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Abstract
We show an outline of three parsing algorithms for three variants of Petri net controlled

grammars. Time complexities of these algorithm vary $hom$ deterministic polynomial time to
nondeterministic polynomial time. These algorithms only parse grammars without $\lambda$-rules and
cyclic rules.

1 Introduction and preliminaries
Recently Petri net controlled grammars have been introduced by M. ter Beek and J. Kleijn [1].
Then J. Dassow and S. Turaev have defined a number of variants of Petri net controlled gramnars
and they have investigated properties of languages generated by these variants [3, 4, 5, 6, 12]. But
parsing algorithms for Petri net controlled grammars have not been considered.

In this extended abstract, we introduce some variants of Petri net controlled grammars and
parsing algorithms for them. The simplest class, yet generates non-context-free languages, has a
parsing algorithm of deterministic polynomial time. We introduce two other classes: one class has a
parsing algorithm whose computation time is proportional to multiple of the number of derivation
trees and their size and the other class has a parsing algorithm of nondeterministic polynomial
time.

We assume that the reader is familiar with mdiments of context-free grammars, regulated
grammars, and Petri nets. For notions and notations which are not described in this section, we
refer to [2, 7, 9, 10, 11].

1.1 Context-free grammars
A context-free grammar is a construct $G=(V, \Sigma, S, R)$ where $V$ and $\Sigma$ are nonterminal and terminal
alphabets, respectively, with $V\cap\Sigma=\emptyset,$ $S\in V$ is the start symbol, and $R\subseteq V\cross(V\cup\Sigma)^{*}$ is a finite
set of (production) rules. A rule $(A, x)$ is written as $Aarrow x$. A word $x\in(V\cup\Sigma)^{+}$ directly derives
$y\in(V\cup\Sigma)^{*}$ , written as $x\Rightarrow cyr$ , if and only if there is a rule $r:Aarrow\alpha\in R$ such that $x=x_{1}Ax_{2}$

and $y=x_{1}\alpha x_{2}$ . We write $x\Rightarrow ry$ if $G$ is understood and write $x\Rightarrow y$ if we are not interested in the
rule $r$ . The reflexive and transitive closure of $\Rightarrow$ is denoted by $\Rightarrow^{*}$ . If there are a sequence of rules
$r_{1},$ $r_{2},$

$\ldots,$ $r_{n}$ and a sequence of words $w_{0},$ $w_{1},$ $\ldots,$ $w_{n}$ such that $w_{i-1}\dot{\neq}^{r}w_{i}$ for every $1\leq i\leq n$ , then
we write $w_{0}^{\underline{\underline{r_{1}r_{2}r}}},$

$w_{n}$ . A rule of the form $Aarrow\lambda$ where $\lambda$ is the empty word is called a $\lambda$ -rule. A
set of rules $\{A_{1}arrow\alpha_{1}, \ldots, A_{n}arrow\alpha_{n}\}$ is said to be cyclic rules if $\alpha_{i-1}=A_{i}$ for every $2\leq i\leq n$ and
$Q_{n}=A_{1}$ . The language generated by $G$ is defined by $L(G)=\{w\in\Sigma^{*}|S\Rightarrow_{G}^{*}w\}$ .

1.2 Petri net
A Petri net is a quadruple $N=(P, T, F, \phi)$ where $P$ and $T$ are disjoint finite sets of places and
transitions, respectively, $F\subseteq(P\cross T)\cup(T\cross P)$ is the set of directed arcs, $\phi$ : $(P\cross T)\cup(T\cross P)arrow$ lN
is a weight function with $\phi(x, y)=0$ for every $(x, y)\not\in F$ , where $N$ is the set of nonnegative integers.
A Petri net can be represented by a bipartite directed graph with the node set $P\cup T$ where places
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are drawn as circles, transitions are rectangles, and arcs as arrows with labels $\phi(p,t)$ or $\phi(t,p)$ . If
$\phi(p,t)=1$ or $\phi(t,p)=1$ , then the. label is omitted.

A place contains a number of tokens. Each number of tokens in every place is expressed by a
mapping $\mu$ : $Parrow N$ , which is called a marking. For every place $p\in P,$ $\mu(p)$ denotes the number of
tokens in $p$ . Graphically, tokens are drawn as small solid dots inside circles.

