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1 Introduction and preliminaries

We use the unit $k_{B}=1$ , where $k_{B}$ stands for the Boltzmann constant. Let $\omega D>0$ and
$k\in \mathbb{R}^{3}$ stand for the Debye frequency and the wave vector of an electron, respectively.
Let $m>0$ and $\mu>0$ stand for the electron mass and the chemical potential, respectively.
We denote by $T(\geq 0)$ the temperature, and by $x$ the kinetic energy of an electron minus
the chemical potential, i.e., $x=\hslash^{2}|k|^{2}/(2m)-\mu$ . Note that $0<\hslash\omega D<<\mu.$

In the BCS model [2, 4] of superconductivity, the solution to the BCS gap equation
(1.1) below is called the gap function. We regard the gap function as a function of both
$T$ and $x$ , and denote it by $u$ , i.e., $u:(T, x)\mapsto u(T, x)(\geq 0)$ . The BCS gap equation is
the following nonlinear integral equation:

(1.1) $u(T, x)=l^{\hslash\omega}D \frac{U(x,\xi)u(T,\xi)}{\sqrt{\xi^{2}+u(T,\xi)^{2}}}\tanh\frac{\sqrt{\xi^{2}+u(T,\xi)^{2}}}{2T}d\xi,$ $\epsilon\leq x\leq\hslash\omega_{D},$

where $U(x, \xi)>0$ is the potential multiplied by the density of states per unit energy at
the Fermi surface and is a function of $x$ and $\xi$ . In (1.1) we introduce $\epsilon>0$ , which is small
enough and fixed $(0<\epsilon<<\hslash\omega D)$ . It is known that the BCS gap equation (1.1) is based
on a superconducting state called the BCS state. In this connection, see [11, (6.1)] for a
new gap equation based on a superconducting state having a lower energy than the BCS
state.

The integral with respect to $\xi$ in (1.1) is sometimes replaced by the integral over $\mathbb{R}^{3}$

with respect to the wave vector $k$ . Odeh [9], and Billard and Fano [3] established the
existence and uniqueness of the positive solution to the BCS gap equation in the case
$T=0$ . In the case $T\geq 0$ , Vansevenant [10] determined the transition temperature (the
critical temperature) and showed that there is a unique positive solution to the BCS gap
equation. Recently, Frank, Hainzl, Naboko and Seiringer [5] gave a rigorous analysis of
the asymptotic behavior of the transition temperature at weak coupling. Hainzl, Hamza,
Seiringer and Solovej [6] proved that the existence of a positive solution to the BCS gap
equation is equivalent to the existence of a negative eigenvalue of a certain linear operator
to show the existence of a transition temperature. Moreover, Hainzl and Seiringer [7]
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derived upper and lower bounds on the transition temperature and the energy gap for the
BCS gap equation.

Since the existence and uniqueness of the solution were established for $T$ fixed in
previous papers, the temperature dependence of the solution is not covered. Studying
the temperature dependence of the solution to the BCS gap equation is very important.
This is because, by dealing with the thermodynamical potential, this study leads to the
mathematical challenge of showing that the transition to a superconducting state is a
second-order phase transition.

In this paper, in order to show how the solution varies with the temperature, we first
give another proof of the existence and uniqueness of the solution to the BCS gap equation
(1.1). More precisely, we show that the solution belongs to $V_{T}$ (see (2.1) below). Note
that the set $V_{T}$ depends on $T$ . We define a certain subset $W$ (see (2.2) below) of a Banach
space consisting of continuous functions of both $T$ and $x$ . We approximate the solution
by an element of $W$ . We second show, under this approximation, that the transition to
a superconducting state is a second-order phase transition. In other words, we show that
the condition that the solution belongs to $W$ is a sufficient condition for $t1_{1(}\cdot s(.(()n$ -order
phase transition in superconductivity. We finally show that the solution to the BCS gap
equation (1.1) is continuous with respect to both $T$ and $x$ when $T$ satisfies a certain
condition.

