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Abstract. We study the kinetic mean field equation of two-dimensional
Brownian vortices, its derivation, similarity to competitive systems of
chemotaxis and a drift-diffusion model, and the method of weak scaling
limit.

1 INTRODUCTION

It is Onsager [16] that initiated the statistical mechanics of point vortices. It
begins with the vortex system

$\frac{dx_{i}}{dt}=\nabla_{x_{i}}^{\perp}H_{N}$ ,

associated with the Hamiltonian

$i=1,2,$ $\cdots,$
$N$ (1)

$H_{N}(x_{1}, \ldots, x_{N})=\frac{1}{2}\sum_{i}\gamma_{i}^{2}R(x_{j})+\sum_{i<j}\gamma_{i}\gamma_{j}G(x_{i}, x_{j})$

$x_{i}\in\Omega,$ $i=1,2,$ $\cdots,$
$N$

where $\Omega\subset R^{2}$ is a bounded domain with smooth boundary $\partial\Omega$ ,

$\nabla^{\perp}=(-\frac\frac{\partial}{\partial x,\partial x_{1}\partial^{2}})$ , $x=(x_{1}, x_{2})$ ,

$G=G(x, x’)$ is the Green’s function of -A provided with the Dirichlet
boundary condition, and

$R(x)=[G(x, x’)+ \frac{1}{2\pi}\log|x-x’|]_{x=x}$
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stands for the Robin function. The argument runs on the static theory of
Gibbs, converting the micro-canonical measure to the canonical measure us-
ing a thermodynamical relation. It drawed an ordered structure in negative
temperature. Here, $\gamma_{i}$ stands for the intensity of i-th vortex. In the case
$\gamma_{i}=\gamma>0,$ $i=1,2,$ $\cdots,$

$N$ , the mean field equation

$\rho=\frac{e^{-\beta\psi}}{\int_{\Omega}e^{-\beta\psi}}$ , $\psi=\int_{\Omega}G(\cdot, x’)\rho(x’)dx’$ (2)

arises in the high-energy limit where $\beta=1/kT$ denotes the renormalized
inverse temperature with $k=k_{B}$ standing for the Boltzmann constant [13,
17, 4]. It is justified under the uniform boundeness of the weight factor and
also the uniqueness of the solution to the mean field equation [2, 11]. The
derivation of the mean field equation (2) is, consequently, justified in the
region $\lambda=-\beta<8\pi[20]$ .

Equation (2), or

$- \Delta c’=\frac{\lambda e^{v}}{\int_{\Omega}e^{v}}$ in $\Omega$ , $t)=0$ on $\partial\Omega$ (3)

is the Euler-Lagrange equation of the Vlasov functional

$\mathcal{F}(\rho)=U(\rho)-TS(\rho)$

combined with the inner energy and entropy terms

$U( \rho)=\frac{1}{2}\int\int_{\Omega\cross\Omega}G(x, x^{l})\rho\otimes\rho dxdx’$ , $\rho\otimes\rho=\rho(x)\rho(x’)$

$S( \rho)=-k\int_{\Omega}\rho(\log\rho-1)$ .

This equation has been called the Boltzmann-Poisson(-Emden) equation in
condensed matter physics, astrophysics, quantum chemistry, and information
theory [1], There is a quantized blowup mechanism and the control of the
Hamiltonian concerning the blowup points in the solution sequence to (3)
[14]. The latter property is regarded as the recursive hierarchy in the original
context of [16]. First, the Hamiltonian

$H_{N}(x_{1}, \ldots, x_{N})=\frac{1}{2}\sum_{i}\gamma^{2}R(x_{j})+\sum_{i<j}\gamma^{2}G(x_{i}, x_{j})$ (4)

controls the motion of particles by (1). Next, the continuous distribution of
the particle density is derived in the high-energy limit. Finally, the continuous
particle density emerged in this mean field limit concentrate on finite points
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as the critical stage is approaching, with their location identical to the critical
point of the normalized Hamiltonian

$\hat{H}_{N}(x_{1}, \ldots, x_{N})=\frac{1}{2}\sum_{i}R(x_{j})+\sum_{i<j}G(x_{i}, x_{j})$ .

Hence the mean filed limits again exhibit the profile of particles regarded as
an equiliburium of (1).

Under long-range interactions, however, the equivalence of thermodynam-
ical relations between statistical ensembles is violated. This problem was
approached by Chavanis [3], taking a formal kinetic mean field equation for
canonical ensembles. It uses the system of stochastic equations

$\frac{dx_{i}}{dt}=\gamma\nabla_{x_{i}}^{\perp}\hat{H}_{N}-\mu\gamma^{2}\nabla_{i}\hat{H}_{N}+\sqrt{2\iota \text{ノ}}R_{i}(t)$, $i=1,2,$ $\cdots,$
$N$

where $\mu>0$ stands for the mobility in the theory of Brownian motion,

$\nabla=(\frac\frac{\partial}{\partial x,\partial x_{2}\partial^{1}})$ ,

$I$ノ $\geq 0$ denotes the diffusion coefficient describing the viscosity of the system
of particles, and $R_{i}(t)$ is the white noise:

$\{R_{i}(t)\rangle=0, \langle R_{i}^{\alpha}(t)R_{j}^{\beta}(t^{l})\}=\delta_{ij}\delta_{\alpha\beta}\delta(t-t’)$ .

