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Abstract

The minimum number of NOT gates in a Boolean circuit computing
a Boolean function $f$ is called the inversion complexity of $f\cdot$ . In 1958,
Markov determined the inversion complexity of every Boolean function
and particularly proved that $\lceil\log_{2}(n+1)\rceil$ NOT gates are sufficient to
compute any Boolean function on $n$ variables. In this note, we consider
circuits computing probabilistically, and prove that the decrease of
the inversion complexity is at most a constant if probabilistic circuits
compute a correct value with probability $1/2+p$ for some constant
$p>0$ .

1 Introduction
When we consider Boolean circuits with a limited number of NOT gates,
there is a basic question: Can a given Boolean fumction be computed by a
circuit with a $1i_{1}nited$ number of NOT gates? This question was answered by
Markov [2] in 1958 and the $res\iota ilt$ plays an important role in the study of the
negation-limited circuit complexity. The inversion complexity of a Boolean
function $f$ is the minuimum number of NOT gates required to construct a
Boolean circuit computing $f$ , and Markov completely determined the in-
version complexity of every Boolean function $f$ . In particular, it has been
shown that $\lceil\log_{2}(n+1)\rceil$ NOT gates are sufficient to compute any Boolean
function.

The inversion complexity has been studied for many circuit models such
as constant depth circuit [5], bounded depth circuits [6], formulas [3], bounded
treewidth and upward planar circuits [1], and non-deterministic circuits [4].
In this note, we consider the inversion complexity in probabilistic circuits.

2 Preliminaries
A circuit is an acyclic Boolean circuit which consists of AND gates of fan-
in two, OR gates of fan-in two and NOT gates. A probabilistic circuit is
a circuit with actual inputs $(x_{1}, \ldots,x_{n})\in\{0,1\}^{n}$ and some further inputs
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$(r_{1}, \ldots, r_{m})\in\{0,1\}^{m}$ called random inputs which take the values $0$ and 1
independently with probability 1/2. For $0<p\leq 1/2$ , a probabilistic circuit
$C(x)$ computes a Boolean fUnction $f(x)$ with probability $1/2+p$ if

Prob$[C(x)=f(x)]\geq 1/2+p$ for each $x\in\{0,1\}^{n}$ .

In this note, we call a circuit without random inputs a deterministic circuit
to distinguish it from a probabilistic circuit.

Let $x$ and $x’$ be Boolean vectors in $\{0,1\}^{n}$ . $x\leq x’$ means $x_{i}\leq x_{i}^{l}$ for all
$1\leq i\leq n$ . $x<x’$ means $x\leq x^{l}$ and $x_{i}<x_{i}’$ for some $i$ .

The theorem of Markov [2] is in the following. We denote the inversion
complexity of a Boolean function $f$ in deterministic circuits by $I(f)$ . A chain
is an increasing sequence $x^{1}<x^{2}<\cdots<x^{k}$ of Boolean vectors in $\{0,1\}^{n}$ .
The decrease $d_{X}(f)$ of a Boolean function $f$ on a chain $X$ is the number of
indices $i$ such that $f(x^{i})\not\leq f(x^{i+1})$ . The decrease $d(f)$ of $f$ is the maximum
of $d_{X}(f)$ over all increasing sequences $X$ . Markov gave the tight bound of
the inversion complexity for every Boolean function.

Theorem 1 (Markov[2]). For every Boolean function $f$ ,

$I(f)=\lceil\log_{2}(d(f)+1)\rceil$ .

In Theorem 1, the Boolean function $f$ can also be a multi-output function.

3 Inversion Complexity in Probabilistic Circuits

3.1 Result

We denote by $I_{pc}(f, q)$ the inversion complexity of a Boolean function $f$

in probabilistic circuits with probability $q$ . We consider only single-output
Boolean functions since probabilistic circuits are not defined as ones com-
puting multi-output Boolean functions.

Theorem 2. For every Boolean function $f$ ,

$I_{pc}(f, 1/2+p)\geq\lceil\log_{2}(2p\cdot d(f)+1)\rceil$ .

By Theorem 1 and Theorem 2, if $p$ is a constant, then the decrease of
the inversion complexity from deterministic circuits is at most a constant,
which means that probabihstic computation save only the constant number
of NOT gates. Especially, if $p=1/4$ , then,

Corollary 1. For every Boolean function $f$ ,

$I_{pc}(f, 3/4)\geq I(f)-1$ .
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3.2 Proof

Proof (of Theorem 2). Let $C$ be a probabilistic circuit computes $f$ with
probability $1/2+p$ , and let $X$ be a chain such that $d_{X}(f)=d(f)$ , i.e., the
decrease of $f$ is the maximum on $X$ . Consider some $i$ such that $f(x^{i})=1$

and $f(x^{i+1})=0$ . Since $C$ computes each of $f(x^{i})$ and $f(x^{i+1})$ correctly with
at least $2^{nz}(1/2+p)$ random inputs, the number of random inputs such that
$C$ computes both of $f(x^{i})=1$ and $f(x^{i+1})=0$ correctly is at least,

$2^{m}\cdot(1-2\cdot(1-(1/2+p)))=2^{m}\cdot 2p$ .

Since, for all $i$ such that $f(x^{i})=1$ and $f(x^{i+1})=0$ , the number of random
inputs such that $C$ computes both of $f(x^{i})=1$ and $f(x^{i+1})=0$ correctly is
at least $2^{m}\cdot 2p$ , there is random inputs $r$ such that $C$ with $r$ computes $f(x^{i})=$

$1$ and $f(x^{i+1})=0$ correctly for at least $2p\cdot d(f)i’ s$ . Let $C’$ be a circuit
which obtained by fixing random inputs in $C$ to $r$ . C’ is a deterininistic
circuit and computes a Boolean $f\iota mctionf’$ such that $d(f’)\geq 2p\cdot d(f)$ . By
Theorem 1, $C’$ includes at least $\lceil\log_{2}(2p\cdot d(f)+1)\rceil$ NOT gates, which is
also included in C. 口
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