Let

(1.2) $U(x, \xi)=U_{1}$ at all $(x, \xi)\in[\epsilon, \hslash\omega D]^{2},$

where $U_{1}>0$ is a constant. Then the gap function depends on the temperature $T$ only.
$S()$ we $(le1i(tet]_{1(}\rangle gap$ function $by \triangle_{1} in t1_{1}is(as(^{i}, i.(\backslash ., \triangle_{1} : T\mapsto\triangle_{1}(T)$. Then (1.1) leads
to the simple gap equation

(1.3) $1=U_{1}l^{\hslash\omega}D \frac{1}{\sqrt{\xi^{2}+\triangle_{1}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\triangle_{1}(T)^{2}}}{2T}d\xi.$

It is known that superconductivity occurs at temperatures below the transition tempera-
ture. The following is the definition of the transition temperature, which originates from
the simple gap equation (1.3).

Definition 1.1 ([2]). The transition temperature originating from the simple gap equa-
tion (1.3) is the temperature $\tau_{1}>0$ satisfying

$1=U_{1}l^{\hslash\omega}D \frac{1}{\xi}\tanh\frac{\xi}{2\tau_{1}}d\xi.$

In $t1_{1(}\backslash$ BCS $i1()(1()1,$ $\tau\iota()a\backslash t^{\backslash }U11C$ that there is a $uni(1ues()]uti()n\triangle_{1}$ : $T\mapsto\triangle_{1}(T)$ to the
simplo $g_{\dot{r}}\iota I$) equation (1.3), and $t1_{1}at\triangle_{1}$ is of class $C^{2}$ with respect to the temperature $T$

(see e.g. [2] and [16, (11.45), p.392]). The author [12] has given a mathematical proof of
the assumption on the basis of the implicit function theorem. Set

(1.4) $\triangle=\frac{\sqrt{(\hslash\omega_{D}-\epsilon c^{1/U_{1}})(D}}{\sinh\frac{1}{U_{1}}}$ .
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Proposition 1.2 ([12, Proposition 2.2]). Let $\triangle$ be as in (1.4). Then there is a unique
nonnegative solution $\triangle_{1}:[0. \tau_{1}]arrow[0, \infty)$ to the simple gap equation (1.3) such that the
solution $\triangle_{1}$ is continuous and strictly decreasing on the closed interval $[0. \tau_{1}]$ :

$\triangle_{1}(())=\triangle>\triangle_{1}(T_{1})>\triangle_{1}(T_{2})>\triangle_{1}(\tau_{1})=0, 0<T_{1}<T_{2}<\tau_{1}.$

Moreover, the solution $\triangle_{1}$ is of class $C^{2}$ on the interval $[0.$ $\tau_{1})$ and satisfies
$\triangle_{1}’(())=\triangle_{1}"(0)=0$ and $\lim_{T\uparrow\tau_{1}}\triangle_{1}’(T)=-\infty.$

Remark 1.3. $W(^{\backslash }s(\backslash \dagger\triangle_{1}(T)=0$ for $T>\tau_{1}.$

Remark 1.4. In PropositioIll. $2,$ $\triangle_{1}(T)$ is nothing but $\sqrt{f(T)}$ in [12, Proposition 2.2].

Let $0<U_{1}<U_{2}$ , where $U_{2}>0$ is a constant. We assume the following condition on
$U(\cdot, \cdot)$ :

(1.5) $U_{1}\leq U(x, \xi)\leq U_{2}$ at all $(x, \xi)\in[\epsilon, \hslash\omega_{D}]^{2},$ $U(\cdot, \cdot)\in C^{2}([\vee-, 7_{l}\omega D]^{2})$ .

When $U(x, \xi)=U_{2}$ at all $(x, \xi)\in[\epsilon, f\prime\omega D]^{2}$ , an argument similar to that in Proposition
1.2 gives $t1_{1}aft1_{1(^{\backslash }}r()$ is a $uni(1^{t1()}$ nonnegative solution $\triangle_{2} : [0. \tau_{2}]arrow[0, \infty)$ to the simple
gap equation

(1.6) $1=U_{2}l^{\hslash\omega_{D}} \frac{1}{\sqrt{\xi^{2}+\triangle_{2}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\triangle_{2}(T)^{2}}}{2T}d\xi, 0\leq T\leq\tau_{2}.$

Here, $\tau_{2}>0$ is defined by

(1.7) $1=U_{2}l^{\hslash\omega}D \frac{1}{\xi}\tanh\frac{\xi}{2\tau_{2}}d\xi.$

We again $s()t\triangle_{2}(T)=0$ for $T>\tau_{2}.$ $A$ straightforward calculation gives the following.

