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2. ERAERX L AUMKRE
We consider three-dimensional irrotational motion of an incompressible ideal fluid with a
free surface under the uniform acceleration g due to gravity. The fluid lies on a flat bottom

and has undisturbed depth D. The effects of surface tension are neglected. In what follows, all
variables are non-dimensionalized using g and D . Introducing the three-dimensional

Cartesian coordinates x, y, z with z vertically upward and their origin located at the
bottom, we obtain the following set of dimensionless governing equations for the fluid motion:

Vi¢=0 for 0<z<n, @.n
with boundary conditions

_6__7_7_4_%@.4.%_6_2_%:0 at z=n€, (22)

ot oxox oyody oz

2 2 2
%1(_@2) 22 (%) in=b() at z=7, (2.3)

o 2|\ ox oy oz
%_0 at z=0, 2.4

oz

where
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2 2 2
V2=—a—2—+—6—2+—a—2, 2.5)
ox° oyt oz
t is the time, ¢(x,y,z,t) is the velocity potential, and 7(x,y,?) is the surface elevation and
b(#) isafunction of ¢ which is determined by evaluating (2.3) as x — .

Consider a steadily propagating solution of (2.1)-(2.4) that is independent of ¢ and y:

¢ =-vx+D(x,z;v), n=H(x;v), (2.6a,b)
where v is a positive parameter, and
oD oD (2.60)

— >0, — >0, H-1-50 as x— *oo.

Ox 0z .
Solution (2.6) represents a steady propagation of a two-dimensional localized wave against a
uniform stream of constant velocity —v in the x direction. We call this solution a solitary

wave solution. From substitution of (2.6) into (2.1)-(2.4), ® and H should satisfy

Vid=0 for 0<z<H, 2.7)
[_wi@i)ﬂ:@ at z=H, 2.8)
Oox Jdx Oz
2 2
2,1 (@J + @) +H=0 at z=H, 2.9)
o 2|\ ox oz
% o at z=0, 2.10)
Oz
in addition to (2.6¢), where
: 0 2 2.10b
V.L E'éx—z'i'—a-z—z- ( . )

The existence of the above solitary wave solution was rigorously proved by Amick & Toland
[2]. Numerical solutions were obtained by Hunter & Vanden-Broeck [3] and many others
(Byatt-Smith & Longuet-Higgins [4]; Tanaka [5]; Longuet-Higgins & Tanaka [6]). According to
them, solitary wave solution exists in the range 1<v<1.2942,0or 0<a<0.83332, where a
is the maximum surface elevation which is called amplitude hereafter. The solitary wave
solution has the property that the surface elevation H~1 is positive and possesses a single
point of extremum which is called the crest. Moreover the solution is symmetric with respect to
the crest, that is, ®(x,z) is odd and H(x) is even in x with x=0 on the crest, and

approach to the state at infinity as x — +w described by (2.6¢) is exponentially fast (some of
these properties were rigorously proved by Amick & Toland [2] and Craig & Sternberg [7]). In
fact, @ approaches different constant values as x —» o, i.e.

coy=[o]_. -[o]._ =wr-2L, 2.11a)
v
where M and T are defined by

2 2
ME)= [ H-Ddx, To)=[ dr f %[(a;) +(a§:s] sz, (2.11b,c)

and the far right side of (2.11a) was first derived by McCowan [8]. C, M ,and T physically
represent the circulation, the mass, and the kinetic energy of the solitary wave, respectively.
Incidentally, the total energy E of the solitary wave is defined as
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1 ) oo
E(v)=T(v)+5_[1(H—l) w:ﬁdxf(a—x) dz, 2.11d)

where the far right side was first derived by Starr [9] (see also Appendix A in Kataoka [10]).