A transition $t\in T$ is enabled by a marking $\mu$ if and only if $\mu(p)\geq\phi(p,t)$ for every $p\in P$ . In
this case $t$ can occur (fire). An occurrence of a transition $t$ transforms the marking $\mu$ into a new
marking $\mu’$ which is defined by $\mu’(p)=\mu(p)-\phi(p, t)+\phi(t,p)$ for every $p\in P$ . More than one
transition may be enabled by a marking. In this case one transition is nondeteministically selected
and fires. If a transition $t$ occurs in a marking $\mu$ and the marking changes to $\mu’$ , then we write
$\muarrow t\mu’$ . A finite sequence $t_{1}t_{2}\cdots t_{k}$ of transitions is called an occurrence sequence enabled at a
markin$g\mu$ if there are markings $\mu_{1},$ $\mu_{2},$ $\ldots,$ $\mu_{k}$ such that $\muarrow\mu_{1}t_{1}arrow t_{2}\ldotsarrow\mu_{k}t_{k}$ . In short this sequence
can be written as $\mu^{t_{1}t_{2}\cdots t_{k}}arrow\mu_{k}$ or $\muarrow\nu\mu_{k}$ where $\nu=t_{1}t_{2}\cdots t_{k}$ . For each $1\leq i\leq k$ , the marking $\mu_{i}$

is called reachable from the marking $\mu$ . A marked Petri net is a system $N=(P,T, F_{\tau}\phi, \iota)$ where
$(P, T, F, \phi)$ is a Petri net, $\iota$ is the initial marking.

Let $N=(P,T, F, \phi)$ be a Petri net. For an arc $e=(u, v)$ in $F$ (note that $(u\in P$ and $v\in T)$ or
$(u\in T$ and $v\in P))$ , we use the notations $e=u$ and $e=v$ . A sequence of arcs $e_{1},$ $e_{2},$ $\ldots,$

$e_{n}$ is
said to be a path in $N$ if $e_{\dot{i}}=e_{i+1}$ for every $i\in\{1, \ldots,n-1\}$ . A path is a cycle if $e_{n}=e_{1}$ .

2 Petri net controlled grammars
In this section we define Petri net controlled grammars.

Let $G=(V, \Sigma, S, R)$ be a context-free grammar. A marked Petri net $N=(P, T, F, \phi, \iota)$ is a $cf$

Petri net with respect to $G$ under labellin$g$ functions $(\beta,\gamma)$ if $N$ and $(\beta, \gamma)$ satisfy:

(1) $\beta:Parrow V$ and $\gamma$ : $Tarrow R$ are bijections.

(2) $F$ and $\phi$ satisfy:

$-(p,t)\in F$ if and only if $\gamma(t)=Aarrow\alpha$ and $\beta(p)=A$, in this case $\phi(p,t)=1$ .
$-(t,p)\in F$ if and only if $\gamma(t)=Aarrow\alpha$ and $\beta(p)=x$ where $|\alpha|_{x}\geq 1$ , in this case

$\phi(t,p)=|\alpha|_{x}$ .
(3) $\iota(p)=1$ if $\beta(p)=S$ and $\iota(p)=0$ for every $p\in P-\{\beta^{-1}(S)\}$ .

We note that a cf Petri net is uniquely determined from a combination of a $\infty ntext$-free granmar
$G$ and a pair of $labe\mathbb{I}\dot{m}g$ functions $(\beta,\gamma)$ . Therefore, a cf Petri net with respect to $G$ under $(\beta, \gamma)$

can be denoted by $PN[G, (\beta,\gamma)]$ .

Definition 1 Let $G_{0}=(V, \Sigma, S, R)$ be a context-free grammar and let $N=PN[G_{0}, (\beta,\gamma)]=$

$(P,T, F, \phi, \iota)$ be a $cf$ Petri net vrith respect to $G_{0}$ . $A$ Petri net controlled grammar is a quin-
tuple $G=(V, \Sigma, S, R, N)$ where $V,$ $\Sigma,$ $S,$ $R$ are the components from the grammar $G_{0}$ and
$N=(P’,T’, F’, \phi’, \iota’)$ is a Petri net which satisfies:

(1) $P’=P\cup Q$ where $Q=\{q_{1}, \ldots, q_{k}\}$ is a set of new places.