Lemma 1.5 ([13, Lemma 1.5]). (a) The inequality $\tau_{1}<\tau_{2}$ holds.
(b) If $0\leq T<\tau_{2}$ , then $\triangle_{1}(T)<\triangle_{2}(T)$ . If $T\geq\tau_{2}$ , then $\triangle_{1}(T)=\triangle_{2}(T)=0.$

On the basis of Proposition 1.2, the author [12, Theorem 2.3] proved that the transition
to a superconducting state is a second-order phase transition under the restriction (1.2).

As is $1i1()$ tioned above, we now introduce $t1_{1(^{Y}}t1_{1}erlnodia1$ potential $\zeta$ ) fo study the
phase transition in superconductivity. For more details on the thermodynamical potential,
see e.g. [2, sec. III] or Niwa [8, sec. 7.7.3]. Let $N(x)\geq 0$ stand for the density of states per
unit energy at the energy $x$ $(-\mu\leq x<\infty)$ and set $N_{0}=N(0)>0$ . Here, $N_{0}$ stands for
the density of states per unit energy at the Fermi surface $(x=0)$ . Note that the function
$x\mapsto N(x)$ is continuous on $[-\mu, \infty)$ . For the gap function $u$ , set

$fl_{S}(T)=\zeta l_{N}(T)+\Psi(T)$ ,

where

(1.8) $11_{N}(T) = -2N_{0}./ \epsilon^{\hslash\omega}D_{xdx-4N_{0}T}\int_{C}^{\hslash\omega}D\ln(1+e^{-x/T})dx$

$+\Phi(T) , T>0,$
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(1.9) $\Phi(T)$ $=$ $2 \int^{-}/\gamma_{1\omega}.-\gamma_{1\omega}dx$

$-2T \int_{\gamma_{1\omega}}^{\infty}DN(x)\ln(1+e^{-x/T})dx, T>0,$

(1.10) $\Psi(T) = -2N_{0}.\int_{\epsilon}^{\gamma_{1\omega_{D}}}\{\sqrt{x^{2}+u(T,x)^{2}}-x\}dx$

$+N_{0}. \int_{\epsilon}^{\gamma_{1\omega}}D\frac{u(T,x)^{2}}{\sqrt{x^{2}+u(T,x)^{2}}}\tanh\frac{\sqrt{x^{2}+u(T,x)^{2}}}{2T}dx$

$-4N_{0}T. \int_{C}^{\gamma_{1\omega}}D\ln\frac{1+e^{-\sqrt{x^{2}+u(T,x)^{2}}/T}}{1+e^{-x/T}}dx, 0<T\leq T_{c}.$

Here, $T_{c}$ is the transition temperature defined by Definition 2.4 below and originates from
the BCS gap equation (1.1).

Remark 1.6. The $integra1.\int_{\gamma_{1\omega D}}^{\infty}N(x)\ln(1+e^{-x/T})dx$ on the right side of (1.9) is well

defined for $T>0$ , since $N(x)=O(\sqrt{x})$ as $xarrow\infty.$

Definition 1.7. $L(.t1l_{S}(T)$ and $\zeta\}_{N}(T)b_{()}$ ass above. $T1_{1(}\cdot t1_{1(^{i}}rmod nain(a1$ pot $(^{\backslash }ntia1$ S2
in the BCS model is defined by (see e.g. Niwa [8, sec. 7.7.3])

$\ddagger l(T)=\{\begin{array}{ll}tl_{S}(T) (0<T\leq T_{c}) ,\zeta l_{N}(T) (T>T_{c}) .\end{array}$

Remark 1.8. Gcncrally speaking. $f1_{1(}\cdot t1_{1(\Gamma Ii1()}dynaInica1p()tenfialt1$ is a fun$(\uparrow io$ of $t1_{1}$

temperature $T$ , the chemical potential $\mu$ and the volume of our physical system. Fixing
both $\mu$ and $t1_{1C^{\backslash }}$. voluune $()f()ur$ physical system, $w(^{\backslash }c1_{(^{\backslash }}al$ wit $1_{1}t1_{1}c^{\backslash }(I)(ndcnc\cdot$ of $\zeta\}$ on $t1_{1}c^{\backslash }$

temperature $T$ only.
Remark 1.9. Hainzl, Hamza, Seiringer and Solovej [6] studied the BCS gap equation with
a more general potential examiming the thermodynamic pressure.
Remark 1.10. It is $sl_{1}ow$ in [12, $L()nnn_{\dot{e}}rg(i.1$ and 6.2] $t1_{1}at$ bot $\iota_{1}$ of $t1\iota()$ functions ( $\}_{N}$ (see
(1.8) $)$ and $\Phi$ (see (1.9)), regarded as functions of $T$ , are of class $C^{2}$ on $(0, \infty)$ .