When amplitude is small, or a=g* with £ being a small parameter, ® and H-1 are
small quantities of O(g) and O(g?), respectively, and the dependency on x is slow
(appreciable variation in x of the order of &7'). Let us call this solution a small-amplitude
solitary wave solution and denote it by (sd)S(X ,2),1+ aZHs(X )), where

X=¢x (2.12)

is a shrunk coordinate in x. The solution for a=¢? is then given by (Grimshaw [11] with
some transcript errors, Fenton [12])

£D,(X,2) = £D,(X)+ 0 (X, 2) +--, (2.13a)
14 (X) =1+ eH,,(X) +&*H,,(X) + -, (2.13b)
2
v=l+g———3-£4+—3-86+-~-, (2.13¢c)
2 20 56

where

(Ibsl(X):g-;/—g—tanh(kX), CDS3(X,z)=s/_’_{é%+(——§-+—22—2)sech2(kX)}tanh(kX), (2.14a,5)

D (X,2)= ‘\/_3_{—‘ ﬂg‘ + (—3—‘- -3—22 —-—Z:]SCChz(]QY)+(i -2+ —2—24)sech"(kX)thanh(kX),(z.l“C)

1600 (100 16 8 25
H,,(X)=sech?(kX), H.,(X)= —i—sechz(kX)tanhz(kX), (2.14d,¢)
H,(X)= Esechz(kX)— lg(—)l-sech“(kX)}tanhz(kX), (2.14f)
and
k=§(l——§-£2+%e4+---]. (2.14g)

3. BIMBOMHEEER (FEHIB) OERBALH
Consider interactions between two obliquely moving solitary waves, one of which has finite
amplitude a (wave speed v ) and the other has small amplitude &> (wave speed

1+&%/2+---). We take a reference frame moving with the undisturbed finite-amplitude solitary
wave whose traveling direction is in the positive x direction and crest is on x=0.
Small-amplitude solitary wave propagates at an inclination angle y to the x axis

(0w <z) (X12ZH) . The solution before interaction is a summation of the two solitary
wave solutions:

=—vx+ ®x,z;v)+£D,|0 + 0(%), i i
{¢ VX + (x z V)"'g s( +0(7) Z) (before interaction), (3.1)

7 =H(x;v)+&H,(0+ 0(c?))
where
6 = Xcosy + (Y —c,7)siny , (3.2
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and
X=gx, Y=¢cy, t=¢t 3.3

are shrunk coordinates in x, y and ¢, respectively. ¢, is the leading-order wave speed in
the y direction (or along the crest of the finite-amplitude solitary wave) of the
small-amplitude solitary wave given by (B 1 &)
- <0 for 0<w <cos™'(1/v
c, _1 veosy 1/1/ 1/v) (3.4)
siny >0 for cos"(I/v)<y<nm

Since any small perturbations propagate in the negative X direction in this reference frame,
the solution (3.1) before interaction becomes the boundary conditionas X — 0, i.e.

p=-vx+[0] .. +£0,(6+0(c?), 2)
n=1+¢™H, (9 + 0(82))
Here we look for an asymptotic solution for small & of (2.1)-(2.4) whose boundary condition

as X - is(3.5).
Scale of variation in y and ¢ of the interaction process is O(¢™') from the functional

form of (3.1) which depends on y and 7 only through Y —¢ 7. For the scale of variation in
x, two different scales coexist: O(1) due to the finite-amplitude solitary wave solution and
O(e™) due to the small-amplitude one. We therefore seek solutions of different scales of
variation in x: a solution with an appreciable variationin x of O(1) (core solution) and that
with an appreciable variation in x of O(¢™') (far-field solution). Scale of variation in y
and 7 (or y—c,)is fixed at O(¢™"). The above two solutions are looked for in Sections 3.1

and 3.2, respectively, and they are unified to an overall solution by matching procedure in
Section 3.3.

