
2011年度冬の LA シンポジウム [21]

Probabilistic Stabilization under Probabilistic Schedulers

Yukiko Yamauchi* S\’ebastien Tixeuil \dagger Masafumi Yamashita\ddagger

概要

Probabilistically stabilizing systems, which are
considered to be a probabilistic version of self-
stabilizing systems, guarantee that any execu-
tion eventually reaches a legitimate execution with
probability 1. Unlike self-stabilizing systems, prob-
abilistically stabilizing systems are easy to design,
and indeed any weak stabilizing system can be
automatically transformed into a probabilistically
stabilizing system either by randomizing the algo-
rithm or by introducing a probabilistic scheduler,
provided that the number of configurations is $fi-$

nite [Devismes et al., 2008]. In this paper, we
discuss how to design a probability distribution D

for a given weak stabilizing algorithm to obtain a
good probabilistically stabilizing system under an
adversarial probabilistic scheduler M. Our good-
ness measure is the convergence time; the expected
number of steps $\tau_{D,M}$ necessary to reach a legiti-
mate execution from the worst initial configuration.
We then show a necessary and sufficient condition
for a D to exist such that $\tau_{D,M}<$ oo for any M in a
wide and natural class of probabilistic schedulers.

1 Introduction
A distributed system consists of a set of processes

and algorithms at these processes that make pro-
cesses cooperate to achieve the specification of the

*Kyushu University, Japan
\dagger Paris 6, France
\ddagger Kyushu University, Japan

system. Each process maintains its own local state
by communicating with neighboring processes, and
the specification (task) of the distributed system
is achieved by the cooperation among processes.
One of the difficulties in designing distributed al-
gorithms is the adversarial behavior of the environ-
ment coming from its distributed nature, such as
the asynchrony among processes, the communica-
tion delay, and the unreliability of communication
links. The scheduler abstraction deals with one as-
pect of this difficulty. A scheduler selects a set of
processes that execute their own local algorithm at
a given time step. In a deterministic environment,

schedulers are considered to be adversarial and al-
gorithms are designed to guarantee its correctness
and its performance even in the worst case scenario.

A distributed system is self-stabilizing if, starting
from any initial configuration, any execution even-
tually reaches a configuration after which the sys-
tem remains in configurations that satisfies system
specification [3]. This configuration is called legit-
imate configuration. Seli-stabilizing systems have
been attracted attention in the area of fault toler-
ance because they guarantee convergence to a legit-
imate configuration irrespective of the initial con-
figuration and regains their specification automat-
ically. The convergence time of a self-stabilizing
system is measured by the the maximum (the worst
case) time necessary for the system to reach a le-
gitimate configuration. There are weaker notions of
self-stabilization to avoid the difficulties in design-
ing and proving self-stabilizing algorithms. Prob-

数理解析研究所講究録
第 1799巻 2012年 103-110 103

abilistic stabilization [9] weakens the convergence
property. A distributed system is probabilistically
stabilizing if, starting from any initial configura-
tion, any execution eventually reaches a legitimate
configuration with probability 1. Weak stabiliza-
tion [7] does not consider the variety of executions
caused by the schedulers. A distributed system is
weok stabilizin9 if any configuralion has at least
one execution that reaches a legitimate configura-
tion. Pseudo stabilization [1] guarantees that every
execution has a suffix that satisfies the specifica-
tion while it does not promise the convergence to a
legitimate configuration.

Devismes, Tixeuil, and Yamashita [5] showed
that we can translate a weak-stabilizing system un-
der a deterministic fair scheduler to a probabilisti-
cally stabilizing system under the uniform proba-
bilistic schedulers. A uniform probabilistic sched-
uler selects each enabled process with probability
1/2. The paper also showed that uniform random-
ization of a deterministic algorithm translates a
weak stabilizing system under a deterministic fair
scheduler to a probabilistically stabilizing system
under a synchronous scheduler that selects aU pro-
cesses at each time step. When scheduled, each pro-
cess flips a coin to choose whether it executes its de-
terministic algorithm or not. It is not difficult to see
that these translations guarantees probabilistic sta-
bilization for non-uniform probabilistic schedulers,
non-unifom randomization and the combination of
them. This results in the possibility that we can
design a “good” probabilistic behavior of a weak
stabilizing system, and the existence of an adver-
sarial (the worst) probabilstic scheduler for each
randomized stabilizing system.