Definition 1.11. We say that the transition to a superconducting state at the transition
temperature $T_{c}$ is a second-order phase transition if the following conditions are fulfilled.

(a) $T1_{1C^{\backslash }}t]_{1(^{>}\Gamma 1i1()(\iota_{ynali1}i_{C}\cdot a1}$ potential $S$ ), $r(^{\backslash }garclec1_{\dot{c}kb}$ a function of $T$ , is of class $C^{1}$ on
$(0, \infty)$ .

(b) $T1_{1(}\backslash t1_{1(^{)}\Gamma in(}dyna\iota nica1$ potential $\zeta$ }, regarded as a $fnn(\uparrow io$ of $T$ , is of class $C^{2}$

on $(0, \infty)\backslash \{T_{c}\}$ , and the second-order partial derivative $(\partial^{2}fl/\partial T^{2})$ is discontinuous at
$T=T_{c}.$

Remark 1.12. As is known in condensed matter physics, condition (a) implies that the
entropy $S=-(\partial\ddagger l/\partial T)$ is continuous on $(0, \infty)$ and that, as a result, no latent heat is
observed at $T=T_{c}$ . On the other hand, (b) implies that the specific heat at constant
volume, $C_{V}=-T(\partial^{2}\ddagger l/\partial T^{2})$ , is discontinuous at $T=T_{c}$ an$(1t1_{1}atf1_{1()}g_{\dot{r}}\iota\iota)\triangle C_{V}$ in the
specific heat at constant volume is observed at $T=T_{c}$ . For more details on the entropy
well as the specific heat at constant volume, see e.g. [2, sec. III] or Niwa [8, sec. 7.7.3].
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2 Main results

Let $0\leq T\leq\tau_{2}$ and fix $T$ , where $\tau_{2}$ is that in (1.7). We first consider the Banach space
$C([\vee\wedge, \Gamma_{l}\omega D])$ consisting of continuous functions of $x$ only, and deal with the following subset
$V_{T}$ :

(2.1) $V_{T}=\{u(T, \cdot)\in C([\vee\wedge, \gamma_{1\omega}D]):\triangle_{1}(T)\leq u(T, x)\leq\triangle_{2}(T) at x\in[\epsilon, \Gamma_{l}\omega D]\}.$

Remark 2.1. The set $V_{T}$ depends on $T$ . So we denote each element of $V_{T}$ by $u(T, \cdot)$ .
As is mentioned in the introduction, the existence and uniqueness of the solution to

the BCS gap equation were established in previous papers [3, 5, 6, 7, 9, 10]. However the
temperature $T$ was fixed, and hence the temperature dependence of the solution is not
covered. So we give another proof of the existence and uniqueness of the solution to the
BCS gap equation (1.1) so as to show how the solution varies with the temperature. More
precisely, we show that the solution belongs to $V_{T}$ . Note that Proposition 1.2 and Lemma
1,5 point ouf how $\triangle_{1}$ and $\triangle_{2}d_{P^{(}}()w$ on $f1_{1(^{\backslash }}\uparrow(^{)}11P^{(rafure}\backslash an(1$ how $\triangle_{1}$ an$(1\triangle_{2}$ vary with
the temperature.

Theorem 2.2 ([13, Theorem 2.2]). Assume condition (1.5) on $U(\cdot, \cdot)$ . Let $T\in[0. \tau_{2}]$

be fixed. Then there is a unique nonnegative solution $u_{0}(T, \cdot)\in V_{T}$ to the $BCS$ gap equation
(1.1):

$u_{0}(T, x)=l^{\hslash\omega_{D}} \frac{U(x,\xi)u_{0}(T,\xi)}{\sqrt{\xi^{2}+u_{0}(T,\xi)^{2}}}\tanh\frac{\sqrt{\xi^{2}+u_{0}(T,\xi)^{2}}}{2T}d\xi,$ $x\in[\epsilon, \hslash\omega D].$

Consequently, the solution is continuous with respect to $x$ and varies with the tempemture
as follows:

$\triangle_{1}(T)\leq u_{0}(T, x)\leq\triangle_{2}(T)$ at $(T, x)\in[0, \tau_{2}]\cross[\epsilon, \hslash\omega_{D}].$

Remark 2.3. In fact, Theorem 2.2 holds true under

$U_{1}\leq U(x, \xi)\leq U_{2}$ at all $(x, \xi)\in[\epsilon, \hslash\omega D]^{2},$ $U(\cdot, \cdot)\in C([\vee-, \gamma_{1\omega}D]^{2})$ .