as X >, (3.5

Y
A

a=0(1)
Non-resonance

a =0(e%) a,=¢

K1 FRREIMNE (RiEa=0() ; B KRNER) L/MRIBIIE (RiBa; =&” <<1 ; A8
MR OROHEEEROERR.
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3.1. Core solution
Following the statement in the previous paragraph, we look for a solution of (2.1)-(2.4) with a
moderate variationin x, Y -c,r and z in the following power series of £:
b = —vx+ ®(x,z; V) + 64, (x,Y —¢,7,2) + £20,(x,Y —c,7,2) +---, (3.62)
Ne = H(x; v)+ ene,(x,Y —¢,7) + £y (x,Y — e, )+, (3.6b)
where each component function is of the order of unity (4., =0(1), 7., =0(1)) and the
subscript C is attached to (¢,7) in order to indicate the type of solution (core solution).

Substituting the solution (3.6a,b) into (2.1)-(2.4) and arranging the same-order terms in &, we
obtain a series of sets of equations for (4,,7.,)(n=12,---) as

0 (rn=12)
Vig. =F = 2 for 0 H, 3.7
.L¢Cn n 6 ¢an—2 (n 23 or <z< ( )
oY
0 (n=1)
Lil¢ensncad=G, =1 on,,., (n=2.3) at z=H, (3.8)
T
0 (n=1)
D[¢Cn’77cn] I 6¢C,,_, (n_2,3) at Z=H’ (39)
e _g at z=0, (3.10)
oz
where L, and L, are the linear operators defined by
0 dH 0 0 dH o oD
— | —+— -v+—1n|, 3.11a
PR EICTTINERE L) (3 R

o o Joxdz o0z o

For n=1, the above set of equations (3.7)-(3.10) is homogeneous, and has a solution of the
following form:

L,[4,7] =[(—v+@)3+9‘§ﬁ]¢+[(-v+ W\ T 0B D +1};. (3.11b)

oo dH
Py = —Ep(Y -¢,7)-q(Y -¢,1), 7= _EP(Y -¢,7), (3.12a,b)

where p and ¢ are undetermined functions of Y —~c 7. The first terms on the right-hand

sides of (3.10) come from invariance of the system (2.7)-(2.10) under the horizontal shift.
For n=2,3,.--, the set of equations (3.7)-(3.10) is linear and inhomogeneous. For this set of

linear inhomogeneous equations to have a solution, its inhomogeneous terms on the right-hand
sides of (3.2)-(3.4) must satisfy some relation. Since the homogeneous part satisfies

oD dH
dxf l C" [:—_LK [¢Cn’77Cn] dx LD[¢Cns770n]:| dx=0,
z=H

its inhomogeneous terms F,, G, and I, on the right-hand sides of (3.7)-(3.9) must satisfy
the following relation (solvability condition):

dxF——Fdz+f[—G -—1} dx=0, (3.13)
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where the quantities in the square brackets with subscript z=H (or [ ]_,=H) are evaluated at

z=H.
For n=2, the solvability condition (3.13) is identically satisfied, and the solution of
(3. 7)—3.10)for n=2 is

o0 op O 0H §, 0
b=+ aq+®yr(y )y N = 6v6p +H, aq H,r(Y —c,7), (3.14ab)
where r is a new undetermined function of Y -c¢,7, and O(®,H)/dv represents the

derivative of (®,H) with respect to v keeping x and z constant. (®,,H;) is a
particular solution of (3.7)-(3.10) with F,=G,=0 and I,=1 which remains finite as
x — too, while (@,,H,) isthatof (3.7)-(3.10) with F, =G,=1,=0 which diverges like x
as x — too. Specifically, (®z,H;) and (P,,H,) are given by

3 op 00 vod dH voH

O, ==0-xT - Y2 g =H-x—-2 3.15a,b
P T % % 2 & 2w’ (3-152.0)

2
®U=x+v(§¢—x@—z@)— LA @—x—é—?+v®5, (3.15¢)