Our contribution. Motivated by the previous
results [5], we investigate how to design “good”
probabilistic behavior of a weak stabilizing algo-
rithm under probabilistic schedulers. The random-

ization of a weak stabilizing algorithm is modeled
by probability distribution over the transitions. We
consider probabilistic schedulers defined by finite
state Markov chains. Our criteria for “goodness“
is the expected convergence time, i. e., the expected
number of steps from the worst initial configuration
to a legitimate configuration. Let $\tau_{D,M}$ be the ex-
pected convergence time of a probabilistically stabi-
lizing system with probabihity distribution \mathcal{D} of the
algorithm and probabilistic scheduler M. We show
a necessary and sufficient conditions for a finite sys-
tem to have $\mathcal{T}_{D,\lambda 4}’<\infty$. A system is finite if the set
of all configurations is finite. Our result shows that
the transition diagram of a system should have reg-
ularity property which is newly introduced in this
paper.

Related works. Randomized self-stabilizing al-
gorithms are often used for symmetry breaking that
is unsolvable deteministically, for example, vertex
coloring [8], and token circulation [9, 11]. It is also
used to reduce space complexity [10].

Previous papers provide formal models that
combines probabilistically stabilizing systems and
stochastic processes. Devismes, Tixeuil, and Ya-
mashita [5] used a Markov chain to represent prob-

abilistic behavior of schedulers and randomized al-
gorithms. Any execution of probabilistic system
corresponds to a random walk on the transition di-
agram of the system. There are other techniques to
measure the expected convergence time of a prob-
abilistically stabilizing algorithm based on the hit-
ting time of a Markov chain [4], and the coupling
technique of Markov chains [6].

Beauquier, Johnen, and Messika [2] used a
Markov decision process to represent the behav-
ior of systems under probabihstic schedulers. The
probabilistic schedulers are defined by probabil-
ity distribution that depends on the latest (finite

length of) execution and the current configuration.

104

Different from [2], we assume that schedulers can-
not see the execution once it starts.

2 Preliminary
A distributed system is defined by a pair (N,\mathcal{A})

of communication graph $N=(P,L)$, where P

$(|P|=n)$ is the set of processes and $L(|L|=m)$ is
the set of communication links, and an algorithm
$\mathcal{A}=\{A_{p}:p\in P\}$, where A_{p} is a (local) algorithm
for process p . Process $p\in P$ is a state machine
that maintains local variables specified in A_{p} . A
directed edge $(p, q)\in L$ means that process q can
read the local variables of p . We call q a predeces-
sor of p . Note that each process p can read and
write to its local variables.

A state of process $p\in P$ is an assignment of a
value to each local variable drawn from its specified
domain. Let S_{p} be the set of states of p . The
set of configurations is the Cartesian product $\Gamma=$

$\prod_{p\in P}S_{p}$. We say that a distributed system is finite
if Γ is finite. Since we assume P is finite, the set of
local states at each process is finite, or equivalently,
the domain of each variable is finite if and only if
Γ is finite.

A deterministic algorithm A_{p} is described by
a sequence of guarded commands $\langle guard\rangle$

$\langle command\rangle$. In a configuration $\gamma\in\Gamma,$ p is en-
abled when at least one of the guards is satisfied,
and the corresponding command is executed if its
scheduler, which we will define later, activates p .
When more than one guard is satisfied in γ , the
command corresponding to the first enabled guard
is executed when the process is activated.

A randomized algorithm A_{p} is also described by a
sequence of guarded commands but the command
executed when it is activated is determined proba-
bilistically. When Z is the set of guards satisfied at
p in γ and a special symbol \perp , then A_{p} is associ-

ated with a probability distribution D_{p}^{Z} ; when p is
activated by the scheduler, $z\in Z$ is chosen for exe-
cution with probability $D_{p}^{Z}(z)$, where $D_{p}^{Z}(\perp)$ is the
probability that no guarded command is executed
even if p is enabled in γ . Note that D_{p}^{Z} may depend

on local information available for p , i. e., the current
states of p and its predecessors N_{p} . For simplicity,
we omit Z from D_{p}^{Z} whenever it is obvious from
the context. Let $D=\{D_{p}:p\in P\}$ and we simply
call D a probability distribution (for algorithm A).

