can deduce, from (5) and (7),

$\overline{A}\cdot\delta\omega=-\nabla\cdot\{h\delta\xi+\overline{A}\cross(\delta\xi\cross\omega)\}$ . (8)

The variation $\delta H$ ofthe kinetic energy, subjected to the variation offluid-particle positions (6),
is calculated as

$\delta H=\int\int\int A\cdot\delta$ $ru$ $dV=-\int\int\{h\delta\xi+\overline{A}\cross(\delta\xi\cross\omega)\}\cdot ndA$. (9)

The surface integral is taken over the closed surface receding to infinity that bounds the whole
region. It vanishes under the assumption that the vorticity $|\omega|$ decays sufficiently rapidly with
distance $|x|$ , say exponentially in $|x|$ . Under the same assumption, $h$ approaches a constant
$h_{\infty}$ at large distances $|x|$ , and the first term of the surface integral vanishes, with the aid of the
Gauss theorem, owing to (6). Consequently, the proof of $\delta H=0$ has been completed.

Relying on this property, a numerical algorithm for seeking an energy extremizing rear-
rangement was developed [7, 8]. This numerical algorithm belongs to the category of the sim-
ulated annealing (SA). A state of energy minimum is also a steady Euler flow. As a matter of
fact, this is a state of zero kinetic energy and, in the numerical constmction, takes the form of
a region ofhigh and low vorticity interpenetrating each other with ever creating finer structures
and is therefore named the Kelvin sponge [8].

Given an initial distribution $\omega_{0}(x)$ of vorticity, the vorticity kinematically accessible to
$\omega_{0}(x)$ is generated by

$\frac{\partial\omega}{\partial t}=\nabla\cross(u\cross\omega)$ , (10)

with convection velocity $u$ taken to be arbitrary smooth vector field. Introduce the vector po-
tential $v(x)$ for の (x) defined by の (x) $=\nabla\cross v$ . The advection equation that monotonically
changes the energy while keeping the Casimir invariants is constmcted by choosing the advec-
tion velocity in (10) $u$ , for example, as

$u=v+ \alpha\frac{\partial v}{\partial t}$ , (11)

for some constant $\alpha$ . The kinetic energy $E$ of fluid contained in the domain $\mathscr{D}$ indeed mono-
tonically changes

$\frac{d}{dt}\frac{1}{2}\int_{\mathscr{D}}v^{2}d\nabla=-\alpha\int_{\mathscr{D}}(\frac{\partial v}{\partial t})^{2}d$ $V$. (12)

A choice of $\alpha<0$ realizes the monotonic increase of the energy. The existence of a state of
energy maximum is guaranteed if the energy id bounded above. For planar flows in a two-
dimensional domain ,&, an upper bound is brought from the enstrophy

$\Omega=\int_{d}\omega^{2}dA$ , (13)

a Casimir invariant, combined with the Poincar\’e inequality

$E\leq kA\Omega=$ const. (14)
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where $A$ is the area of $d$ and $k(>)$ is a constant depending on the domain shape. Withjudicious
choice of $u$ in relation to $v$ , Vallis et al. convincingly demonstrated that an isolated steady
vortex corresponds to the state ofthe energy maximum, kinematically accessible from the initial
vorticity distribution $\omega_{0}$ .

Recently, Flierl and Morrison [24] proposed a new numerical algorithm, the ‘Dirac simu-
lated annealing’, for finding states of energy maxima or minima, of the two-dimensional Euler
flow in an infinite space, while preserving not only the Casimir invariants but also desired in-
tegrals. The latter are called the Dirac constraints. Even number of constrain$t$ functionals are
chosen in such a way that the antisymmetric matrix whose ij-th entry consists of the Poisson
bracket of the i-th and the j-th constraints be nonsingular. With use of the Dirac constraints,
a generalized Dirac bracket is defined by extending the original noncanonical Poisson bracket.
The Dirac bracket makes not only the original Casimir invariants but also the newly introduced
constraints ($=the$ Dirac constraints) Casimir invariants. With the angular impulse and the strain
moment chosen as the Dirac constraints, for instance, the constancy of these two moments
maintains the compactness ofthe core during the evolution under the Dirac simulated annealing
(DSA-) dynamics for some time. For later times, tines develop ffom the points on the core
$boundal\gamma$ corresponding to the major axis which break the numerical computation, and there-
after the system begins to axisymmetrize.