2 Ox Oz 2 ov ov
2
dx 2 ov ov
The solution ¢., in (3.14a) satisfies
dC g, 0

) N ) =?175€' +Cy aq+c ) (3.16)

where C, Cy; and C; are defined by (2.11a) and
C, 3eoordC CU=—g—q+vCB. (3.17a,b)

2 2 dv dv

For n=3 the solvability condition (3.13) becomes
1dE &° o* dC dm) & o? 2 dC or
L E—lp=|lv—= - | v M —=— g+ (0 =D ——, 3.18
(Vdvafz ayz)p H v vaaZ Mot Dra G19
where £, M and C are defined by (2.11), and the relation

oo d
[:[_UCZ _£¢C2] - -l—ig([ucz ]x-—)—eo +[uC2]x—>co)

ox dx
oo oH
+ _[;{ F J.¢cde+l: = LK0[¢czsﬂc2]+-5v—LDO[¢C2,77C2]:| }dx (3.19)
z=H
with
H J
Uc, = j; —a?xcldz - VT]Cn s (320)

is used to derive (3.18). When the condition (3.18) is satisfied, a solution for #n=3 exists, and
from integration of (3.7) with respectto x and z and use of (3.8), one finds

Ou Ou dM & o’ 0’ o’ or
o] - = ( & aTZWMaYZ)p_(MBF—MW Mg

(3.21)
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where M, M, and M, are defined by (2.11b) and
My=2m-2M - My, (3.22a,b)
2 dv dv

3.2. Far-field solution
We look for a solution of (2.1)-(2.4) with a moderate variation in X(=¢x), Y-c,7 and z

in the following power series of ¢:
b =—vx+[®] .. + 80 (XY —c,7,2) + 4 (X, Y —c,7,2) + 7, (3.23a)
Me =14 85y (X,Y —c,0) + &5, (X, Y —c )+, (3.23b)

where each component function is of the order of unity (g, =O(1), 775 =0(1)), and the
subscript F is attached to (¢,7) in order to indicate the type of solution (far-field solution).
The series of (3.23) start from O(g) and O(¢?) for ¢, +vx—[®] ., and 7. -1,
respectively, in accordance with the core solution having nonzero values as x —> o from
these orders (see (3.12a) and (3.14b)). Substituting (3.23) into (2.1)-(2.4) and arranging the
same-order terms in &, we obtain a series of equations for ¢,, (n=12,---). For n=1 and 2,
they are homogeneous (3¢, /6z° =0 for 0<z<1 and 84, /0z=0 at z=0 and 1) and
have a solution independent of z:

Brp = O (XY —C 1) (n=1 and 2). (3.24)
For n=3 and 4, the equations are inhomogeneous, i.e.
2 2 2
%;I =%y On for 0<z<l, (3.25)

oz? " 8x? or?

04, o 0 )
T g = Z —y— t z=1, 3.26
62 n (61‘ vaX ﬂFn—l at z ( )
o _g at z-0, (3.27)
1574
where
0
Nena = (——V )¢Fn 2 (328)
or

For the above inhomogeneous equations (3.25)-(3.27) to have a solution, their inhomogeneous
terms J, and K, on the right-hand sides of (3.25) and (3.26) must satisfy the solvability

condition:

£J"dz =K, (3.29)
which gives
8 oY (& &)
[(:a?“ ) ‘(axz”af‘f fry =0 (n=3and®. (30

With the aid of (3.4) and the boundary condition (3.5) as X — «, (3.30) leads to

o, (0) for X >0,
br1 = e (3.31)
@@+ @) for X <0,
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0 for X >0,
Br2 (3.32)

T p.(0)+5,8) for X <0,
where @, is given by (2.14a). Here ¢, @, @, and @, are undetermined functions of &

~

or 8 with
0 =Xcosy+(¥Y -c,)siny, 6 =Xcosy+ (Y —c,7)sin, (3.33)
and v (0Sy<z)and ¥ (- 7z<t/7<0)aretwosolutionsof(34)for v (X128),ie.