A randomized algorithm is a pair $\langle \mathcal{A},$ $D\rangle$ where \mathcal{A}

is a deterministic algorithm and \mathcal{D} is a probability
distribution for \mathcal{A}. Probability distribution \mathcal{D} is
said to be fair if $D_{p}^{Z}(z)>0$ for any $z\in Z$. It is said
to be potentially stable if $D_{p}^{Z}(\perp)>0$ for any p and
Z . We say \mathcal{D} is pure if $D_{p}^{Z}(g)>0$ implies that g is
the first (in the order of \mathcal{A}) guarded command in Z

or $g=\perp$ and $D_{p}^{Z}(\perp)<1$. We denote by D_{δ} a pure
probability distribution that assigns probability δ

$(0<\delta\leq 1)$ to any D_{p}^{z} .

Schedulers. A deterministic scheduler σ is an
abstraction of the environment and specifies which
process the environment allows to execute at a
given time. Hence, σ is a set of infinite sequence of
a subset of P .

We denote by σ_{F} the (strongly) fair scheduler,
which is the set of all (strongly) fair sequences, i. e.,
every process appears infinitely many times in ev-
ery sequence in σ_{F} . A scheduler is said to be proper
if it never selects the empty set to activate.

An execution $\epsilon=\gamma_{0},$
$\gamma_{1},$ \ldots of a distributed sys-

tem under scheduler σ starting from an initial con-
figuration γ_{0} is defined as follows. First, a scheduler
non-deterministically selects a sequence Z from σ .
For any $t\geq 0$, let $X\subseteq P$ be the set of enabled pro-
cesses in γ_{t} and $Z_{t}\subseteq P$ be the t-th element of Z,
respectively. Then the processes in $X\cap Z_{t}$ are ac-
tivated. If the algorithm is deterministic, then the
command that is executed is determined indepen-

105

dently at each of the processes and their execution
yields the next configuration γ_{t+1} .

If the algorithm is randomized, the command
that is executed is selected at random with \mathcal{D} , and
their executions results in a system transition from
γ_{t} to the next configuration γ_{t+1} . Since we cannot
control the enviromnent, we consider a scheduler
as an adversary and conduct a worst case analy-
sis, assuming that the adversary does not know the
results of probabilistic choices at processes a-priori.

A probabilistic scheduler is modeled by a set of
Markov chains. A Markov chain \mathcal{M} is a discrete
stochastic process $\{X_{t} : t=0,1, \ldots\}$ defined by a
state space $\Omega=\{1,2, \ldots\}$ and a transition matrix
$P=(P_{i,j})$. In our formahization, \mathcal{M} associates each
of the transition with a label $X\subseteq P$ in such a way
that no two transitions from a state do not share
the same label. We assume that when an execution
is going to start, a Markov chain \mathcal{M} and a state i (as
the initial state) are non-deterministically selected
to specify the behavior of the scheduler. After that,
the scheduler cannot see the configuration of the
system and the schedule is the sequence of labels
attached to transitions that a Markov chain on \mathcal{M}

traces.
A probabilistic scheduler is finite if its state space

is finite, and is fair if for any subset $X\subseteq P$ (in-
cluding the empty set) and any state i , the proba-
bihty that X is chosen to be activated (the Markov
chain chooses $t_{i}(X))$ at i is positive. In the follow-
ing, we consider probabilistic schedulers modeled $|$

by finite Markov chains. We denote the fair and
finite probabilistic scheduler by ρ_{F} , i. e., the set of
fair and finite Markov chains. We denote the cen-
tral probabilistic scheduler by ρc , the set of proper
Markov chains in ρ_{F} that give positive probabihty $\{$

to transitions labeled with $\{p\}(p\in P)$ (includ- f

ing the empty set). Another important class is the $($

oblivious (memory-less) scheduler, denoted by $\rho 0$, t

i

that is the set of Markov chains with a single state.
We denote the oblivious central scheduler by ρoc .