Under this setting, the N-body distribution function $P_{N}(x_{1}, \cdots, x_{N}, t)$ is
subject to the Fokker-Planck equation

$\frac{\partial P_{N}}{\partial t}+\gamma\nabla^{\perp}\hat{H}\cdot\nabla P_{N}=\nabla\cdot(l$ノ $\nabla P_{N}+\mu\gamma^{2}P_{N}\nabla\hat{H}_{N})$

which induces a BBGKY-like hierarchy $concerningP_{i},$ $i=1,2,$ $\cdots,$
$N$ . Then

the factorization, or the propagation of chaos,

$P_{N}(x_{1}, x_{2}, \cdots, x_{N}, t)=\prod_{i=1}^{N}P_{1}(x_{i}, t)$

is assumed in the high-energy limit, $\beta N\gamma^{2}=1,$ $N\uparrow\infty$ . The limit equation
for $\omega=N\gamma P_{1}$ arises with the normalized temperature,

$\frac{\partial\omega}{\partial t}+\nabla^{\perp}\psi\cdot\nabla\omega=\iota$ノ $\nabla\cdot(\nabla\omega+\beta\gamma\omega\nabla\psi)$

$-\Delta\psi=\omega$ , $\psi|_{\partial\Omega}=0$ . (5)
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A similarity of the Smoluchowski-Poisson equation is noticed for (5), that
is,

$\frac{\partial u}{\partial t}=d\triangle u-\chi\nabla\cdot u\nabla v$

$- \Delta v=u-\frac{1}{|\Omega|}u$

$d \frac{\partial u}{\partial\nu}-\chi u\frac{\partial v}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$

$u|_{t=0}=u_{0}(x)\geq 0$

in $\Omega\cross(0, T)$

on $\partial\Omega\cross(0, T)$ , $\int_{\Omega}v=0$

in $\Omega$ . (6)

It is a simplffied system of chemotaxis [9] where $d>0$ and $\chi>0$ stand for the
diffusion and chemotactic sensitivity coefficients, respectively. If the solution
to this system blows-up in finite time, then it forms collapses with quantized
mass [21, 23]. The stationary state of (6), on the other hand, coincides with
the Boltzmann-Poisson equation, especially the one used in gauge theory [26],

$- \triangle v=\lambda(\frac{e^{v}}{\int_{\Omega}e^{v}}-\frac{1}{|\Omega|})$ , $\frac{\partial v}{\partial\nu}\partial\Omega=0$ , $\int_{\Omega}v=0$ (7)

which is a relative of (3). Actually, if the Poisson part is replaced by

$-\Delta v=u$ , $v|_{\partial\Omega}=0$ (8)

in (6) then the stationary state of this system is exactly the one described by
(3). The underlying structure which realizes this profile is a duality between
$u$ and $\iota$) (or $\rho$ and $\psi$). It is associated with the Legendre transformation and
may be called the field-particle duality. Hence the kinetic mean field equation
of point vorticies (5) is close to the dual form of (2) in the stationary states.
This duality, however, is not restricted to the stationary states. Actually,
the non-stationary Smoluchowski-Poisson equation is a model (B) equation
derived from the Vlasov functional (or the Helmholtz free energy) [22]. For
example, system (6) takes the form

$u_{t}=\nabla\cdot u\nabla\delta \mathcal{F}(u)$ , $u \frac{\partial}{\partial\nu}\delta \mathcal{F}(u)\partial\Omega^{=0}$

where
$\mathcal{F}(u)=\int_{\Omega}u(\log u-1)-\frac{1}{2}\int\int_{\Omega\cross\Omega}G(x, x’)u\otimes udxdx’$

with $G=G(x, x’)$ standing for the Green $s$ function of the Poisson part

$- \triangle v=u-\frac{1}{|\Omega|}\int_{\Omega}u$ , $\frac{\partial\tau;}{\partial\nu}\partial\Omega=0$ , $\int_{\Omega}v=0$ . (9)
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The above described property of (6) may be thought to be a recursive hierar-
chy. Thus at least the quantized blowup mechanism of (7) is valid even in the
kinetic level (6). However, a more fruitful understanding will be the nonlin-
ear spectml mechanics, where the quantized blowup mechanism of stationary
states induces that of the kinetic model.