Long-living vortices are commonly observed in nature and also in planetary flows as rep-
resented by the Jupiter red spot. A view that this is a statistically (quasi-) equilibrium state is
promising and is well-received as discussed in several other papers in this volume. As a pos-
sible altemative view, a long-living vortex may be simply modeled by steady solutions of the
Euler equations for an inviscid fluid. Nycander [9] and Emamizadeh [10] considered an isolated
vortex embedded in a simple shear flow, with the vorticity ofthe embedded vortex and the back-
ground shear being both positive. Previously, they proved the existence of a stable vortex, as
the energy maximizer. The maximizer ofthe kinetic energy is attained in the class ofthe doubly
Steiner symmetric rearrangements (DSS); given a measurable and non-negative fimction $f$, the
DSS of $f$ is symmetric with respect to the both axes $x=0$ and $y=0$, a decreasin$g$ fimction ofx
for $x>0$ and fixed $y$, and a decreasing fimction ofy for $y>0$ and fixed $x$ .

Are isolated vortices in aplanarflow all the maximum states ofthe kinetic energy on the cor-
responding isovortical sheets? This is not necessarily tme. Saffman and Szeto [25] calculated
numerically a family of steadily co-rotating vortex pairs and found two branches of solutions
in the plane of the angular impulse $J$ and the excess energy $E$ . The upper branch is assumed
to be the maximum state of the excess energy and thus is likely to give stable solutions. In this
keeping, the simultaneous tuming point in $E$ and $J$ is identified with the point for a change of
stability. Dristchel [26] pointed out that this is not the case; the loss of stability occurs at a point
along the upper branch, and moreover, a new solution branch bihrcates ffom this point.

Luzzatto-Fegiz and Williamson [27] put their basis on the variational principles established
by Amol’d [6] and generalized by Benjamin [13]. For a steady flow in a steadily rotating frame,
the constancy ofthe angular impulse should be imposed as an additional constraint. For a steady
flow in a steadily translating frame, the constancy of the linear impulse should be imposed as
an additional constraint (see \S 3). They showed for planar motion ofvortex patches, vortices of
uniform vorticity that this principle is faithffilly effected in the velocity-impulse plane, rather
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than the energy-impulse plane. The gain or loss of the stability of a solution branch has link
with a tuming point of the impulse in the velocity-impulse plane. Moreover, they resolved the
issue of overlooking biffircation branches in the previous treatment, by introducing the ‘IVI
diagram’. By placing weak point vortices $(=imperfections)$ at stagnation points, biffircated
branches associated with a solutions of lower symmetry are captured. This method not only
detects supposedly all the branches, but also automatically determines stability or instability.

Is an isolated vortex corresponding to the energy maximizer stable? This may be, iflimited
to planar flows, in many cases true as the solution is realized as an isolated point on a given
isovortical sheet. But realistic flows are three dimensional, for which the answer should be
generically no. If account is taken of three-dimensional waves on an isolated vortices, in most
cases, there are an infinite number of negative-energy waves as well as an infinite number of
positive-energy waves [28]. In a three-dimensional setting, stable configurations are exceptions,
and instability of a vortex is unavoidable.

3 Unified view of topological invariants
The helicity is a topological invariant ofan ideal fluid in three dimensions [29]. Two-dimensional
ideal flows admit an integral of any function of vorticity as topological invariants called the
Casimir invariant. This is extended to axisymmetric flows [14]. In this section, we briefly re-
mark that all the topological invariants are variants of the cross-helicity. This unified view is
gained from the fact that Noether’s theorem associated with the particle relabeling symmetry
does not discriminate between two and three dimensions [20].

We start from the vorticity equations (10) for a barotropic fluid filling a domain $\mathscr{D}$ . Since
we are concemed with the kinematics of ideal barotropic flows, the advection velocity $u$ may
be an arbitrary smooth vector field so that the vorticity $\omega$ may be unrelated to $\nabla\cross u$ . We
take compressibility into account, and the fluid density $\rho_{f}$ obeys the equation of continuity
$D\rho_{f}/Dt+\rho_{f}\nabla\cdot u=0$ . Here $D/Dt=\partial/\partial t+u\cdot\nabla$ is the Lagrangian derivative. The law ofmass
conservation holds tme without reference to the detailed form of velocity field $u$ , and therefore
pertain$s$ to the kinematics.