Like a deterministic scheduler, we also regard a
probabilistic scheduler as an adversary and conduct
a worst case analysis, i. e., for a given scheduler ρ ,
we assume an arbitrary Markov chain $\mathcal{M}\in\rho$ is
chosen by the scheduler. When the algorithm is
randomized, we assume that the adversary does not
know the result of the probabilistic choices a-priori.

Po

Pr

o
ρ_{c}

ec 1: Probabilistic finite state schedulers

The executions of a distributed system are rep-
resented by a transition diagram. For a distributed
system executing a deterministic algorithm A on a
communication network $N=(P, L)$, let $S=(\Gamma, T)$

be a transition diagram where Γ is the set of con-
figurations and T is the set of transitions defined
by \mathcal{A} . Each directed edge $(\gamma.\gamma’)\in T$ is labeled by
$X\subseteq P$ that means the execution of \mathcal{A} at processes
in X in γ translates the configuration to $\gamma’$.

An execution of \mathcal{A} under a given scheduler σ cor-
responds to a (in)finite path in S that satisfies the
condition of σ . Hence, a scheduler removes some
of the edges from S . We denote this transition di-
agram by S under σ . For example, S under ρ_{c} is
a subgraph of S where we have transitions labeled
with a singleton of P .

In a randomized algorithm of \mathcal{A}, an enabled
guarded command is chosen at random from the
set of enabled guarded commands with D , and is
executed when the process is activated. Hence, the
transition diagram of a distributed system execut-
ing $\langle \mathcal{A},D\rangle$ on N contains transitions not in S in

106

general. (We note that for any pure \mathcal{D} , the tran-
sition diagram does not contain such transitions.
$)$ We denote by S_{D} this transition diagram with
probability distribution \mathcal{D} . We use $S(S_{D})$ to refer
the corresponding distributed system.

Self-stabilization. A specification (task) of an
algorithm is a predicate defined over executions.
Let S be a distributed system executing algorithm

\mathcal{A} on a communication graph $N=(P, L)$, and $S\mathcal{P}$

be the specification of \mathcal{A} . We say that S under
scheduler σ is self-stabilizing if any execution un-
der σ contains a legitimate configuration. A config-
uration of S under σ is legitimate if any execution
starting hom the configuration satisfies $S\mathcal{P}$. Here,
we denote the set of legitimate configurations by
Γ_{L} .

We say that S under σ for $S\mathcal{P}$ is weak stabilizing
if any configuration has at least one execution that
reaches a legitimate configuration.

We say that S under ρ for SP is probabilistically
stabilizing if any execution under ρ reaches a legit-
imate configuration with probability 1. When we
consider a randomized algorithm $(i.e., S_{D})$, and$/or$

a probabilistic scheduler, the probabilistic stabiliza-
tion is defined in the same way.

The performance of a stabilizing system is mea-
sured by convergence time. When both \mathcal{A} and σ

are deterministic, the convergence time is the max-
imum ($i.e.$, the worst-case) length of an execution
from any configuration to a legitimate configura-
tion.

For a randomized algorithm (a probabilistic
scheduler, respectively), we take the expected value
of the length of an execution from any configuration
to a legitilnate configuration. The probability of an
execution is the probability that the randomized
algorithm (or a probabilistic scheduler) generates
the execution. Let $\tau\prime D,\mathcal{M}(\gamma)$ be the expected con-
vergence time to a legitimate configuration of S_{D}

when the initial configuration is γ and the schedule
is generated by a Markov chain $M\in\rho_{F}$. Define
$\tau_{D,\lambda 4}=\max_{\gamma\in\Gamma}\tau_{D,\lambda 4}(\gamma)$, and $\mathcal{T}_{D}’=\max_{\lambda 4}\tau_{D,\lambda 4}$.
Then, we want to know $\tau^{*}=\tau_{D}$. where $D^{*}=$

$\arg\min_{D}\tau_{\mathcal{D}}$.
Recall that we cannot choose \mathcal{M} but can choose

\mathcal{D} as a part of algorithm design so as the system to
have a small τ_{D} .

