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Value Function of Real Options with Regime Switching

Keiichi Tanaka *
Tokyo Metropolitan University

1 Introduction

We consider irrevesible investment problems with regime switching feature under a
monopoly setting. Several parameters describing the economic environment varies ac-
cording to a regime switching with general number of states. We present the derivation
of the value function via solving a system of simultaneous ordinary differential equations
with knowledge of linear algebra. It enables us to investigate a comparative analysis of
the investment problem. The contribution of this paper is a natural extension of Guo and
Zhang (2004) to cases of general number of regime states in the context of real options.

2 Setup

In this paper a matrix is represented in bold. O, denotes the zero matrix of order n and
I, denotes the identity matrix of order n.
We work on a probability space (2, F,P) on infinite time horizon. Let J = {J(¢)} be

a continuous-time Markov chain on a state space F = {1,2,--.,5}. J(t) is interpreted
as a regime or a state of the economy at time ¢. The intensity matrix of the regime is
given by Q

Q= (j)ijer, Gw=- D

JEB\{i}
The process X = {X;} satisfies
dX: = pyuXidt + 054 XedWe, Xo ==,

where W = {W;} is a standard Brownian motion, 4; and o; are constants for each j € E.
Denote the filtration genereated by (W, J) as {F;} with F; = o(Ws, J(s), 0 < s < t).

The firm has a chance to start a project to make a product as a monoply of the
product whose revenue depends on the state variables (X;, J(t)) of the economy. We
assumes that the firm obtains the instant revenue of D;X; at time ¢ from the project
when the regime state is i. D; (i € FE) is a positive constant.
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The firm has a technology to enter into the project by paying the cost K; when the
regime state is . When the current regime state is ¢, the value function V; is defined by

0
Vi(x) = maxFE [/ e ™Dy Xudu — e Ky | Xo=1x,J(0) =1 .

Let us denote a vector and a matrix
T .
D:(Dl DS) ) Mzdlag[#lf"a/*l’S]‘

For simple notation it is convenient to introduce H,, a “truncationg” operator on S x S
square matrix A
Hy((aij)1<1,5<5) = (ai)1<i,5<n-

We assume the following properties;
Assumption 1. 1. Q is irreducible.
2. The matrix rIg — Mg — Q has S real eigen values that are strictly positive.
3. The matrices H,(rls — M — Q) and H,(rIs — Q) are invertible for all n € E.
4. r—p; —q; >0foralli € F and r > 0.

For the calculation of the value function, the expected incoming revenue after the
entry time 7 plays an important role. The following lemma gives the evaluation.

Lemma 1. The expected incoming revenue at time t is given by
o0
E [/ e_ruDJ(u)Xudu | Ft| = e—rtaJ(t)DJ(t)Xt,
t

where
OziDi = e;r (T’IS —M - Q)_l D.

3 Value function
By Lemma 1, the value function at the regime ¢ is reduced to

Vz(iI?) = maxFE [e—TT (C!J(,.)DJ(,.)XT - KJ(T)) | Xo = z, J(O) = Z] .

T

As discussed in Jobert and Rogers (2006) and Guo and Zhang (2004), the candidate of
the optimal stopping time 7 must be in a form of

T = I'Iéif?lTj’ 7 =1inf{t > 0: X; > x;, J(t) = j}.
J

We will obtain the explicit form of the value function by assuming that the order of the
thresholds is

s <Tg_1 << xT9< ™ (1)
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in what follows. In case that (1) is not satisfied, the following procedure must be carried
out after the regime index is interchanged appropriately. Thus, the value function is of
a form of

V@) ifz € [z1,00),
Vi(z) = Vi(ﬂ)(g;) if z € [Tpy1,20), (R=1,2,---,5-1),
S .
Vi( )(a:) if z € (0,zg).
For = € [z1,00), it is optimal for the firm to start the project immediately at any

regime,
Vi(z) =a;Dix — K;, 1 <3< 8.

For z € [Tny1,%s) (n = 1,2,--- ,S — 1), the firm will enter when the regime is either of

n+1,---,8S, otherwise she should wait. Thus, the value function satisfies

1 5 5 d? d _ .