Suppose that $\mathscr{D}$ is simply connected. Impose the following boundary condition on $\omega$ :

$\omega\cdot n=0$ on $\partial \mathscr{D}$ , (15)

or in case the domain $\mathscr{D}$ is unbounded,

$|\omega|arrow 0$ sufficiently rapidly as $|x|arrow\infty$ . (16)

Then for a given solenoidal vector field $\omega(x,t)$ , there exists a vector potential $v(x,t)$ defined,
over $\mathscr{D}$ , by $\omega=\nabla\cross v$ . The vector potential is determined only up to the gauge transfonnation.
The evolution equation of $v$ , obtained by taking the uncurl of (10), is named the Euler-Poincar\’e
equations [30], and, when specialized as $v=u$, is made coincident with the Euler equations.

Let us introduce another solenoidal vector field $B(x,t)$ which is frozen into the fluid. The
equation of $B$ takes the same form as (10), and the boundary condition to be imposed is the
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same as (15) or (16). The cross helicity

$\mathscr{X}[\omega,B]=\int_{\mathscr{D}}v\cdot BdV$ (17)

is invariant even if the advection velocity field $u$ is different ffom $v[20]$ . The helicity is a
special case of (17) of taking $B=\omega$ and $u=v$ .

For two-dimensional flows on the xy-plane with velocity provided by $u(x,t)=(u_{x}(x,y,t)$ ,
$u_{y}(x,y,t),0)$ , there is a family of integral invariants for planar flows in a domain ,Of, namely
integrals of arbitrary ffinction ofの $=\partial u_{y}/\partial x-\partial u_{x}/\partial y$. For a compressible barotropic fluid, it
is superseded by

$Q= \int_{d}\omega f(\frac{\omega}{\rho_{f}})dA$ , (18)

where $f$ is an arbitrary ffinction. This integral is termed the generalized enstrophy [7]. Invari-
ance of (18) is a direct consequence of the restriction of (10) to two dimensions,

$\frac{D}{Dt}f(\frac{\omega}{\rho_{f}})=0$, (19)

and the conservation law of the vorticity flux or Kelvin’s circulation theorem. Introducing
$F=\nabla\cross fe_{z},$ (19) is converted into

$\frac{\partial F}{\partial t}=\nabla\cross(u\cross F)$ . (20)

A topological invariant is manufacmred by replacing $B$ by $F$ in (17) with the volume integral
of unit length in $z$ over the domain $d$ . This integral is reduced, after a partial integration, to
(18), except for a boundary term. The latter vanishes, in a typical case that $f($ tu $/\rho)$ approaches
zero sufficiently rapidly as the boundary $\partial d$ recedes to infinity,

4 Kelvin-Benjamin’s variational principle

By addin$g$ constraint of constant impulse (the linear momenta) or angular impulse (the angular
momentum), a stationary vortical flow in a moving frame is realizable as an extremal of the
kinetic energy.

The variational principle described in \S 2 is augmented by the term associated with the con-
straint of constant impulse. We conflne ourselves to steady motion, with constant speed $U$ , of
a region with vorticity and assume that the flow is $stati_{ona1}\gamma$ in a frame moving with $U$ . It is
expedient to partition the velocity $u$ as $u=\overline{u}+U$ . Correspondingly, the vector potential $A(x)$

is augmented as $A=A-x\cross U/2$ . The variation (9) of the kinetic energy, subjected to the
variation of fluid-particle positions (6), is augmented as

$\delta H=\int\int\int A\cdot\delta\omega dV=U\cdot(\frac{1}{2}\iiint x\cross\delta\omega dV)$

$- \int\int\{h\delta\xi+\overline{A}\cross(\delta\xi\cross\omega)\}\cdot ndA$. (21)
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The surface integrals vanish as before, and we are left only with the volume integral in (9). The
variation of the hydrodynamic impulse (1) is

$\delta P=\frac{1}{2}\int\int\int x\cross\delta\omega d$ $V$. (22)

With this form, (21) is reckoned upon as the variational principle (2) for the translation speed
$U$ of the vortex region.