Hitting time of a Markov chain. In the fol-
lowing, we consider the probabilistic behavior of a
distributed system. An execution of a probabilis-
tic (caused by the randomized algorithm and/or

the probabilistic scheduler) distributed system is a
Markov chain over its transition diagram. In the
theory of Markov chains, the time to reach a state
from another state is called hitting time. Let \mathcal{M}

be a Markov chain with state space $\Omega=\{1,2, \ldots\}$.
The hitting time $ht_{i,j}$ is the number of steps that
the stochastic process starting from state i takes
until it reaches state j for the first time; $ht_{i,j}\equiv$

$\min\{t>0:X(t)=j|X(0)=i\}$. The mean hitting
time $HT_{i,j}$ is $E[ht_{i,j}]$ and the mean hitting time of
\mathcal{M} , denoted by $HT_{\Lambda t}$ is $\max_{,j\in\Omega}HT_{i,j}$.

3 Finite expected conver-
gence time under proba-
bilistic finite schedulers

Let S be a distributed system executing a deter-
ministic algorithm A on a communication network
N and suppose that S under σ_{F} is weak stabilizing
to $S\mathcal{P}$. Then, S under ρ_{F} is probabilistically stabi-
lizing with any potentially stable and pure distribu-
tion $\mathcal{D}[5]$. In this section, we give a necessary and
sufficient condition for S_{D} to have finite expected
convergence time under ρ_{F} , i. e., $\tau^{*}<\infty$. In the
following, we consider only potentially stable and
pure distribution \mathcal{D} .

107

Let us start with the following weak stabilizing
system as an example. Let $N=(P, L)$ where
$P=\{y,q\}$ and $L=\{(p,q), (q,p)\}$. Consider a dis-
tributed system S_{1} such that p and q maintain their
own local variables v_{p} and v_{q} , and the transition di-
agram is the one shom in Figure 2. Because each
configuration has a path to the legitimate configu-
ration (1, 1), S is probabilisticaJly stabilizing under
ρoc .

Now, we check the expected convergence time of
S_{1} under ρ_{OC} . Consider $\mathcal{M}\in\rho 0$ that outputs
$\{p, q\}$ with probability ϵ , and $\{p\},$ $\{q\}$ with prob-
ability $(1-\epsilon)/2$. By taking $\epsilonarrow 0$, the expected
convergence time of S_{1} becomes arbitrarily large.

$B2$: Distributed system S_{1} (A tuple on each con-
figuration represents (v_{p},v_{q}) . $)$

The contracted transition diagram of S is a di-
graph $G=(V, E)$ obtained from S by contracting
all legitimate configurations to one vertex γ_{L} and
removing all vertices reachable from $\gamma_{L^{1}}$.

Let (V_{1}, V_{2}) be any cut of G such that $\gamma_{L}\in V_{2}$.
We denote the directed edges that cross from V_{1}

to V_{2} by $E(V_{1}, V_{2})=\{(v,v’)\in E|v\in V_{1},v’\in V_{2}\}$,
and the union of the labels on the edges in $E(V_{1}, V_{2})$

by $P(V_{1}, V_{2})$.

Lemma 1 For any distributed system S , if there is
a cut (V_{1}, V_{2}) such that $P(V_{1}, V_{2})\neq\{\{p\} : p\in P\}$

in G, then $\tau^{*}=\infty$.
lBecause we are interested in convergence of S under

ρ , we do not consider the executions $bom\gamma_{L}$ that always
satisfies $S\mathcal{P}$.