The present paper is concerned with the two-species model of [3] described
by

$\frac{\partial\omega\pm}{\partial t}+\nabla\cdot\omega\pm\nabla^{\perp}\psi=\nu\nabla\cdot(\nabla\omega\pm\pm\beta\gamma\nabla\psi)$

$-\triangle\psi=\omega_{+}+\omega_{-}$ in $\Omega\cross(0, T)$

$\frac{\partial\omega\pm}{\partial\nu}\pm\beta\gamma\omega_{\pm}\frac{\partial\psi}{\partial\nu}=\psi=0$ $on$ $\partial\Omega\cross(0, T)$

$\omega_{\pm}|_{t=0}=\omega\pm 0$ in $\Omega$

where $\nu>0,$ $\gamma>0,$ $\beta=-\lambda<0$ , and $\omega_{+0}\geq 0\geq\omega_{-0}$ . Using $u_{1}=\omega+$ ,
$u_{2}=-\omega_{-},$ $v=\psi,$ $\chi=-\nu\beta\gamma>0$ , and $d=\nu>0$ , we divide it into the
Smoluchowski part

$\frac{\partial u_{1}}{\partial t}+\nabla\cdot u_{1}\nabla^{\perp}v=d\Delta u_{1}-\chi\nabla\cdot u_{1}\nabla_{1)}$

$\frac{\partial u_{2}}{\partial t}+\nabla\cdot u_{2}\nabla^{\perp}v=d\triangle u_{2}+\chi\nabla\cdot u_{2}\nabla v$ in $\Omega\cross(0, T)$

$d \frac{\partial u_{1}}{\partial\nu}-\chi u_{1}\frac{\partial v}{\partial\nu}=d\frac{\partial u_{2}}{\partial\nu}+\chi u_{2}\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0, T)$

$u_{i}|_{t=0}=u_{i0}\geq 0,$ $i=1,2$ , in $\Omega$ (10)

and the Poisson part (8) with

$u=u_{1}-u_{2}$ . (11)

Without the vorticity terms $u_{i}\nabla^{\perp}v,$ $i=1,2$ , system (10)-(11) is a drift-
diffusion model. The forms

$\frac{\partial u_{1}}{\partial t}=d\triangle u_{1}-\chi\nabla\cdot u_{1}\nabla v$

$\frac{\partial u_{2}}{\partial t}=d\triangle u_{2}+\chi\nabla\cdot u_{2}\nabla\tau)$

$-\triangle v=u_{1}-u_{2}$ in $R^{2}\cross(0, T)$

$u_{i}|_{t=0}=u_{i0}(x)\geq 0,$ $i=1,2$ , in $R^{2}$ (12)
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and

$\frac{\partial u_{1}}{\partial t}=d\Delta u_{1}-\chi\nabla\cdot u_{1}\nabla v$

$\frac{\partial u_{2}}{\partial t}=d\Delta u_{2}+\chi\nabla\cdot u_{2}\nabla v$ in $\Omega\cross(0, T)$

$d \frac{\partial u_{1}}{\partial\nu}-\chi u_{1}\frac{\partial v}{\partial\nu}=d\frac{\partial u_{2}}{\partial\nu}+\chi u_{2}\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0, T)$

$u_{i}|_{t=0}=u_{i0}\geq 0,$ $i=1,2$ , in $\Omega$ (13)

with (9) and (11) are studied by [12, 7] and [8], respectively.
We can observe two differences between the system of (10) with (8) and

(11), and that of (13) with (9) and (11). The first factor is the appearance
of the vorticity terms $u_{i}\nabla^{\perp}v,$ $i=1,2$ . The Poisson parts are also different,
that is, (8) and (9) which cause a technical difficulty to treat the boundary
behavior of the solution. Thus, it may be a good strategy to study (13) with
(9) and (11) before turning to (10) with (8) and (11). Actually, it has been
unsolved for a long while to exclude boundary blowup points in the former
case even for the single component case [21, 22].

In this paper, first, we review [5] concerning the competitive system of
chemotaxis,

$\frac{\partial u_{i}}{\partial t}=d_{i}\Delta u_{i}-\chi_{i}\nabla\cdot u_{i}\nabla v$ in $\Omega\cross(0, T)$

$d_{i} \frac{\partial u_{i}}{\partial\nu}-\chi_{i}u_{i}\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0, T)$

$u_{i}|_{\iota=0}=u_{i0}(x)\geq 0$ in $\Omega$ , (14)

$i=1,2,$ $\cdots,$
$N$ , coupled with the Poisson equation (9) with

$u= \sum_{i=1}^{N}u_{i}$ , (15)

where $d_{i}>0$ and $\chi_{i},$ $i=1,2,$ $\cdots,$
$N$ , are positive constants. Then turning to

another competitive system of chemotaxis, we describe basic profiles of (13).

2 COMPETITIVE SYSTEM OF CHEMOTAXIS

System (14) with (9) and (15), henceforth called $(ISP)$ , was proposed in [6]
to approach the question of cell sorting of Dictyostelium discoideum (Dd)
[24]. The other motivation is a competitive feature of chemotaxis observed in
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cancer cell biology, especially, in tumor microenvironment at the stage of in-
travasation [25, 10]. Below we assume $N=2$ , but the general case is treated
similarly. Given a sufficiently regular initial value $(u_{0}, v_{0})$ , the proof of the
existence and uniqueness of the local-in-time solution is standard. Then the
parabolic regularity guarantees the existence time etimate from below by
$\sum_{i=1}^{2}\Vert u_{i0}\Vert_{\infty}$ , which implies