(2) $T’=T$.
$(S)F’=F\cup E$ where $E\subseteq(T\cross Q)\cup(Q\cross T)$ is a set of new arcs which satisfy, for every $1\leq i\leq k$ ,

$(q_{i}, t)\in E$ for some $t\in T$ if and only if $(t’,q_{i})\in E$ for some $t’\in T$ ,
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(4) $\phi’(x,y)=\phi(x,y)$ if $(x,y)\in F$ and $\phi’(x,y)=1$ if $(x,y)\in E$ .
(5) $\iota’(p)=1$ if $\beta(p)=S$ and $\iota’(p)=0$ for every $p\in(P-\{\beta^{-1}(S)\})\cup Q,$ $i,e.,$ $\iota’(p)=\iota(p)$ if

$p\in P$ and $\iota’(p)=0\iota fp\in Q$ .

We call $G_{0}$ the underlying grammar of $G$ .

Let $\tau$ be the marking $\tau(p)=0$ for every $p\in PUQ$ . Next we define the derivation in a Petri net
controlled grammar $G$ and the language generated by $G$.

Definition 2 Let $G=(V, \Sigma, S, R,N)$ be a Petri net controlled grammar. A word $\alpha\in(V\cup\Sigma)^{*}$ is
derived in $G$ if $S^{\underline{\underline{r_{1}r_{2}r}}},$

$\alpha$ such that $t_{1}t_{2}\cdots t_{n}=\gamma^{-1}(r_{1}r_{2}\cdots r_{n})\in\tau*$ is an occurrence sequence
of the tmnsitions of $N$ enabled at the initial marking $\iota.$ A derivation $S^{r_{1}r_{2}}arrow^{r}w\in\Sigma^{*}$ successfully
generates a terminal word if $t_{1}t_{2}\cdots t_{n}=\gamma^{-1}(r_{1}r_{2}\cdots r_{n})\in\tau*$ is an occurrence sequence of the
transitions of $N$ enabled at the initial marking $\iota$ and finished at the marking $\tau$ . The language
generated by $G$, denoted by $L(G)$ , consis$ts$ of all words which are successfully genemted in $G$ .

Adding conditions on the set $E$ of new arcs, we define the next variants of Petri net controlled
grammars.

Figure 1: A $tcPN$ controlled grammar generating $\{ww|w\in\{a, b\}^{+}\}$ .

If the set of new arcs satisfies. for every $t\in T$ if $(q,t)\in E$ and $(q’,t)\in E$ for some $q,$ $q’\in Q$ , then $q=q’$ and. for every $t\in T$ if $(t, q)\in E$ and $(t, q’)\in E$ for some $q,$ $q’\in Q$ , then $q=q’$ ,

then the grammar $G$ is said to be a token conserving Petri net controlled gramnar, abbreviated to
a $tcPN$ controlled grammar. The condition restricts for every transition to have at most one arc to
a place in $Q$ and at most one arc &om a place in $Q$ .
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Example 1 Let $G_{1}=(\{S,A,B,B’\}, \{a,b\}, S, R, N)$ be a $tcPN$ controlled grammar where $R$ and
$N$ is illustrated in Figure 1 in which ndes are draan in the rectangles of the corresponding transi-
tions and arcs between transitions and control places are drawn in dashed lines. The gmmmar $G_{1}$

generates the language $\{ww|w\in\{a,b\}^{+}\}$ . $\square$

If the set of new arcs of a $tcPN$ controlled grammar satisfies that, for every $1\leq i<j\leq k$ , there
exists no $t\in T$ such that $(t,q_{i})\in E$ and $(q_{j}, t)\in E$ , then the grammar $G$ is said to be a counter
restricted Petri net controlled grammar, or a $crPN$ controlled grammar for short. The condition
says that there are no cycles composed of places from $Q$ , that is, places from $Q$ only count number
of applications of specific rules. The definition of $crPN$ controlled grammars is identical to that of
k-Petri net controlled grammars in [3, 6].