2220t Vi(e) + o Vil@) — Vi) + Y ay(Vy(@) ~Vie) =0, 1<i<n, (2)
JEE\{i}

and V;(z) = oyD;jz — K; for n +1 <4 < S. Finally, for z € (0,z5s), it obeys

1 d? d
L2202 L Vi) + ap e Vi(e) ~ Vi) + Y a(Vile) —Vile)) =0, 1SS,
JEE\{i}
We must solve simultaneous ODEs
AVP@ Y VP =- Y V@)
1<j<n, j#1 n+1<5<8
AVP@+ Y VP =- Y oV @)
1<j<n, j#2 n+1<5<8
AVO@+ 3wV P@ == X el @
1<j<n, j#n n+1<5<8
for z € [Zp+1,2n), (n=1,2,---,5 — 1), where

Aef @) = 20207 (o) 4z (@) ~ (r — ) (2),

with the value matching condition and the smooth pasting conditions at = Zp, Tp41-
They are rewritten in a form of matrix as

A qi2 - qin V1(n) (z) AN+t qins2 -0 418 Vrii)l (z)
@1 A2 - g Vz(") () | _ @2n+1 Pn+2 g8 v® +2(:c) 3)
g1 dn2 0 An) \VV(2) Gnntl Guntz 0 GnS VS(")(x)

where Vj(n)(z) =o;Djz — K;, je{n+1,...,5}.
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For the time being, we concentrate on the equations (2) on Vi(n)(a:) on the interval
z € [Znt1,Zn) (n = 1,2,5 — 1). Since we know the solution V;(n)(x) = a;Djx — K; for

i =n+1,---,8, the equations of the remainings Vi(n) for 1 < ¢ < n are reduced to
simultaneous second-order ODEs. It follows that the solution Vi(n) is decomposed with
the general solution f/z.(n) and the special solution vz-(n)(x) foreachi=1,2,--- ,n.
The special solution vgn) (z) is a linear function vz(n) (z) = az(n)x + bz(.n). Then, the
coefficients a(™ = (a&n), cee a%"))T, bW = (bg"), e ,b%n) )T of the solution are given by
S
( Z quaij
j=n+1
S
- g2 D;
a™ = H,(rlg—-M-Q)~! jzzn;rl , (4)
S
anjc; Dj
\j=n+1 )
( S
> k)
j=n+1
s
| L 2 K
b = —H,(rls — Q) ' j=n+1 )

S .
> aniK;

\j =n+1

where the inverse matrices are guranteed to exist by Assumption 1.

Next, we turn our eyes to the general solutions Vi(n). In order to change the variable,
let us introduce auxuliary functions Vz(n) (y) = Vi(")(ey), W§") (y) = %V@(y). Then
(??) can be rewritten as a system of first-order ODEs,

d (V) _T V™ (y) 5)
Jo \oom, \ ] Tl ]
Y \W"(y) W (y)
where
. o, I, 1.
r, = (R: Cn)’ 2n=§d1ag[a%,---,aﬁ],
2("';%‘111) —i%lz . ‘i%lln
-2q21  2(r—qe2) . _2%2n
R, = I;'(rI, - H,(Q)) = o 7 7 ,
o o5 o2
2 2Qin
C, = I,—X;'H,(M)=diag |1 - 25-,... ,1- £ ).
0'1 g
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Thus, the solution is given by

V0 _ o (v (V("’(yo))
(W(n)(y) =exp ((y — %0)Tx) W (30)

with some yg from the boundary conditions when the exponential matrix exp ((y — yo)T'n)
is available. If the coefficient matrix I',, is diagonalizable, it is straightorward to solve
the systme of ODEs (5).! Otherwise, one can proceed in a parallel way by making use of
the Jordan normal form that is guranteed to exist for each square matrix by the theory.

The characteristic function of of I';,, which is obtained with the knowledge of linear

algebra as
det (ongﬂmn c,,I-"mn> = fn(ﬂ)j]ill(%o]?)—l,
where
91(8)  q2 Qin
fa(B) = det(Zp8% - £,Cnf— ZuR,) = det qfi gz(:ﬂ) qz:n ,
q;ﬂ q,;2 ' gniﬂ)

1 1
9i(B) = 5012/32 + (ui - 503) B — (r — gu).
Thus, the eigenvalues are the solutions of f,(3) = 0. In this paper we make the following
assumption for simple and useful results. In case that the assumption is not satisfied,
the following discussion can be accordingly modified by considering the Jordan normal
form.

Assumption 2. 1. Forn=1,2,---,S—1, T, has 2n distinct eigenvalues 8™, . , g{™.
2. I's has 2S distinct eigenvalues such that B§S), cee ﬂés) are strictly positive and
ﬁé‘?l, s, ég) are strictly negative.