In the sequel, we restrict this theorem to motion of a steadily movin$g$ axisymmetric vortex
ring. An iso-vortical sheet is of infinite dimension. A family of solutions of the Euler equations
includes a few parameters. By imposing certain relations among these parameters, we can
maintain the solutions on a single iso-vortical sheet, and the restricted family of the solutions
constitutes a finite dimensional set on the sheet. Thus the traveling speed ofa vortex ring may be
calculable through (2). Fraenkel-Saffman’s formula is obtained in this framework [15], though
excluded Rom the list of [17]. This principle is extensible to higher orders, whereby the $O(\epsilon^{3})$

corrections are produced [15]. This is a topic of the following section.

5 High-Reynolds-number vortex ring
The inner solution for steady motion ofa vortex ring, or quasi-steady motion in the presence of
viscosity, is found by solving the Euler or the Navier-Stokes equations, subject to the matching
condition, in powers of the small parameter $\epsilon$ , the ratio of the core-to the rin$g$-radii [32]. To
work out the inner solution, we introduce the relative velocity $\tilde{u}$ in the meridional plane by $u=$
$\tilde{u}+(R,\dot{z})$ . Here a dot stands for differentiation with respect to time. Let us nondimensionalize
the inner variables. We introduce, in the core cross-section, local polar coordinates $(r, \theta)$ around
the core center. The radial coordinate is normalized by the core radius $\epsilon R_{0}(=\sigma)$ and the
local velocity $(u,v)$ , relative to the moving frame, by the maximum velocity $\Gamma/(\epsilon R_{0})$ . The
normalization parameter for the ring speed $(\dot{R}(t),\dot{Z}(t))$ , the slow dynamics, should be $\Gamma/R_{0}$ .
The suitable dimensionless inner variables are thus defined as

$r^{*}=r/\epsilon R_{0}$ , $t^{*}=t/ \frac{R_{0}}{\Gamma},$
$\psi^{*}=\frac{\psi}{\Gamma R_{0}},$ $\zeta^{*}=\zeta/\frac{\Gamma}{R_{0}^{2}\epsilon^{2}},\tilde{u}^{*}=\tilde{u}/\frac{\Gamma}{R_{0}\epsilon},$ $(R^{*}, \dot{z}^{*})=(R,Z)/\frac{\Gamma}{R_{0}}$ .

(23)
The difference in normalization between the last two of (23) should be kept in mind. Corre-
spondingly to (23), the kinetic energy $H$ and the hydrodynamic impulse $P$ are normalized as
$H^{*}=H/\Gamma^{2}R_{0},$ $P_{z}^{*}=P_{Z}/\Gamma R_{0}^{2}$ . Hereinafter we drop the superscript $*$ for dimensionless variables.
Dimensionless form ofthe radial position $R$ ofthe core center is $R=1+\epsilon^{2}R^{(2)}+O(\epsilon^{3})$ . We can
maintain the first term to be unity by adjusting disposable parameters, bearing with the origin
of coordinates, in the first-order field [32]. The second-order correction $\epsilon^{2}R^{(2)}$ is tied with the
viscous expansion.

A glance at the Euler or the Navier-Stokes equations shows that the dependence, on $\theta$ , of
the solution in a power series in $\epsilon$ is

$\psi=$ $\psi^{(0)}(r)+\mathcal{E}\psi_{11}^{(1)}(r)\cos\theta+\epsilon^{2}[\psi_{0}^{(2)}(r)+\psi_{21}^{(2)}(r)\cos 2\theta]+O(\epsilon^{3})$ , (24)

$\zeta$ $=$ $\zeta^{(0)}(r)+\epsilon\zeta_{11}^{(1)}(r)\cos\theta+\epsilon^{2}[\zeta_{0}^{(2)}(r)+\zeta_{21}^{(2)}(r)\cos 2\theta]+O(\epsilon^{3})$. (25)
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(30)

Upon substimtion ffom (24) and (25), we obtain a representation, to $O(\epsilon^{2})$ in dimensionless
form, $H=H^{(0)}+\epsilon^{2}H^{(2)}$ and $P_{z}=P^{(0)}+\epsilon^{2}P^{(2)}$ of the kinetic energy and the $z$ component of
the hydrodynamic impulse (1), as