1}v +c -1 € +v,/v +c ( (3.342)

W =cos™ =sin™
V2 +c v? +c
v+c1/ +ci-1 Ny ‘Vw/" +c -1
¥ =cos™ Y =sin (<0 (3.34b)
v +c v +c
7Mr, and 7., are obtained from substitution of (3.31) and (3.32) into (3.28) as
Qﬁ‘%@ for X >0, 0 for X >0,
Ney = ~ Mrs =1de, do, (3.35a,b)
240 for x <0 G0 Tag PrX<o

3.3 Matching
We carry out matching of the core solution (#-.mc) and the far-field solution (@-,7,). In the

core region expressed by (@.,7.), the ordering of the far-field solution is rearranged.
Specifically, the far-field solution (#r7m) is expanded in the power series of X (or &x):
Oh &x* [ °h
h, =\hy ), +ex| =2 | + G 3.36
Fn ( Fn)o (BX ]o 2 (aXz , ( )
where 4 represents (4,7), and the quantities in the parentheses with subscript 0 are evaluated

at X=0. We then collect the same orders of & and obtain the reordered form [say,
(6r,s717)] OF (#5575, ) - Matching is carried out by comparing the forms of the two solutions

(8cn>Tcn) and (@y,.7mn,) ateach n from n=1,and it is accomplished if the conditions

[¢Cn ]x—-)-_»-ao = ¢.:"n H [77Cn ]x—)iw = ”;n >

are satisfied.
For n=1,since ¢, =(g,, )0 , the matching conditions are, from (3.12a) and (3.31),

-g=2,4(6,), (3.37a)
_q=¢1(90)+51(90)9 (3.37b)

where
6 =Y —c,o)siny, 6, =(¥ —c,7)sini7. (3.37¢)

For n=2, since ¢,, = (¢F2)0 +x(8g,, 10X )0 , the matching conditions are composed of two

different kinds of terms, i.e. those independent of x and those proportional to x . From those
independent of x, we have

[6c, - 7x].,.. =0, (3.3%)
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[be: -7tls . =260 + 58y, (3.39b)
where (3.14a) and (3.32) are used. From those proportional to x,
=____d(1219(090) cosy, (3.40a)
dg,(4) 43 @) .
=——CoOsy +—=~— > 3.40b
r a8, osy a7 cosy ( )

where (3.14a) and (3.31) are used.
For n=3, where gy, = (g, ), +x(84,,/0X), + x*(6°8,,/8X?),/2, the matching conditions

proportional to x contribute to determination of unknowns at this stage. It is convenient to
express them in terms of u.; defined by (3.20), i.e.

Ot }
Upy ——==X =0, 3.41a
{um —%x:l = (cosy —v)—qzz—ée"l+(cosy7—v)-c—l%é—ed, (3.41b)
X=>—c0 0 0

where (3.32) and (3.36) are used. Matching conditions for 7 are automatically satisfied if

(3.40) and (3.41) are satisfied.
Thus, the four unknowns ¢, r, ¢,(6,) and #(6,) are determined by the four equations

(3.37a,b) and (3.40a,b) as

do, (6, o
g=-0,(6,), r=——ci“9(—°)cosy/, 0 6,)=D,6,), ¢6,)=0. (3.42a-d)
0

Substituting (3.42a,b) into (3.18) for ¢ and r, we obtain the solution p which is
undisturbed initially (or p(¥Y —¢,r) >0 as 7 —>—o)as
_ [@,(6,)- @, (~0)]P for 0<y <cos™(1/v), (3.43a)
[@,,6,)-@,(@)P for cos(1/v)<y <,

where
dM /_——dC
P—V(C;‘Fv—"cy V2+C;—IE—VM)
= . dE ’ (3.43b)
(Cy—co)-a_;
and

vE
= i‘/-— , 3.43
“©=HIE/dv (3.43¢)

with E being defined by (2.11d). Note that P diverges for c, =c,, in which case a different

analysis with finite order of the phase shift p should be made.
Substituting (3.42¢,d) into (3.31) and (3.35), we have the leading-order far-field solution as
b1 = 0,,(6), (3.44a)

r, =H,3(6), (3.44b)
where @, and H,, are the first and second-order solutions of the small-amplitude solitary

wave solution in £ given by (2.14a,d).