By Assumption 2 there exist distinct eigenvalues 6;") (1 < j < 2n). Since the upper

right block of I',, is I,,, the eigenvector for the eigenvalue ,BJ(-n) must be in the form

am = u,” € R?
j ﬁj(nfugn) )

with some non-zero vector ug-") € R" satisfying

91 (ﬂj(-n)) 912 qin
. g (IBJ(TI)) . Q2n u(n) -0 (6)
: A
gn1 gn2 "t Yn (ﬂa('n))

!Jobert and Rogers (2006) also made use of linear algebra in the calculation of American options
under regime switching.



Note that such a vector ug.n) exists for each j because the determinant of the coefficient
matrix on the LHS of (6) is equal to f, (Bj(n)) = 0 by definition of 5](@). Thus, T, is
diagonalized as

0, I, um T om) w1 U™ \7
(Rn Cn) = (U(n)B(n)> diag [ﬁl 3T Qn] (U(n)B(n)> y
where
U = (u&") ugm ug:b)) , B™ = diag [5£n), AR gr?] :
Note that the matrix
on > uf” uw? o up _(n) - (n) _(n)
n n = n n n n n n ={u u T Ugy
(U( B (5£ )ug ) 55 )ug) ﬁén)u‘gn) ( 1 2 2 )

is invertible since the eigenvalues of T, are distinct so that the corresponding eigenvectors
are linearly independent.
Then we can solve the system of ODEs (5) as

A
57(n) (n)
\% um , (n) w1 | A
(_(n)(y)> — (U(n)B(n)) dlag [eﬁl y’ e ’66271 y:l ? R
W (v) |
A
with some constants Agn), e ,Ag;) . By adding the special solutions, we have the vector

of the value functions V(") (z) = (Vl(n) (), -, A (x))T on the interval [zp, Zni1) for
n=12---,5—1 given as

V™ (z) = UMXO(2)AM v (), (7)
where
A
XM(z) = diag [wﬁ§n), S ’xﬁé’;)] , Al = A%n) ,
A5
vi(z) = aWz4+bM.
Unknown boundaries g < --- < z; and unknown vectors A ... ,A(S) will be

determined by the value matching conditions, the smooth pasting conditions and the
values at z = 0. We will investigate them by looking at z; first and moving downward
to g as follows.

First, we consider the case of n = 1,2,.--,S5. The value matching conditions at

T = Tn, Vi(n)(a:n) = Vz-(n_l)(mn) for i =1,--- ,n requires

Ur-DXr-D(g YA 4 yin-1) (%))

anDpty — Kp

U®X® () A 1y (z,) = (
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and the smooth pasting conditions xn%%(n) (xn) = wn%Vi(n—l)(acn) fori =1,---,n
requires

(n—-1) (n-1) (n—1) (n—1)
U(")dX(”)(xn)A(”)+a(”)xn=(U dXV(z,)AD +a a:)

anDnzy

where (n) )
dX™(z) = diag [B&n)xﬂl Lo ,Béz):vﬂ% ] i

By these conditions and relationships

U(n)X(")(x) U™ )
(U(")dx(">(x)) = (U(n)B(n)) X (z),

A(™ is represented with a function of z, and A(®~1 as

-1
A = x® (x;1)( um )

UumB®)
U(n—l)x(n—l)(xn)A(n—l) + vin—1) (wn)
anDpxy — Knp, v(")(:):n)
X U(n,_l)dX(n—l)(xn)A(n—l) + a(n—l)mn - < a(n)xn ) (8)
anDnZn

Similarly, for n = 1, S, we can obtain A(}) and A in a parallel way. Therefore, we can

represent unknown vectors AWM ... A) as functions of z1,- - ,zs.

Furthermore, on (0,zgs|, we want to impose lim;_,g Vi(s)(a:) = 0 for all 7. It implies
that the coefficient of A(S) corresponding to negative eigen values Bg‘?l, e ,ﬂé‘;) must,
be zero,

(0s 1s)A®) =og. 9)
This is a set of S equations that S unknown constants z,--- ,zgs must satisfy. Ap-

parently (9) is a system of complicated algebraic equations, hence they must be solved
numberically. In case that the numerical solution doesn’t satisfy the order condition (1),
the indices of the regimes must be interchanged.

As a summary, we obtain the main result.

Theorem 1. Suppose that x1,- - ,xs satisfy (1) and (9). Then the value functions are
given by (7) with A™ given by (8).
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