$H^{(0)}=-2 \pi^{2}\int_{0}^{\infty}r\zeta^{(0)}\psi^{(0)}dr$, $H^{(2)}=-2 \pi^{2}\int_{0}^{\infty}r(\frac{1}{2}\zeta_{11}^{(1)}\psi_{11}^{(1)}+\zeta^{(0)}\psi_{0}^{(2)}+\zeta_{0}^{(2)}\psi^{(0)})dr,$(26)

$P^{(0)}=\pi$ , $P^{(2)}=\pi(2R^{(2)}-4\pi d^{(1)})$ , (27)

where $d^{(1)}=d_{1}/(\Gamma\sigma^{2})$ is the dimensionless strength of dipole.
Evaluation of (26) and (27) is relatively easy as these do not include the quadmpole field

$\psi_{21}^{(2)}$ and $\zeta_{21}^{(2)}$ . Given $\zeta^{(0)}$ to $o(\epsilon^{0})$ , the azimuthal velocity to $O(\epsilon^{0})$ satisfies $v^{(0)}=-\partial\psi^{(0)}/\partial r$,
and the Stokes streamhnction complying with the matching condition is, to $O(\epsilon^{0})$ ,

$\psi^{(0)}=-\int_{0}^{r}v^{(0)}(r’)dr^{1}+\lim_{rarrow\infty}\{\int_{0}^{r}v^{(0)}(r’)dr’-\frac{1}{2\pi}[\log(\frac{8}{\epsilon r})-2]\}$ . (28)

Without viscosity, the vorticity profile $\zeta^{(0)}$ may be taken to be arbitrary, but viscosity plays
the role of selecting its hnctional form [33]. It is expedient to handle the streamfunction $\tilde{\psi}$

for the flow relative to the coordinates moving with the same speed $\dot{Z}$ as the vortex ring along
the z-direction, namely, $\psi=-\dot{Z}p^{2}/2+\tilde{\psi}$ . The first-order solution comprises a dipole field.
Denoting the dipole coefficient ofthe streamhnction for the flow, relative to the moving frame,

to be $\tilde{\psi}_{11}^{(1)}=\psi_{11}^{(1)}+r\dot{Z}^{(0)}$ , the coefficient function $\tilde{\psi}_{11}^{(1)}$ is given by

$\tilde{\psi}_{11}^{(1)}=-v^{(0)}\{\frac{r^{2}}{2}+\int_{0}^{r}\frac{d/}{\sqrt{}[v^{(0)}(r’)]^{2}}\int_{0}^{r’}r’’[v^{(0)}(r^{\prime l})]^{2}dr’’\}+c_{11}^{(1)_{\mathcal{V}}(0)}$, (29)

where $c_{11}^{(1)}$ is a disposable parameter tied with choice ofthe origin $r=0$ ofthe local coordinates.
The vorticity is found ffom $\zeta_{11}^{(1)}=a\tilde{\psi}_{11}^{(1)}+r\zeta^{(0)}$ with $a(r,t)=-1/v^{(0)}(\partial\zeta^{(0)}/\partial r)$ . The Fourier
coefficient $\tilde{\psi}_{0}^{(2)}(r)$ of the monopole component of $O(\epsilon^{2})$ , relative to the moving coordinate
frame, defined by $\tilde{\psi}_{0}^{(2)}=\psi_{0}^{(2)}+\dot{Z}^{(0)}r^{2}/4$ is written in tenns of $v^{(0)},\tilde{\psi}_{11}^{(1)}$ and $\zeta_{0}^{(2)}$ . The $o(\epsilon^{2})$

monopole component $\zeta_{0}^{(2)}$ ofvorticity obeys a heat-conduction equation with source terms [32].

