Functional Integral Representation of Semi-Relativistic Schrödinger Operator Coupled to Klein-Gordon Field

Kyushu University Toshimitsu Takaesu

1 Introduction

This article is a short review of probabilistic representation of quantum particle system interacting with a quantum field considered in [6]. To analyze quantum physics model mathematicaly, the state space \mathcal{H} of the system is given by a Hilbert space. In many cases, the total Hamiltonian H of the system is a self-adjoint operator on \mathcal{H} . Here assume that H is self-adjoint and bounded from below. Functional integral representation of H is a probabilistic representation of the strongly continuous semi-group $\{e^{-tH}\}_{t\geq 0}$ generated by H. It is seen that the spectral analysis of H can be stochastically investigaed by using functional integral representations. For the details of functional integral representation and its application of quantum physics model, refer to [5].

We investigae the system of a semi-relativistic particle interacting with a Klein-Gordon field. Here we assume that the particle ovey the relativistic Schrödinger operator and the ultraviolet cutoff condition is imposed on the Klein-Gordon field. The functional representation of relativistic Schrödinger operator is investigated in [2]. The particle in the electromagnetic potential with spin is considered in [3] and the spatial decay of the bound states is estimated in [4]. In the following section, the functional integral representation of the relativistic Schrödinger operator is deriven by Levy subordinator according to [3]. In constructive quantum field theory, Klein-Gordon field is constructed by the methods of stochastic process, and the functional integral representations of relativistic Schrödinger operator and Klein-Gordon field, the functional integral representations of relativistic Schrödinger operator and Klein-Gordon field, the functional integral representation is derived by using Eucilidean field. By using the functional integral representations of relativistic Schrödinger operator and Klein-Gordon field, the functional integral representation of the interacting system between semi-relativistic particle and the Klein-Gordon field is derived. From the obtained functional integral representation, we see that if the ground states exist, it is unique and its decay rate can be estimated.

2 Relativistic Schrödinger Operator and Klein-Gordon Field

We assume that the partilcle's Hamiltonian is given the relativistic Schrödinger operator with potential $H_p = \sqrt{-\Delta + M^2} - M + V$ on the Hilbert space $L^2(\mathbf{R}_{\mathbf{x}}^d)$. Here M > 0 is the rest mass of the particle. Let us set $h_{rel}(s) = \sqrt{s + M^2} - M$, s > 0. Since h_{rel} is a Bernstein function, it is seen that there exists a Lévy subordinator $\{T_t\}_{t\geq 0}$ on a probability space $(\Omega_{rel}, \mathfrak{B}_{rel}, P_{rel})$ satisfying $\mathbb{E}_{rel}[e^{-sT_t}] =$ $e^{-th_{rel}(s)}$ where $\mathbb{E}_{rel}[X] = \int_{\Omega_{rel}} X(\eta) dP_{rel}(\eta)$. Let $\{\mathbf{B}_t\}_{t\geq 0}$ be d-dimensional Brownian motion starting \mathbf{x} on the probability space $(\Omega_{BM}, \mathfrak{B}_{BM}, P_{BM}^{\mathbf{x}})$. We introduce the probability space $(\Omega_p, \mathfrak{B}_p, P_p^{\mathbf{x}}) = (\Omega_{rel} \times \Omega_{BM}, \mathfrak{B}_{rel} \otimes \mathfrak{B}_{BM}, P_{rel} \otimes P_{BM}^{\mathbf{x}})$. Then the following functional integral representation for the semi-relativistic particles holds.(See [3]; Theorem 3.8):

$$e^{-tH_{\mathbf{p}}}\boldsymbol{\psi}(\mathbf{x}) = \mathbb{E}_{\mathbf{p}}^{\mathbf{x}}[\boldsymbol{\psi}(\mathbf{X}_{t})e^{-\int_{0}^{t}V(\mathbf{X}_{s})ds}], \qquad (1)$$

where $\mathbf{X}_t((\boldsymbol{\eta}, \boldsymbol{\omega})) = \mathbf{B}_{T_t(\boldsymbol{\eta})}(\boldsymbol{\omega})$ and $\mathbb{E}_p^{\mathbf{x}}[Z] = \int_{\Omega_p} Z(\boldsymbol{\xi}) dP_p^{\mathbf{x}}(\boldsymbol{\xi})$.