$T=T_{\max}<+\infty$ $\Rightarrow$ $\lim_{t\uparrow T}\sum_{i=1}^{2}\Vert u_{i}(\cdot, t)\Vert_{\infty}=+\infty$ . (16)

The positivity of each component of the solution is also kept, and hence the
component-wise total mass conservation holds by

$\frac{d}{dt}\int_{\Omega}u_{i}dx=0$ , $i=1,2$ . (17)

In [6, 7] the simultaneous blowup

$T<+\infty$ $\Rightarrow$

$\lim_{t\uparrow}\sup_{T}\Vert u_{1}(\cdot, t)\Vert_{\infty}=\lim_{t\uparrow}\sup_{T}\Vert u_{2}(\cdot, t)\Vert_{\infty}=+\infty$, (18)

is proven for the case of $u_{i}=u_{i}(|x|, t)$ , which does not hold for (12). There
is, however, a parameter region which ensures

$T<+\infty$ $\Rightarrow$

$\lim_{t\uparrow T}\Vert u_{1}(\cdot, t)\Vert_{\infty}=\lim_{t\uparrow T}||u_{2}(\cdot, t)\Vert_{\infty}=+\infty$ , (19)

even for non-radially symmetric solutions. Let

$\xi_{i}=d_{i}/\chi_{i}$ , $\Vert u_{i0}\Vert_{1}=\lambda_{i}$ , $i=1,2$ . (20)

Theorem 1 ([5]) If
$\lambda_{i}<4\pi\xi_{i}$ ,

then (19) holds.

$i=1,2$ (21)

Condition (21) is consistent to $T<+\infty$ . In fact, if

$( \sum_{i=1}^{2}\lambda_{i})^{2}<4\pi\sum_{i=1}^{2}\xi_{i}\lambda_{i}$ , $\lambda_{i}<4\pi\xi_{i},$ $i=1,2$

$T=+\infty$ always holds, while $T<+\infty$ always can occur in case

$( \sum_{i=1}^{2}\lambda_{i})^{2}>4\pi\sum_{i=1}^{2}\xi_{i}\lambda_{i}$ . (22)
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Then the parameter region defined by (21) and (22) in $\lambda_{1}\lambda_{2}$ plane in $\lambda_{i}>0$ ,
$i=1,2$ , is not empty. Since property (16) means

$T<+\infty$ $\Rightarrow$

$\lim_{t\uparrow T}\Vert u(\cdot, t)\Vert_{\infty}=+\infty$ , (23)

the blowup set of $(u_{1}, u_{2})$ defined by

$S=\{x_{0}\in\overline{\Omega}|$ ョ$(x_{k}, t_{k})arrow(x_{0}, T), u(xt)arrow+\infty\}$ (24)

is not empty. In the case of the Smoluchowski-Poisson system for a single
unknown species, the formation of collapses occurs with a quantized mass
[21, 23]. This property arises also in $(ISP)$ for each component, with possibly
degenerate collapses. Here, we say that the collapse $m_{i}(x_{0})\delta_{x_{0}}(dx),$ $i=1,2$ ,
in (25) below is degenerate if $m_{i}(x_{0})=0$ .

Theorem 2 ([5]) If $T<+\infty$ , the blowup set $S$ defined by (24) is finite. $It$

holds that

$u_{i}(x, t)dx arrow\sum_{x_{O}\in S}m_{i}(x_{0})\delta_{x_{O}}(dx)+f_{i}(x)dx$
, $i=1,2$ (25)

in $\mathcal{M}(\overline{\Omega})=C(\overline{\Omega})^{l}$ as $t\uparrow T=T_{\max}<+\infty$ , where $m_{i}(x_{0})\geq 0,$ $i=1,2$ , are
constants satisfying $(m_{1}(x_{0}), m_{2}(x_{0}))\neq(0,0)$ , and $0\leq f_{i}=f_{i}(x)\in L^{1}(\Omega)$ ,
$i=1,2$ , are smooth functions in $\overline{\Omega}\backslash S$ . We have $f_{i}>0$ in $\overline{\Omega}\backslash S$ except for
$u_{i0}\equiv 0$ .

Equality (26) in the following theorem may be called a total mass quan-
tization because it is an identity involving all the collapse masses $m_{i}(x_{0})$ ,
$i=1,2$ .

Theorem 3 ([5]) It holds that

$( \sum_{i=1}^{2}m_{i}(x_{0}))^{2}=m_{*}(x_{0})\sum_{i=1}^{2}\xi_{i}m_{i}(x_{0})$ (26)

for any $x_{0}\in S$ , where

$m_{*}(x_{0})=\{\begin{array}{l}8\pi, x_{0}\in\Omega 4\pi, x_{0}\in\partial\Omega.\end{array}$ (27)

The next theorem concerning the formation of subcollapses implies that
any blowup rate of $(ISP)$ is type II. To state the result, let

$(u_{1}, u_{2}, n)=(u_{1}(x, t), u_{2}(x, t), n(x, t))$
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be a solution to $(ISP)$ satisfying $T=T_{\max}<+\infty$ , take $x_{0}\in S$ , and let

$z_{i}(y, s)=(T-t)u_{i}(x, t)$ , $w(y, s)=v(x, t)$
$y=(x-x_{0})/(T-t)^{1/2}$ , $s=-\log(T-t)$ , $i=1,2$ . (28)

We assume the 0-extensions of $z_{i}(y, s),$ $i=1,2$ , where they are not defined.
Furthermore, $R^{2}\cup\{\infty\}$ denotes the one-point compactification of $R^{2}$ , and
$C_{0}(R^{2})$ stands for the set of continuous functions on $R^{2}\cup\{\infty\}$ taking the
value $0$ at $\infty$ , and $\Lambda 4_{0}(R^{2})=C_{0}(R^{2})’$ .