The leading-order term $H^{(0)}$ of energy is evaluated with ease, by introducing (28) into (26),
which is expressed, in dimensional variables, as

$H_{0}/ \Gamma^{2}=\frac{1}{2}R_{0}\{\log(\frac{8R_{0}}{\sigma})+A-2\}$ ,

where $H_{0}=\Gamma^{2}R_{0}H^{(0)}$ and $A$ is given by

$A= \lim_{rarrow\infty}\{\frac{4\pi^{2}}{\Gamma^{2}}\int_{0}^{r}r^{l}v_{0}(r’)^{2}dr’-\log(\frac{r}{\sigma})\}$ . (31)
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(34)

We pose, as a natural profile oflocal velocity field featuring a vortex ring,

$v_{0}(r)=- \frac{\Gamma}{2\pi r}f(\frac{r}{\sigma})$ , $\zeta_{0}=\frac{\Gamma}{2\pi r}\frac{d}{dr}f(\frac{r}{\sigma})$ ; $f(\xi)=O(\xi^{2})$ as $\xiarrow 0,$ $f(\xi)arrow$ las $\xiarrow\infty$ ,
(32)

where $f$ is an arbitrary hnction, though subjected to the above boundary conditions. The pa-
rameter $\sigma$ introduces the scale for the core thickness. Suppose that the fluid particles occupying
a toroidal region ofradius $r$ around the center circle of radius $R$ is mapped to another toroidal
region of radius $\hat{r}$ around the center circle of radius $\hat{R}$ . To maintain these flow fields on an
iso-vortical sheet, it is necessaly for the local circulation along any material loop to remain un-
changed [6, 14, 20]. Preservation of material volume enforces $2\pi^{2}r^{2}R=2\pi^{2}\hat{r}^{2}R,$ $2\pi^{2}\sigma^{2}R=$

$2\pi^{2}\hat{\sigma}^{2}\hat{R}$ , ffom which follows $r/\sigma=\hat{r}/\hat{\sigma}$ . Consequently, the local circulation around the circle
of radius $r,$ $\Gamma(r)=2\pi\int_{0}^{r}\zeta_{0}(\sqrt{})r’d/=\Gamma f(r/\sigma)$ , is made invariant: $\Gamma(r)=\Gamma(\hat{r})$ . Under an in-
finitesimal perturbation of $Rarrow\hat{R}=R+\delta R,$ $\sigmaarrow\hat{\sigma}=\sigma+\delta\sigma$ , with $R=R_{0}+R_{2},$ (5) demands
that, at each order, $\sigma^{2}R_{0}=$ const. and $\sigma^{2}R_{2}=$ const., and therefore that $2\delta\sigma/\sigma=-\delta R_{0}/R_{0}=$

$-\delta R_{2}/R_{2}$ . We can show that, under this perturbation, $\hat{A}=A+O((\delta R)^{2})$ . In view of these
constraints, the variation of (30) with respect to an iso-vortical perturbation becomes

$\delta H_{0}=\frac{\Gamma^{2}}{2}[\log(\frac{8R_{0}}{\sigma})+A-\frac{1}{2}]\delta R_{0}$ . (33)

The variation of the leading term of impulse $P_{0}=\Gamma\pi R_{0}^{2}$ is $\delta P_{0}=2\pi\Gamma R_{0}\delta R_{0}$ , and application
of (2) retrieves Fraenkel-Saffinan’s formula [21, 31]:

$U_{0}= \frac{\Gamma}{4\pi R_{0}}\{\log(\frac{8R_{0}}{\sigma}I+A-\frac{1}{2}\}$ .

The third-order correction $U_{2}$ to the translation speed of the vortex ring requires evalua-
tion of $H^{(2)}$ . For an inviscid vortex ring in steady motion, $R_{2}=R_{0}\epsilon^{2}R^{(2)}\equiv 0$ without loss of
generality, and, after some manipulations, we arrive at

$U_{2}= \frac{1}{R_{0}^{3}}\{\frac{d_{1}}{2}[\log(\frac{8R_{0}}{\sigma})-2]-\pi\Gamma B+\frac{\pi}{2\Gamma}\int_{0}^{\infty}r^{4}\zeta_{0}v_{0}dr\}$ , (35)

where $v_{0}=\Gamma v^{(0)}/\sigma$ and $\zeta_{0}=\Gamma\zeta^{(0)}/\sigma^{2}$ are dimensional variables, and

$B= \lim_{rarrow\infty}\{\frac{1}{\Gamma^{2}}\int_{0}^{r}r’v_{0}\tilde{\psi}_{11}^{(1)}d_{t’}+\frac{r^{2}}{16\pi^{2}}[\log(\frac{r}{\sigma})+A]+\frac{d_{1}}{2\pi\Gamma}\log(\frac{r}{\sigma})\}$ . (36)