Proof. Suppose that there is a cut (V_{1}, V_{2})

such that $P(V_{1}, V_{2})\neq\{\{p\} : p\in P\}$ and let
$\{p\}\not\in P(V_{1}, V_{2})$. Consider a Markov chain \mathcal{M} in
ρoc that assigns probability $(1-\epsilon)$ to $\{p\}$ for arbi-
trary small ϵ . Consider an execution starting hom

a configuration in V_{1} . Then, the expected number
of steps necessary to cross this cut is ϵ^{-1} . Hence,
the maximum convergence time is at least ϵ^{-1} . For
any $\mathcal{D},$

\mathcal{M} makes τ^{*} arbitrarily large.
We have the same argument when there are mul-

tiple processes whose singleton is not in $P(V_{1}, V_{2})$.
\square

In order for τ^{*} to have a finite value, for any
cut $(V_{1},V_{2}),$ $P(V_{1}, V_{2})=\{\{p\} : p\in P\}$ must hold,
which implies that in any configuration γ , all pro-
cesses in P are enabled unless $\gamma\in\Gamma_{L}$.

Let E_{p} be the set of edges in G labeled with
$\{p\}$. From Lemma 1, for any $p\in P$, the subgraph
$S_{p}=(V,E_{p})$ is l-regular in the sense that for any
state except γ_{L} , the out degree is exactly one. It is
known that S_{p} forms a rooted in-tree rooted at γ_{L}

if and only if it is weakly connected. Otherwise, S_{p}

consists of multiple connected components, and we
have $\tau^{*}=\infty$ by taking a cut that separates these
connected components.

Lemma 2 If S_{p} is not a single rooted in-tree for
some $p\in P$, then $\tau^{*}=\infty$.

We say that S satisfies regularity condition if S_{p}

is a single rooted in-tree rooted at γ_{L} for any $p\in P$.
In the following, we show that regularity condi-

tion is a necessary and sufficient condition for τ^{*} to
be finite under ρoc . Let \mathcal{G} be a Markov chain ob-
tained from G by assigning to a transition labeled
with $X\subseteq P$ the probability of the corresponding
transition (i.e., the transition labeled with X) in
$M\in\rho_{OC}$.

Theorem 3 S satisfies the regularity condition if
and only if $\tau^{*}<\infty$ under ρoc .

108

Proof. If part is proved by Lemma 1. We will
show the sketch of the proof for the only-if part
by showing that $\tau_{D_{1}}=\max_{\lambda 4\in\rho oc}\tau_{D_{1},\mathcal{M}}\geq\tau^{*}$

is finite. Let p be a process that $\mathcal{M}\in\rho oc$ out-
puts with the maxumum probability δ . Let h be
the height of S_{p} . The event that an execution
traverses S_{p} to reach γ_{L} takes at most h steps
and this event occurs with probability more than
$delta^{h}$. Because the probability that this event does
not occur during an execution decreases exponen-
tially, and such p exists for any $M\in\rho_{OC}$, we have
$\tau_{D_{1}}=\max_{\Lambda t\in\rho oc^{\mathcal{T}}D_{1},\lambda 4}\geq\tau^{*}<\infty$. \square

Next, we consider ρ_{O} that activates any subset
$X\subseteq P$. If S under ρ_{O} consists of transitions cor-
responding to an execution of multiple processes,
then when given $\mathcal{M}\in\rho_{OC}\subset\rho_{O}$, the system re
mains in an initial configuration. Hence, in order
to have $\tau^{*}<\infty$, it is necessary that S under ρ_{OC}

should contain paths from any configuration to a
legitimate configuration such that each of the tran-
sition is labeled with a singleton. On the other
hand, ρ_{OC} may always activate multiple processes.
By using $D_{1/|P|}$, we can probabilistically produce
a centralized schedule and the regularity condition
promises the expected convergencde time is finite.
Then we have the following theorem. (We omit the
detailed proof due to space restriction.)

Theorem 4 S satisfies the regulanty condition if
and only if $\tau^{*}<\infty$ under ρ_{O} .

When we remove the assumption of oblivious-
ness, there is a deterministic distributed system
where we have $\tau^{*}=\infty$. Consider a distributed
system S shown in Figure 3 executing algorithm
A on $N=(P, L)$ where $P=\{p, q\}$ and $L=$

$\{(p, q), (q,p)\}$. Process p maintains a variable v_{p}

(v_{q} at q , respectively) that takes an integer in
$\{0,1,2,3\}$. The legitimate configurations are the
configurations where $v_{p}=v_{q}=1,2,3$. The transi-
tions of S is represented by a state machine shown

in Figure 4 where s_{4} corresponds to the legitimate
configurations.