Theorem 4 ([5]) We have

$z_{i}(y, s+s’)dy-m_{i}(x_{0})\delta_{0}(dy)$ , $i=1,2$ (29)

in $C_{*}$ $(-oo, +\infty;M_{0}(R^{2}))$ as $s’\uparrow+\infty$ . In particular, it holds that

$\lim_{t\uparrow T}(T-t)\Vert u(\cdot, t)\Vert_{L^{\infty}(\Omega\cap B(x_{0},b(T-t)^{1/2})}=+\infty$ (30)

for any $b>0$ .

The blowup set $S$ coincides with the origin for radially symmetric solu-
tions satisfying $T<+\infty$ . The following fact arises for such a case.

Theorem 5 ([5]) Let $\Omega$ be a disc with center at the origin, $u_{i}=u_{i}(|x|, t)$ ,
$i=1,2$ , and $T<+$oo. Then $m_{i}=m_{i}(0)$ must satisfy

$m_{i}\leq 8\pi\xi_{i}$ , $i=1,2$ (31)

besides (26) with $x_{0}=0$ .

Here, first, inequality (31) arises also in the context of global-in-time
continuation of the solution associated with the Trudinger-Moser or the log-
arithmic HLS inequality. Next, (31) is a consequence of (26) if

$1/2\leq\xi_{i}/\xi_{j}\leq 2$ , $i,$ $j=1,2$ . (32)

More precisely, if (32) is the case, the curve (a parabola if $\xi_{1}\neq\xi_{2}$ and a line
in the other case) defined by

$( \sum_{i=1}^{2}m_{i})^{2}=m_{*}\sum_{i=1}^{2}\xi_{i}m_{i}$ , $m_{*}=m_{*}(x_{0})$ , (33)

in the $m_{1}m_{2}$ -plane in $\{(m_{1}, m_{2})|m_{i}>0, i=1,2\}$ does not cross the lines
$m_{i}=\xi_{i}m_{*},$ $i=1,2$ . Finally, in the other case of $\xi_{i}/\xi_{j}>2$ or $\xi_{i}/\xi_{j}<1/2$
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for $i\neq j$ , one of $(m_{1}, m_{2})=(8\pi\xi_{1},0)$ and $(m_{1}, m_{2})=(0,8\pi\xi_{2})$ is an isolated
point of (33) in the $m_{1}m_{2}$-plane with $\{(m_{1}, m_{2})|m_{i}\geq 0, i=1,2\}$ and (31).
The following theorem shows that the mass separation of radially symmetric
solutions actually occurs if the total mass of one component is relatively small
compared with that of the other. In this context we recall that simultaneous
blowup (18) is always the case for radially symmetric solutions, regardless
of the parameter region indicated by (21). If both simultaneous blowup
and mass separation arise, say, $m_{i}(x_{0})=0$ in (25), then it will hold that
$f_{i}\not\in L^{\infty}(\Omega\cap B(x_{0}, R))$ for $0<R\ll 1$ , where $B(x_{0}, R)=\{x||x-x_{0}|<R\}$ .

Theorem 6 ([5]) Under the assumption of Theorem 5, let $\xi_{i}/\xi_{j}>2$ for
some $i\neq j$ . Then $m_{i}=0$ and hence $m_{j}=8\pi\xi_{j}$ holds, provided that

11 $u_{i0}\Vert_{1}<8\pi(\xi_{i}-2\xi_{j})$ .

A sufficient condition for $T<+\infty$ in the above theorem is

II $u_{j0}\Vert_{1}>8\pi\xi_{j}$ , $\Vert|x|^{2}u_{j0}\Vert_{1}\ll 1$

([7], Theorem 11 of [5]). Theorem 8 of [5] is also available for this purpose.
We shall review the proof for later use. First, Theorem 1 is proven by

a variational structure of $(ISP)$ and the logarithmic HLS inequality [19].
Theorem 2 is obtained by an argument of [18], using an $\epsilon$-regularity and a
monotonicity formula. Then we have the formation of collapses of $\hat{u}(x, t)dx$ as
$t\uparrow T$ , where $\hat{u}=\sum_{i=1}^{2}\chi_{i}^{-1}u_{i}$ . A careful analysis then assures this property
component-wisely and also

$m(x_{0}) \equiv\sum_{i=1}^{2}m_{i}(x_{0})>0$ . (34)