$S\varphi\bullet$

$q$

Figure 2: A scfPN controlled grammar generating $\{a^{n}b^{n}c^{n}|n>0\}$ .

If a $crPN$ controlled grammar satisfies “every cycle in $N$ does not contain any places in $Q$”,
then the grammar is called a strict cycle free Petri net controlled grammar, or an scfPN con-
trolled grammar for short. A control Petri net of a $crPN$ controlled grammar may have a cycle
$(t_{1},p_{1}),$ $(p_{1},t_{2}),$

$\ldots,$
$(p_{n},t_{1})$ in which $t_{i}\in T$ for every $1\leq i\leq n,$ $p_{i}\in P’(=P\cup Q)$ for every

$1\leq i\leq n$ , and there exists some $p_{j}\in P$ . A cycle in a control Petri net of an scfPN controlled
grammar must satisfy that no node in any cycle is contained in $Q$ .

Example 2 (Example 7 of [3]) Let $G_{2}=(\{S,A, B\}, \{a,b,c\},S, R,N)$ be a $scfPN$ controlled
grammar where $N$ is illustrated in Figure 2, The grammar $G_{2}$ generates the language $\{a^{n}b^{n}c^{n}|n>$

$0\}$ . $\square$

A Petri net controlled grammar without any condition on the control Petri net $N$ is called a
bijective Petri net controlled grammar, abbreviated to a $bPN$ controlled grammar, because there is
a bijection from the set of transitions to the set of rules.

Example 3 Let $G_{3}=(\{S’, S, A, B, D, E, F\}, \{a, b, c\}, S’, R,N)$ be a $bPN$ controlled grammar where
$R$ and $N$ are illustrated in Figure 3. The grammar $G_{3}$ genemtes the language $\{a^{n}b^{n}c^{n}\}^{+}$ . $\square$
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$q_{3}$

Figure 3: A $bPN$ controlled gramnar generating $\{a^{n}b^{n}c^{n}\}^{+}$ .

3 Parsing algorithms
Now we show an outline of three algorithm which parse languages generated by scfPN controlled
grammars, $tcPN$ controlled grammars, and $bPN$ controlled grammars. Before going to the algo-
rithms, it should be noted that the algorithm shown here can parse Petri net controlled grammars
with no $\lambda$-rules and no cyclic rules only.

3.1 scfPN controlled grammars
A parsing algorithm for scfPN controlled grammars is obtained by adding token counters to the
Earley’s algorithm for (usual) context-free grammars [8]. A token counter is a vector from $Z^{k}$ where
$k$ is the number of control places (the places in $Q$) and $Z$ is the set of all integers. The Earley’s
algorithm makes a state of the form $[Aarrow\alpha\cdot\beta]$ for a rule $Aarrow\alpha\beta$ . The parsing algorithm for
scfPN controlled grammars makes states with token counters by

(1) For a rule $Aarrow\alpha$ , the state $[Aarrow\cdot\alpha]$ has a token counter $(v_{1}, \ldots, v_{k})$ where $v_{i}=1$ and $v_{j}=0$

for $j\neq i$ if $(\gamma^{-1}(Aarrow\alpha), q_{i})\in E,$ $v_{i}=-1$ and $v_{j}=0$ for $j\neq i$ if $(q_{i}, \gamma^{-1}(Aarrow\alpha))\in E$ , or
$v_{i}=0$ for every $1\leq i\leq k$ otherwise.

(2) If a state $[Aarrow\alpha B\cdot\beta]$ is obtained $hom[Aarrow\alpha\cdot B\beta]\vec{v}_{1}$ and $[Barrow\gamma\cdot]\vec{v}_{2}$ where $\vec{v}_{1}$ and $\vec{v}_{2}$ are
token counters associated to the states, then $[Aarrow\alpha B\cdot\beta]$ has the token counter $\vec{v}_{1}+\vec{v}_{2}$ in
which the addition is the normal component-wise vector addition.