Let $M\in\rho_{C}$ be a Markov chain with two states 1
and 2 such that the transition $P_{1,2}=P_{2,1}=1-\epsilon$,

transitions (1, 2), (2, 2) are labeled with $\{p\}$, and
transitions (2, 1), (1, 1) are labeled with $\{q\}$. Start-
ing from an initial configuration where $v_{p}=v_{q}=0$,

the expected convergence time becomes arbitrarily
large by taking arbitrarily small ϵ which makes M

outputs $\{q\}\{p\}\{q\}\{p\}\{q\}\ldots$ with arbitrarily high

probability. To overcome this effect, we use $D_{1/2}$

to ignore some activations and probabilistically get

out of such loops. This strategy works for any fi-

nite schedulers to proabilistically produce execu-
tions that follows S_{p} of a process $p\in P$. Then we
have the following theorem. (We omit the detailed
proof for space restriction.)

$arrow^{\{p\}}$

Pa 3: Tkansition diagram S (Each tuple represents
$(v_{p},v_{q}))$

$\otimes 4$: A state machine corresponding to S

109

Theorem 5 S satisfies the regularity condition if
and only if $\tau^{*}<\infty$ under ρc .

Any scheduler \mathcal{M} in ρ_{F} is represented by finite
state fair Markov chains. Hence, \mathcal{M} has the prop
erty of concurrent activation and non-obliviousness.
We showed that $\mathcal{D}_{1/|P|}$ resolves the concurrency
(Theorem 4), and $D_{1/2}$ avoids the memory of the
scheduler. Hence, we obtain the following theorem
&om Theorem 4 and Theorem 5.

Theorem 6 S satisfies the regulanty condition if
and only if $\tau^{*}<\infty$ under ρ_{F} .

4 Conclusion
In this paper, we investigate the power of ran-

domization of an algorithm against the probabilis-
tic behavior of schedulers. We showed necessary
and sufficient conditions for finite probabilistically
stabilizing systems to have finite expected conver-
gence time. Except for oblivious central schedulers,

randomization is necessary to guarantee finite ex-
pected convergence time. Our future work is to ob-
tain an optimal randomization with the minimum
expected $\infty nvergence$ time.

参考文献

[1] J.E. Burns, M.G. Gouda, and R.E. Miller,

Stabilization and pseudo stabilization, Dis-
tributed Computing, 7(1), pp.35-42, 1993.

[2] J. Beauquier, C. Johnen, and S. Messika,
All k-bounded policies are equivalent for self-
stabilization, In Proc. of SSS, pp.82-94, 2006.

[3] E.W. Dijkstram $Self-stabiliz\dot{m}g$ systems in
spite of distributed control, Communications
of ACM, 17(11), pp.643-644, 1974.

[4] M. Duflot, L. Ribourg, and C. Picaronny,
Randomized finite-state algorithms as Markov
chains, In Proc. of DISC, pp.240-254, 2001.

[5] S. Devismes, S. Tixeuil, and M. Yamashita,

Weak vs. Self vs. Probabilistic stabilization, In
Proc. of ICDCS, pp. 681-688, 2008.

[6] L. FYibourg, S. Messika, and C. Picaronny,
Coupling and self-stabilzation, Distributed
Computing, 18, 3, pp.221-232, 2005.

[7] M.G. Gouda, The theory ofweak stabilization,

In Proc. of WSS, pp.114-123, 2001.

[8] M. Gradinariu and S. Tixeuil, Conflict man-
agers for self-stabilization without fairness as-
sumption, In Proc. of ICDCS, pp.46-46, 2007.

[9] T. Herman, Probabilistic stabilization, Infor-
mation Processing Letters, 35(2), pp.63-67,

1990.

[10] T. Herman, Self-stabilization: randomness
to reduce space, Distributed Computing, 6,
pp.95-98, 1992.

[11] A. Israeli, and M. Jafron, Token management
schemes and random walks yields self stabi-
lizing mutual exclusion, In Proc. of PODC,
pp.119-131, 1990.

110