To prove Theorem 3, $first_{1}$ , we apply an argument developed for the single
component case [21, 23]. We use the backward self-similar transformation,
weak scaling limit, scaling back, and translation limit, to obtain a full-orbit
defined on the whole (or the half) space domain. At these precesses, the
total masses of the generated weak solutions continue to be the collapse mass
because of the pambolic envelope and the positivity of the measure. Then,
an existence criterion of such orbits follows from the method of local second
moments and scaling, which guarantees an estimate of the total collapse mass
from above, that is,

$( \sum_{i=1}^{2}m_{i}(x_{0}))^{2}\leq m_{*}(x_{0})\sum_{i=1}^{2}\xi_{i}m_{i}(x_{0})$ . (35)
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We use a different argument than [21, 23] to derive the reverse inequality

$( \sum_{i=1}^{2}m_{i}(x_{0}))^{2}\geq m_{*}(x_{0})\sum_{i=1}^{2}\xi_{i}m_{i}(x_{0})$ . (36)

Namely, we show the boundedness in time of the total second moment of the
rescaled solution and use the scaling limit equation. We have, at the same
time, the formation of subcollapses indicated by Theorem 4. We note that a
weaker estimate of the total collapse mass from below is obtained similarly
to the single component case, that is, either (36) or

$m_{i}(x_{0})\geq\xi_{i}m_{*}(x_{0})$ , $i=1,2$ (37)

by the logarithmic HLS inequality. Inequality (36), however, is eventually
selected for (26) to be established. The proof of Theorem 5 is based on the
fact that the interaction between two-components is neglected in the collapse
mass estimate from above for radially symmetric solutions. Then Theorem
6 arises with the total mass conservation of each component of the solution.

As we have reviewed, the above theorems are proven by three remarkable
structures of the system other than the total mass conservation (17), that is,
the decrease of the total free energy

$\frac{d}{dt}\mathcal{F}_{\xi_{1},\xi_{2}}(u_{1}, u_{2})\leq 0$

$\mathcal{F}_{\xi_{1},\xi_{2}}(u_{1}, u_{2})=\sum_{i=1}^{2}\int_{\Omega}\xi_{i}u_{i}(\log u_{i}-1)dx-\frac{1}{2}\langle(-\triangle)^{-1}u,$ $u\rangle$

$u=u_{1}+u_{2}$ ,

the weak form

$\frac{d}{dt}\int_{\Omega}[\sum_{i=1}^{2}\chi_{i}^{-1}u_{i}]\varphi dx-\int_{\Omega}[\sum_{i=1}^{2}\xi_{i}u_{i}]\triangle\varphi dx$

$= \frac{1}{2}\int\int_{\Omega\cross\Omega}\rho_{\varphi}u\otimes udxdx’$

$\rho_{\varphi}(x, x’)=\nabla\varphi(x)\cdot\nabla_{x}G(x, x’)+\nabla\varphi(x’)\cdot\nabla_{x’}G(x, x’)$

$\frac{\partial\varphi}{\partial\nu}\partial\Omega^{=0}$

’

valid to

$\varphi\in C^{2}(\overline{\Omega})$ , (38)
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and the scaling invariance of the system on the whole space,

$\frac{\partial u_{i}}{\partial t}=d_{i}\Delta u_{i}-\chi_{i}\nabla\cdot u_{i}\nabla v$ ,

$-\Delta v=u$ , $u= \sum_{i=1}^{2}u_{i}$

$i=1,2$

in $R^{2}\cross(0, \infty)$

arising in the scaling limit after several processes, that is,

$u_{i}^{\mu}(x, t)=\mu^{2}u_{i}(\mu x, \mu^{2}t)$ , $v^{\mu}(x, t)=v(\mu x, \mu^{2}t)$ , $\mu>0$ . (39)

In the final remark the free energy decreasing is used only for the global-
in-time existence of the solution. Namely, the weak form, scaling invariance,
and $\epsilon$-regularity are sufficient for the total mass quantization and related
other properties to guarantee. It is worth mentioning ithat there is actually
a parameter region where the blowup threshold mass has not been known for
multi-species model.

3 CRoss-CHEMOTAXIS MODEL

The above described structures are quite common. A slight modification is
the other competitive system of chemotaxis,

$\frac{\partial u_{i}}{\partial t}=d_{i}\Delta u_{i}-\chi_{i}\nabla\cdot u_{i}\nabla v_{i}$ in $\Omega\cross(0, T)$

$d_{i} \frac{\partial u_{i}}{\partial\nu}-\chi_{v^{:}}u.\frac{\partial v_{i}}{\partial\nu}=0$ on $\partial\Omega\cross(0, T)$

$u_{i}|_{t=0}=u_{i0}(x)\geq 0$ in $\Omega$ , (40)

$i=1,2$ , coupled with the Poisson system

$- \Delta v_{1}=u_{2}-\frac{1}{|\Omega|}\int_{\Omega}u_{2}$ , $\frac{\partial v_{1}}{\partial\nu}\partial\Omega=0$ ,