This is an extension, to $O(\epsilon^{3})$ , of Fraenkel-Saffman’s formula (34).
Even ifviscosity is switched on, the higher-order asymptotics $U_{2}$ is not invalidated at a large

Reynolds number. Takin$g$ , as the initial condition, a circular line vortex of radius $R_{0}$ ,

$\zeta(p,z,O)=\Gamma\delta(\rho-R_{0})\delta(z-Z)$ at $t=0$ , (37)
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$UR_{0}/\Gamma$

Figure 1: Variation of speed of a viscous vortex ring with time. The upper and lower solid lines
are the high-(39) and low-Reynolds number asymptotics [34], respectively, while the thick
dashed line is the Saffinan’s formula (34). The dashed lines are the values read off ffom the
graph of numerical simulations [23].

(39)

the leading-order vorticity $\zeta_{0}$ is given by

$\zeta_{0}=\frac{\Gamma}{4\pi vt}e^{-r^{2}/4vt}$ , (38)

where $v$ is the kinematic viscosity and $t$ is the time measured ffom the instant at which the
core is infinitely thin [21, 33], and the inhomogeneous heat-conduction equation goveming $\zeta_{0}^{(2)}$

becomes tractable, with an introduction of similarity variables. The parameters $c_{11}^{(1)}$ in (29) and
$R_{2}$ , both being ffinctions of $t$ , play a common role of specifying the radial position of the ring
at $o(\epsilon^{2})$ relative to $R_{0}$ . This redundancy is removed, for instance, by taking $c_{11}^{(1)}\equiv 0$ . Thus we
are led to an extension of Saffinan’s formula (34) in the form

$U \approx\frac{\Gamma}{4\pi R_{0}}\{\log(\frac{4R_{0}}{\sqrt{vt}})-0.55796576-3.6715912\frac{vt}{R_{0}^{2}}\}$ .

Fig. 1 displays the comparison of the asymptotic formula (39) with a direct numerical sim-
ulation ofthe axisymmetric Navier-Stokes equations [23]. The normalized speed $UR_{0}/\Gamma$ ofthe
ring is drawn as a ffinction ofnormalized time $vt/R_{0}^{2}$ for its small values. The upper thick solid
line is our formula (39), and the thick broken line is the first-order truncation (34). The dashed
lines are the results of the numerical simulations, attached with the circulation Reynolds num-
ber $\Gamma/v$ , ranging from 0.01 to 200. Augmented only with a single correction term, (35) appears
to fumish a close upper bound on the translation speed. Notably, the large-Reynolds-number
asymptotic formula (39) compares fairly well with the numerical result of even moderate and
small Reynolds numbers.
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The variational principle (2), which comprises only the total energy $H$ and the impulse $P_{z}$ ,
dispenses with $\psi_{21}^{(2)}$ and $\zeta_{21}^{(2)}$ . A hrther simplification is achieved by relying on the variational
principle with kinematic constraints.

6 Discussions
Onsager [12] developed a method of statistical mechanics for ensembles ofpoint vortices in a
bounded domain on a plane. For small values ofthe total energy, low-energy configurations are
favored. Opposite-signed vortices have tendency to couple together, or vortices have tendency
to stay close to the boundary to couple with their image vortices. For large values of the total
energy, the temperature becomes negative. This implies that high-energy configurations are
favored. Same-signed vortices are clustered, which may be responsible for the formation of
large-scale coherent vortices in two-dimensional turbulence. In this theory, the boundedness of
the domain, high energy and statistics are key ingredients for a large-scale coherent stmcture.
On the other hand, for Kelvin’s variational principle, a large-scale stmcture with high vorticity
ofthe same sign is attributed to steadiness of a non-viscous fluid.

Constmction of steady solutions in a rest frame or in a steadily moving ffame are problems
of the first variation. Investigation of the linear ($=$ spectral) and weakly nonlinear stability
requires the second variation. For this purpose, the kinematically accessible or isovortical dis-
turbances are indispensable, and the Lagrangian approach has tumed out to offer a vital tool
[35, 36, 37, 38, 39, 40, 41].
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