The termination condition of the Earley’s algorithm, the state $[S’arrow S\cdot]$ is made as the state
for the input word $w$ where $S’$ is a new start symbol with only rule $S’arrow S$ , is modffied to that the
state $[S’arrow S\cdot]\vec{0}$ is made as the state for the input word where $\vec{0}$ is the zero vector in $Z^{k}$ .

Example 4 In Example 2, the sets of Earley’s states with token counters for the word $w=a^{2}b^{2}c^{2}$

are shown in the next table.
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3.2 $tcPN$ controlled grammars
A parsing algorithm for $tcPN$ controlled grammars makes a derivation net from the derivation tree
which is made by a parsing algorithm (e.g., Earley’s algorithm) for the underlying grammars. First
the nodes in a derivation tree which are labelled by terninals are removed. The remaining nodes
labelled by nonterminak and are replaced with mles which rewrite the nonteminals. Finally nodes
of control places and arcs between control places and mles are added to the tree. A word generated
by the underlying grammar is generated under the control of the token $\infty naerving$ Petri net if and
only if all arcs between control places and rules in the derivation net form a collection of Eulerian
paths.

Figure 4: An example of a derivation net.

Example 5 In Example 1, the derivation net for the word aabaab is shown in Figure 4. The
derivation net has a collection of Eulerian paths. $\square$

3.3 $bPN$ controlled grammars
A parsing algorithm for $bPN$ controlled grammars makes a conditiono) tree for a input word. A
conditional tree is based on the derivation tree for the underlying grammar. A conditional tree
contains infomation of control places in every node as the form of $\overline{q}_{i}$ if the node is rewritten by a
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rule which has an arc from a place $q_{i}$ and $q_{j}$ if the node is rewritten by a rule which has an arc to a
place $q_{j}$ . Next $\overline{q}_{i}$ and $q_{i}$ is cancelled if they satisfy a condition which is equivalent to the movement
of tokens in the control Petri net. A word is generated by a $bPN$ controlled grammar if and only
if the conditional tree for the word is cancelled to an empty tree.

$S:\lambda$

$S:q_{1}$

$A:\overline{q}_{2}q_{4}$ $B:q_{4}^{-}q_{2}$

$A:\overline{q}_{2}q_{3}$
$B:\overline{q}_{3}ql$

Figure 5: An example of a conditional tree.

Example 6 In Example 3, the conditional tree for the word $a^{2}b^{2}c^{2}abc$ is shown in Figure 5. The
conditional tree can be cancelled to an empty tree. $\square$

4 Conclusion
We have introduced parsing algorithms for PN controlled grammars. If the underlying grammar
is unambiguous, that is, there is just one derivation tree for every word, then the algorithms for
scfPN controlled grammars and $tcPN$ controlled grammars are effective. For input word of length
$n$ , the time complexities of the algorithms for scfPN controlled grammars and $tcPN$ controlled
grammams are $O(n^{3})$ . For ambiguous gramnars, the algorithms for scfPN controlled grammars and
$tcPN$ controlled grammars are less effective, $O(n^{k+4})$ for scfPN controlled.grammars where $k$ is the
number of places in $Q$ and $O(2^{n})$ for $tcPN$ controlled grammars.

On the other hand, the algorithm for $bPN$ controlled grammars is nondeterministic and com-
putes in polynomial time of the length of the input. Of course a deterministic version with expo-
nential time is easily constructed.

Let $\mathcal{L}(xPN)$ be a class of languages generated by $xPN$ controlled grammars where $x\in$ { $b$ , tc, cr, scf}.
By definition we have

$\mathcal{L}(scfPN)\subseteq \mathcal{L}(crPN)\subseteq \mathcal{L}(tcPN)\subseteq \mathcal{L}(bPN)$.
It does not known whether some of above inclusions are proper or not. In [4], the most general Petri
net controlled grammars, with no restriction on a Petri net, or equivalently, the mapping $hom$ the
set of transitions in the control Petri net to the set of rules is not necessarily bijective, are defined
and it has been shown that the class of languages generated by such grammars is equivalent to the
class of languages generated by matrix grammars. Therefore, the class of languages generated by

55



$bPN$ controlled grammars is included in the class of matrix grammars. Precise characterization of
the classes shown above is a future work.
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