$- \triangle v_{2}=u_{1}-\frac{1}{|\Omega|}\int_{\Omega}u_{1}$ , $\frac{\partial v_{2}}{\partial\nu}\partial\Omega=0$ ,

$\int_{\Omega}v_{1}=0$

$\int_{\Omega}v_{2}=0$ . (41)

In this system the first species $u_{1}$ secretes a chemical $v_{1}$ which attracts the
second species $u_{2}$ , and similarly, $u_{2}$ secretes $v_{2}$ which attracts $u_{1}$ . In fact,
the total mass conservation (17) and the scaling invariance (39) of the limit
system

$\frac{\partial u_{i}}{\partial t}=d_{i}\triangle u_{i}-\chi_{i}\nabla\cdot u_{i}\nabla v_{i}$ , $i=1,2$

$-\Delta v_{1}=u_{2}$ , $-\Delta v_{2}=u_{1}$ , in $R^{2}\cross(0, T)$
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are obvious, while the total energy decreasing and the weak form are formu-
lated by

$\frac{d}{dt}\mathcal{F}_{\xi_{1},\xi_{2}}(u_{1}, u_{2})\leq 0$

$\mathcal{F}_{\xi_{1},\xi_{2}}(u_{1}, u_{2})=\sum_{i=1}^{2}\int_{\Omega}\xi_{i}u_{i}(\log u_{i}-1)dx-\frac{1}{2}\{(-\triangle)^{-1}u_{1},$ $u_{2}\rangle$

and

$\frac{d}{dt}\int_{\Omega}[\sum_{i=1}^{2}\chi_{i}^{-1}u_{i}]\varphi dx-\int_{\Omega}[\sum_{i=1}^{2}\xi_{i}u_{i}]\Delta\varphi dx$

$= \frac{1}{2}\int\int_{\Omega\cross\Omega}\rho_{\varphi}u_{1}\otimes u_{2}dxdx’$ ,

respectively. Accordingly, we obtain the following results with (20).

Theorem 7 If
$\lambda_{1}\lambda_{2}<4\pi\sum_{i=1}^{2}\lambda_{i}\xi_{i}$

then it holds that $T=+\infty$ in (40) with (41).

Theorem 8 Given $x_{0}\in$ St and $0<R\ll 1$ , if

$\lambda_{1}(x_{0})\lambda_{2}(x_{0})>m_{*}(x_{0})\sum_{i=1}^{2}\xi_{i}\lambda_{i}(x_{0})$

$\Vert|x-x_{0}|^{2}u_{i0}\Vert_{L^{1}(B(x_{0},2R)\cap\Omega)}\ll 1$ , $i=1,2$

then it holds that $T<+\infty$ in (40) with (41), where

$\lambda_{i}(x_{0})=\Vert u_{i0}\Vert_{L^{1}(B(x_{0},R)\cap\Omega)}$ , $i=1,2$ .

Theorem 9 If $T<+\infty$ , the blowup set $S$ defined by (24) is finite. It holds
that (25) in $\Lambda t$ (St) $=C($St $)’$ as $t\uparrow T=T_{\max}<+\infty$, where $m_{i}(x_{0})\geq 0$ ,
$i=1,2$, are constants satisfying $(m_{1}(x_{0}), m_{2}(x_{0}))\neq(0,0)$ , and $0\leq f_{i}=$

$f_{i}(x)\in L^{1}(\Omega),$ $i=1,2$, are smooth functions in $\overline{\Omega}\backslash S$ . We have $f_{i}>0$ in
$\overline{\Omega}\backslash S$ except for $u_{i0}\equiv 0$ .
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Theorem 10 The collapse masses $m_{i}(x_{0}),$ $i=1,2$ , satisfy

$m_{1}(x_{0})m_{2}(x_{0})=m_{*}(x_{0}) \sum_{i=1}^{2}\xi_{i}m_{i}(x_{0})$ (42)

for any $x_{0}\in S$ .

Since (42) with $m_{i}(x_{0})\geq 0,$ $i=1,2$ and $(m_{1}(x_{0}),$ $m_{2}(x_{0})\neq(0,0)$ , it holds
that $m_{i}(x_{0})>m_{*}(x_{0})\xi_{i},$ $i=1,2$ . Hence any components of the collapse are
non-degenerate. In particular, we always obtain simultaneous blowup and
non-mass separation in this system.

4 A DRIFT-DIFFUSION MODEL

A slightly generalized system of (13) studied in [8],

$\frac{\partial u_{1}}{\partial t}=d_{1}\Delta u_{1}-\chi_{1}\nabla\cdot u_{1}\nabla v$

$\frac{\partial u_{2}}{\partial t}=d_{2}\Delta u_{2}+\chi_{2}\nabla\cdot u_{2}\nabla v$ in $\Omega\cross(0, T)$

$d_{1} \frac{\partial u_{1}}{\partial\nu}-\chi_{1}u_{1}\frac{\partial v}{\partial\nu}=d_{2}\frac{\partial u_{2}}{\partial\nu}+\chi_{2}u_{2}\frac{\partial v}{\partial\nu}=0$ $on\partial\Omega\cross(O, T)$