But we assume condition (1.5) on $U(\cdot, \cdot)$ instead. This is because we deal with the subset
$W$ (see (2.2) below) so as to prove Theorem 2.9.

The existence of the transition temperature $T_{c}$ is pointed out in previous papers [5, 6,
7, 10]. In our case, it is defined as follows.

Definition 2.4. Let $u_{0}(T, \cdot)\in V_{T}$ be as in Theorem 2.2. The transition temperature
$T_{c}$ originating from the BCS gap equation (1.1) is defined by

$T_{c}= \inf\{T>0:u_{0}(T, x)=0$ at all $x\in[\in,$ $\hslash\omega D]\}.$

Remark 2.5. Combining Definition 2.4 with Theorem 2.2 implies that $\tau_{1}\leq T_{c}\leq\tau_{2}$ . For
$T>T_{c}$ , we set $u_{0}(T, x)=0$ at all $x\in[\epsilon, \hslash\omega D].$
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We next consider the Banach space $C([O, T_{c}]\cross[\epsilon, \hslash\omega D])$ consisting of continuous func-
tions of both $T$ and $x$ . Let us consider the following condition. which gives the behavior
of functions as $Tarrow T_{c}$ . We assume condition (1.5) on $U(\cdot, \cdot)$ . Let $T_{c}$ be as in Definition
2.4 and let $\epsilon_{1}>0$ be arbitrary.
Condition (C). For $u\in C([O, T_{c}]\cross[\Gamma, r,])\cap C^{2}((0, T_{c})\cross[\epsilon, r\prime\omega D])$ , there are $v,$ $w\in$

$C([\vee-, \gamma_{1\omega}D])$ satisfying the following.
(Cl) $v(x)>0$ at all $x\in[\epsilon, \hslash\omega D].$

(C2) For $\epsilon_{1}>0$ , there is a $\delta>0$ such that $|T_{c}-T|<\delta$ implies

$|v(x)- \frac{u(T,x)^{2}}{T_{c}-T}|<T_{c}\epsilon_{1}$ and $|v(x)+2u(T, x) \frac{(Ju}{\partial T}(T, x)|<T_{c}\epsilon_{1},$

where $\delta$ does not depend on $x\in[\epsilon, \gamma_{1\omega_{D}}].$

(C3) Set $f(T, x)=u(T, x)^{2}$ . Then, for $\epsilon_{1}>0$ , there is a $\delta>0$ such that $|T_{c}-T|<\delta$

implies

$| \frac{w(x)}{2}+\frac{f(T,x)+(T_{c}-T)\frac{(Jf}{\partial T}(T,x)}{(T_{c}-T)^{2}}|<\epsilon_{1}$ and $|w(x)- \frac{\partial^{2}f}{\partial T^{2}}(T, x)|<\epsilon_{1},$

where $\delta$ does not depend on $x\in[\epsilon, \Gamma\prime\omega D].$

Remark 2.6. If $u\in C([O, T_{c}]\cross[\epsilon, \gamma_{1\omega_{D}])}\cap C^{2}((0, T_{c})\cross[\epsilon, \hslash\omega D])$ satisfies condition (C),
then $u(T_{c}, x)=0$ at all $x\in[\epsilon, \hslash\omega D].$

We deal with the following subset $W$ of the Banach space $C([O, T_{c}]\cross[\epsilon, \hslash\omega D])$ .