Klein-Gordon field is constructed as follows. The Hilbert space \mathcal{K}_{KG} is defined by the completion of the pre-Hilbert space which consists of real valued tempered distribution $f \in S'_{\text{real}}(\mathbf{R}^d)$ satisfying $\|\omega^{-1/2}f\|_{L^2} < \infty$. Here the inner product is given by $(g, f)_{\mathcal{K}_{\text{KG}}} = (\omega^{-1/2}g, \omega^{-1/2}f)_{L^2}$. Then from a general theorem on Gausian random process indexed by Hilbert spaces, there exist a probability space $(Q_{\text{KG}}, \mathfrak{B}_{\text{KG}}, P_{\text{KG}})$ and a random process $\{\phi_f\}_{f \in \mathcal{K}_{\text{KG}}}$ which satisfies $\mathbb{E}[e^{-it\phi_f}] = \exp(-\|f\|_{\mathcal{K}_{\text{KG}}}^2 t^2/4)$. Let $H_{\text{KG}} = d\Gamma(\omega)$ be the second quatization of ω . Then Klein-Gordon field is defined by the triplet $(L^2(Q_{\mathcal{K}_{\text{KG}}}), H_{\text{KG}}, \{\phi_f\}_{f \in \mathcal{K}_{\text{KG}}})$. Let \mathcal{K}_{E} be the completion of the pre-Hilbert space which consists of real-valued tempered distribution $u \in S'_{\text{real}}(\mathbf{R}^{1+d})$ satisfying $\|\omega^{-1}u\|_{L^2} < \infty$. Here the inner product is given by $(v, u)_{\mathcal{K}_{\text{KG}}} = (\omega^{-1}v, \omega^{-1}u)_{L^2}$. Then similar to the construction of the Klein-Gordon field, it is seen that there exist a probability space $(Q_{\text{E}}, \mathfrak{B}_{\text{E}}, P_{\text{E}})$ and a Gaussian random process $\{\phi_u^{\text{E}}\}_{u \in \mathcal{K}_{\text{E}}}$ satisfying $\mathbb{E}[e^{-it\phi_u^{\text{E}}}] = \exp(-\|u\|_{\mathcal{K}_{\text{E}}}^2 t^2/4)$. Then the next functional integral representation follows : (Refer to e.g. [1]; Theorem 7.19).

$$(\Phi, e^{-t(H_{\mathsf{b}} \dotplus P(\phi(f)))} \Psi)_{L^{2}(\mathcal{Q}_{\mathrm{KG}})} = \mathbb{E}_{\mathrm{E}}[\overline{(J_{0}\Phi)}(J_{t}\Psi)e^{-\int_{0}^{t} P(\phi_{\delta_{s}\otimes f}^{\mathrm{E}})ds}].$$
(2)

where J_t is an isometric operator from $L^2(Q_{\mathcal{K}_{KG}})$ to $L^2(Q_{\mathcal{K}_E})$ and $P = \sum_{j=1}^{2n} c_j \lambda^j$.

3 Main Theorem

The interaction system between the semi-relativistic particle and a scalar Bose fields is defined as follows. The state space for the system is given by $\mathcal{H} = L^2(\mathbf{R}_x^d) \otimes L^2(Q_b)$. The total Hamiltonian of the system is defined by form sum of the free Hamiltonian and interaction

$$H_{\kappa} = H_0 + \kappa H_{\rm I}, \qquad \kappa \in \mathbf{R}, \tag{3}$$

where $H_0 = H_p \otimes I + I \otimes H_{KG}$ and $H_I = P(\phi_{\rho_{\Lambda,\mathbf{x}}})$ with $P(\lambda) = \sum_{j=1}^{2n} c_j \lambda^j$, $c_j \in \mathbf{R}$, $j = 1, \dots, 2n-1, c_{2n} > 0$ and $\rho_{\Lambda,\mathbf{x}}$ satisfies that $\hat{\rho}_{\Lambda,\mathbf{x}}(\mathbf{k}) = \hat{\rho}_{\Lambda}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}}$ with the characteristic function ρ_{Λ} on \mathbf{R}^d .

By appling Feynman-Kac formula of relativistic Shrödinger operator and Klein-Gordon and Trotter-Kato product formula, the functional integaral representation of H_{κ} is derived.

Theorem 1

Assume that V is relativistic Kato-class. Then it follows that

$$(\Phi, e^{-tH_{\kappa}}\Psi)_{\mathcal{H}} = \int_{\mathbf{R}^d} \mathbb{E}_{p\times E}^{\mathbf{x}} [\overline{(J_0\Phi(\mathbf{X}_0))}(J_t\Psi(\mathbf{X}_t))e^{-\int_0^t V(\mathbf{X}_s)ds} e^{-\kappa P(\phi^{\mathsf{E}}(\int_0^t \delta_s \otimes \rho_{\mathbf{X}_s}ds))}]d\mathbf{x}$$

It is seen that e^{-tH_p} and $e^{-tH_{KG}}$ are positivity improving operators. In addition, the exponetial decay of the bound states with respect to spacial variable is proven in [4]. Then from the functional integral representation of H, the next corollary immediately follows.

Corollary 2

Assume that V is relativistic Kato class and H_{κ} has the ground state. Then, following (1) and (2) holds.

(1) The ground state is unique.

(2) If $V(\mathbf{x}) \to 0$ or ∞ as $|\mathbf{x}| \to \infty$, the bound state has exponential decay with respecto to spatial variable.

Acknowledgement

This work is supported by KAKENHI:23840029.

References

- [1] A. Arai, *Functional integral methods in quantum mathematical physics*, kyoritsu Publication, 2010.(In Japanese)
- [2] R. Carmona, M. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenvalues, J. Funct. Anal. 91 (1990) 117-142.
- [3] F. Hiroshima, T. Ichinose and J. Lörinczi, Path integral representation for Schrödinger operators with Bernstein functions of laplacian, arxiv (2009).
- [4] F. Hiroshima, T. Ichinose and J. Lorinczi, Probabilistic representation and fall-off of bound states of relativistic Schrödinger operators with spin 1/2, preprint, arxiv (2011).
- [5] J. Lörinczi, F. Hiroshima and V. Betz, *Feynman-Kac-type theorem and Gibbs Measure on path space*, De Gruyter (2011).
- [6] T. Takaesu, Functional integral representation of semi-Relativistic quantum field model with $P(\phi)$ interaction, arxiv 2011.