33

Next, the six unknowns ¢,(6,), #,(8,), {#e,~rx],.,.. and [u, —xduq,/éx] . are
determined by the six equations (3.16), (3.21), (3.39a,b) and (3.41a,b). Solutions are

@,(6,)=-F, d2,(6) , (3.45a)
dé,
7,(0;) = _F, 49,/x8)) : (3.45b)
kK dg,
where
oSy 1-vcosy (3.46)

.~ ~.2
siny 1-vcosy

1 dC c M vM c M
Fi=—{| P~ =] — | |+ C ———2—| M, - = | |(1- vcosy)
“ e G ciJJ G

s 1 dcC c dM  vM c M
P=—<P ————y£——~— 5 ]J+CB +—y—(MB _TJ (1-vcosy)
Zﬂ [ v Wid-1( v g Jr+eli-1 c, (3.47b)
C S M
+ U +7\/+ch—_—] v {COSY ¢.
y
Substituting (3.45) into (3.32) and (3.36), we have the next-order far-field solution as
0 for X>0,
= ] 5 (3.482)
#2=1_p 40,(6)_F do, (D) ¢ v 0
dée k dé
0 for X >0,
= - ] (3.48b)
3 -P dI_152(6)—195 stziKe) for X <0.
de dé

The solution obtained in this section is physically interpreted as follows. The core solution up
to O(¢®) given by (3.12) and (3.14) represents modulation and associated phase shift of the

extended solitary wave solution (SXER[13]D#&2 M) whose parameters (v',B,U) are
subject to small and slow variations. Deviations of the parameters (v', B,U ) from their initial
values (v,1,0) are (£°0p/dr,£°0q/07,5%r), and they are expressed in terms of the surface
displacement £°H_,(6,) of the small-amplitude solitary waveat X =0, i.e.

*

v v (vcosy -1)P
B |=|1|+&’ (1-vcosw) [H,(b,). (3.49)
U 0 cosy

The associated phase shift, or the degree of translation is represented by & p, where p is
given by (3.43). The total phase shift £p| _ is
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26

2P for 0y <cos™(1/v),
epl =4 > (3.50)
26 4
—TaP for cos"(1/v)<y <.

Figure 2 shows the profile of p]r_m as a function of y for a=0.3 and 0.6. Note that p|r_m>

diverges when ¢, =c, as already mentioned after (3.43b).

The far-field solution is given by (3.44) and (3.48). The leading-order solution (3.44) is the
small-amplitude solitary wave solution itself, while the next-order solution (3.48) represents
two physical phenomena. The first terms on the right-hand sides of (3.48) for X <0 represent

translation of the small-amplitude solitary wave by a finite distance P, (the phase shift is

3 gP,/4) due to interaction with the finite-amplitude solitary wave. Figure 2 shows P, asa
function of w for a=0.3 and 0.6. The second terms on the right-hand sides of (3.48) for
X <0 represent generation of the residual wave due to inelastic nature of the interaction. The
residual wave has surface profile of sech’tanh type, and propagates at an inclination angle

tothe x axis. Its amplitude P is shown as a functionof y for a=0.3 and 0.6 in figure 2.

s

. | I \] )
0 /4 /2 371/4 r
774
K2 FHRREISIEOMAOTH p| | (RFICIHEIC p LELE), MRBISLEOMAEDTIE,,

HMHBOEEP %, MEEAGO2AIEART Ay OBEKLLTFey hLeb (ER:
a=03, TE: a=06). EREHORENL, ¢, =c, LRBBEERT.
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