(2.2)
$W$ $=$ $\{u\in C([0, T_{c}]\cross[\epsilon, \hslash\omega D])\cap C^{2}((0, T_{c})\cross[\epsilon, \hslash\omega D]):\triangle_{1}(T)\leq u(T, x)\leq\triangle_{2}(T)$

at $(T, x)\in[0, T_{c}]\cross[\epsilon, \gamma_{1\omega}D],$ $u$ satisfies condition $(C)\}.$

Remark 2.7. Let $u\in W$ . Then, for $T\geq T_{c}$ , we set $u(T, x)=0$ at all $x\in[\epsilon, \Gamma_{I}\omega D].$

Define a mapping $A$ by

(2.3) $Au$ $(T, x)= \int_{\epsilon}^{\hslash\omega D}\frac{U(x,\xi)u(T,\xi)}{\sqrt{\xi^{2}+u(T,\xi)^{2}}}\tanh\frac{\sqrt{\xi^{2}+u(T,\xi)^{2}}}{2T}d\xi,$ $u\in W.$

Proposition 2.8 ([13, Proposition 2.10]). Assume condition (1.5) on $U(\cdot, \cdot)$ . Let $W$

be as above. Let $u_{0}(T, \cdot)\in V_{T}$ be as in Theorem 2.2.
(a) The mapping $A:Warrow W$ is continuous with respect to the norm of the Banach

space $C([O, T_{c}]\cross[\epsilon, \hslash\omega D])$ .
(b) Let $u\in W.$ Let $0\leq T\leq\tau_{2}$ and fix T. Then all of $u(T, \cdot),$ $Au(T, \cdot)$ and $u_{0}(T, \cdot)$

belong to $V_{T}$ . Consequently, at all $(T, x)\in[0, \tau_{2}]\cross[\epsilon, \Gamma|\omega D],$

$\triangle_{1}(T)\leq u(T, x), Au(T, x), u_{0}(T, x)\leq\triangle_{2}(T)$ .

We choose $U_{1}$ and $U_{2}$ (see (1.5)) such that the following inequality holds:

(2.4) $0 \leq T\leq\tau\sup_{2}|\Delta_{2}(T)-\triangle_{1}(T)|<\epsilon_{2},$
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where $\epsilon_{2}>0$ is small enough. Then it follows from Proposition 2.8 (b) that for $u\in W,$

(2.5)
$|u(T_{1}x)-u_{0}(T, x)|<\epsilon_{2},$ $|Au(T, x)-u_{0}(T, x)|<\epsilon_{2},$ $|Au(T, x)-u(T, x)|<\epsilon_{2}.$

at all $(T, x)\in[0. \tau_{2}]\cross[\epsilon, \gamma_{1\omega}D].$

Approximation (A). The gap function on the right side of (1.10) is the solution $u_{0}$ to
the BCS gap equation (1.1). But no one gives the proof of the statement that there is a
unique solution in $W$ to the BCS gap equation (1.1). In view of (2.5), we then approximate
$u_{0}$ by a $u\in W$ , and replace the gap function on the right side of (1.10) by this $u\in W.$

Let $g:[0, \infty)arrow \mathbb{R}$ be given by

(2.6) $g(\eta)=\{\begin{array}{ll}\frac{1}{\eta^{2}}(\frac{1}{\cosh^{2}\eta}-\frac{\tanh\eta}{\eta}) (\eta>0) ,-\frac{2}{3} (\eta=0) .\end{array}$

Note that $g(\eta)<0.$

Theorem 2.9 ([13, Theorem 2.11]). Assume condition (1.5) on $U(\cdot, \cdot)$ . Let $U_{1}$ and
$U_{2}$ be chosen such that (2.4) holds. We approximate $u_{0}$ of Theorem 2.2 by a $u\in W$ as
stated in approximation $(A)$ above. Let $v\in C([\vee-, \hslash\omega_{D}])$ be as in condition $(C)$ . Then the
following hold.

(a) The transition to a superconducting state at the tmnsition temperature $T_{c}$ is a
second-order phase transition. Consequently, the condition that the solution to the $BCS$ gap
equation (1.1) belongs to $W\dot{\iota}\backslash a,sufficio/tco7((]_{7}fj_{07/}.for$ the sc,$CO7/(]\gamma(^{\lrcorner}7,$ $f7(7/_{/\backslash \cdot i\dagger ior1}\prime$

in superconductivity.
(b) The gap $\triangle C_{V}$ in the specific heat at constant volume at the tmnsition tempemture

$T_{c}$ is given by the form

$\triangle C_{V}=-\frac{N_{0}}{8T_{c}}l_{/(2T_{c})}^{\hslash\omega/(2T_{C})_{v(2T_{c}\eta)^{2}g(\eta)d\eta}}D (>0)$ .