$u_{i}|_{t=0}=u_{i0}\geq 0,$ $i=1,2$ , in $\Omega$ (43)

$- \Delta v=u-\frac{1}{|\Omega|}\int_{\Omega}u$ , $\frac{\partial u}{\partial\nu}\partial\Omega^{=0}$

’

with

$u=u_{1}-u_{2}$

$\int_{\Omega}v=0$

(44)

and
$(u, v)|_{t=0}=(u_{0}, v_{0})$ , $u_{0}=u_{0}(x)\geq 0$ , $v_{0}=v_{0}(x)\geq 0$ (45)

has rather common structures with the competitive system of chemotaxis
treated in \S 2. We shall confirm them to conclude. First, the proof of unique
existence of the solution local-in-time for sufficiently regular initial values is
standard. We have the positivity and the total mass conservation (17) for
the solution. To confirm the free energy decreasing we use

$\frac{\partial u_{1}}{\partial t}=\nabla\cdot u_{1}\nabla(d_{1}\log u_{1}-\chi_{1}v)$ , $\frac{\partial}{\partial\nu}(d_{1}\log u_{1}-\chi_{1}v)\partial\Omega=0$

$\frac{\partial u_{2}}{\partial t}=\nabla\cdot u_{2}\nabla(d_{2}\log u_{2}+\chi_{2}v)$ , $\frac{\partial}{\partial\nu}(d_{2}\log u_{2}+\chi_{2}v)\partial\Omega=0$.
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Then it holds that

$\int_{\Omega}\frac{\partial u_{1}}{\partial t}(d_{1}\log u_{1}-\chi_{1}v)=-\int_{\Omega}u_{1}|\nabla(d_{1}\log u_{1}-\chi_{1}v)|^{2}$

$\int_{\Omega}\frac{\partial u_{1}}{\partial t}(d_{2}\log u_{2}+\chi_{2}v)=-\int_{\Omega}u_{2}|\nabla(d_{2}\log u_{2}+\chi_{2}v)|^{2}$

and hence

$\xi_{1}\frac{d}{dt}\int_{\Omega}u_{1}(\log u_{1}-1)-\int_{\Omega}\frac{\partial u_{1}}{\partial t}v=-\chi_{1}^{-1}\int_{\Omega}u_{1}|\nabla(d_{1}\log u_{1}-\chi_{1}v)|^{2}$

$\xi_{2}\frac{d}{dt}\int_{\Omega}u_{2}(\log u_{2}-1)+\int_{\Omega}\frac{\partial u_{1}}{\partial t}v=-\chi_{2}^{-1}\int_{\Omega}u_{2}|\nabla(d_{2}\log u_{2}+\chi_{2}v)|^{2}$

where $\xi_{i}=d_{i}/\chi_{i},$ $i=1,2$ . Writing the Poisson part of (44) as $v=(-\triangle)^{-1}u$ ,
we thus obtain

$\frac{d}{dt}\{\int_{\Omega}\xi_{1}u_{1}(\log u_{1}-1)+\xi_{2}u_{2}(\log u_{2}-1)dx-\frac{1}{2}\langle(-\triangle)^{-1}u,$ $u\rangle\}$

$=- \int_{\Omega}\chi^{-1}u_{1}|\nabla(d_{1}\log u_{1}-\chi_{1}v)|^{2}+\chi_{2}^{-1}u_{2}|\nabla(d_{2}\log u_{2}+\chi_{2}v)|^{2}dx$.

To derive the weak form, on the other hand, we use

$\chi^{-1}\frac{\partial u_{1}}{\partial t}=\xi_{1}\Delta u_{1}-\nabla\cdot u_{1}\nabla v$ , $\xi_{1}\frac{\partial u_{1}}{\partial\nu}-u_{1}\frac{\partial v}{\partial\nu}\partial\Omega=0$

$\chi_{2}^{-1}\frac{\partial u_{2}}{\partial t}=\xi_{2}\Delta u_{2}+\nabla\cdot u_{2}\nabla v$, $\xi_{2}\frac{\partial u_{2}}{\partial\nu}+u_{2}\frac{\partial v}{\partial\nu}\partial\Omega=0$

which implies

$\frac{d}{dt}\int_{\Omega}(\chi_{1}^{-1}u_{1}+\chi_{2}^{-1}u_{2})\varphi=\int_{\Omega}(\xi_{1}u_{1}+\xi_{2}u_{2})\Delta\varphi+u\nabla v\cdot\nabla\varphi dx$

$= \int_{\Omega}(\xi_{1}u_{1}+\xi_{2}u_{2})\triangle\varphi+\frac{1}{2}\int\int_{\Omega\cross\Omega}\rho_{\varphi}u\otimes u$

$\rho_{\varphi}(x, x’)=\nabla_{x}G(x, x’)\cdot\nabla\varphi(x)+\nabla_{x’}G(x, x’)\cdot\nabla\varphi(x’)$

where $\varphi\in C^{2}(\overline{\Omega}),$ $-\partial 4\partial\nu|_{\partial\Omega}=0$ .
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