We now assume the following weaker condition instead of (1.5):

(2.7) $U_{1}\leq U(x, \xi)\leq U_{2}$ at all $(x, \xi)\in[\epsilon, \hslash\omega_{D}]^{2},$ $U(\cdot, \cdot)\in C([\vee-, \hslash\omega D]^{2})$ .

Let $U_{0}>0$ be a constant satisfying $U_{0}<U_{1}<U_{2}$ . An argument similar to that in
$r^{\supset}rop_{oS()}itin1.2$ gives $t1_{1}aft1_{1}erc$ is a unique nonnegative solution $\triangle 0:[0. \tau_{0}]arrow[0, \infty)$ to
the simple gap equation

$1=U_{0}l^{\hslash\omega}D \frac{1}{\sqrt{\xi^{2}+\triangle_{0}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\triangle_{0}(T)^{2}}}{2T}d\xi, 0\leq T\leq\tau_{0}.$

Here, $\tau_{0}>0$ is defined by

$1=U_{0}. \int_{\epsilon}^{\hslash\omega_{D}}\frac{1}{\xi}\tanh\frac{\xi}{2\tau_{0}}d\xi.$

$Wc\cdot sc^{\backslash }t\triangle_{0}(T)=0$ for $T>\tau_{0}.$ $A$ straightforward calculation gives the following.
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Lemma 2.10. (a) $\tau_{0}<\tau_{1}<\tau_{2}$

(b) If $0\leq T<\tau_{0}$ , then $0<\triangle 0(T)<\triangle_{1}(T)<\triangle_{2}(T)$ .
(c) If $\tau_{0}\leq T<\tau_{1}$ , then $()=\triangle 0(T)<\triangle_{1}(T)<\triangle_{2}(T)$ .
(d) If $\tau_{1}\leq T<\tau_{2}$ , then $()=\triangle_{0}(T)=\triangle_{1}(T)<\triangle_{2}(T)$ .
(e) If $\tau_{2}\leq T$ , then $()=\triangle_{0}(T)=\triangle_{1}(T)=\triangle_{2}(T)$ .

Remark 2.11. $L(^{\backslash }tt1_{1(}\backslash$ functions $\triangle_{k}(k=0,1,2)b_{(}\backslash$ as ab$()v$(. For ( $a(\}_{1}\triangle_{k}$ , there is the
inverse $\triangle_{k}^{-1}:[0, \triangle_{k}(0)]arrow[0, \tau k]$ . Here,

$\triangle_{k}(0)=\frac{\sqrt{(\hslash\omega D-\epsilon c^{1/U_{k}})(\hslash\omega D-\epsilon c^{-1/U_{k}})}}{\sinh\frac{1}{U_{k}}}$

and $\triangle_{0}(0)<\triangle_{1}(0)<\triangle_{2}(0)$ . See [12] for more details.

Let $(0<)T_{1}<\tau_{0}$ satisfy

(2.8) $\frac{\triangle_{0}(0)}{4\triangle_{2}^{-1}(\triangle_{0}(T_{1}))}\tanh\frac{\Delta_{0}(0)}{4\Delta_{2}^{-1}(\triangle_{0}(T_{1}))}>\frac{1}{2}(1+\frac{4\Gamma^{2}\omega_{D}^{2}}{\Delta_{0}(0)^{2}})$ .

Remark 2.12. Numerically, the temperature $T_{1}$ is very small.

Let $T_{1}$ be as in (2.8). We deal with the following subset $V$ of the Banach space
$C([0, T_{1}]\cross[\epsilon, \gamma_{1\omega}D])$ :

(2.9) $V = \{u\in C([O, T_{1}]\cross[\epsilon, \gamma_{1\omega_{D}])}:\Delta_{1}(T)\leq u(T, x)\leq\triangle_{2}(T)$

at $(T, x)\in[0, T_{1}]\cross[\epsilon, \hslash\omega D]\}.$

Theorem 2.13 ([14, Theorem 2.3]). Assume (2.7). Let $u_{0}$ be as in Theorem 2.2 and
$V$ as in (2.9). Then $u_{0}\in V.$ Consequently, the gap function $u_{0}$ is continuous on $[0, T_{1}]\cross$

$[\epsilon, \hslash\omega D].$
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