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Abstract

We review a class of interacting diffusions which have recently been introduced to

model transport of heat in a systems in contact with two reservoirs (C. Giardin\‘a, J.

Kurchan, F. Redig, Duality and exact correlations for a model of heat conduction,

J. Math. Phys. 48, 033301 (2007) $)$ . The models can be exactly solved by means

of a dual stochastic process made of interacting particles which are absorbed at

the boundaries. The construction of the dual process is related to the underlying

structure of $SU(1,1)$ algebra. The class of interacting diffusions includes as a special

case the KMP model.
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lBrownian Energy Process: BEP(m)

We start with the Brownian Momentum Process introduced in [10]. For a set $\Sigma_{m}=$

$\{1, \ldots, m\}$ with $m\in \mathbb{N}$ and for a graph $G=(V, E)$ with vertex set $V$ and edges set $E,$

we consider the real variables $\{x_{\iota,\alpha}\}_{i\in V,\alpha\in\Sigma_{m}}$ and the generator

$L^{BMP(m)}= \sum_{(i,j)\in E}\sum_{\alpha,\beta=1}^{m}(x_{i,\alpha}\frac{\partial}{\partial x_{j,\beta}}-x_{j_{)}\beta}\frac{\partial}{\partial x_{i,\alpha}})^{2}$ (1.1)

The random variables $x_{i,\alpha}(t)$ , evolving with the above generator, represent $m$ momenta

per site at time $t$ , and, in the course of evolution, kinetic energy is exchanged between

any two momenta in neighboring (i.e. connected by an edge) sites. The energies on each

site

$z_{i}(t)= \frac{1}{2}\sum_{\alpha=1}^{m}x_{i,\alpha}^{2}(t)$

evolve with the generator

$L^{BEP(m)}= \sum_{(i,j)\in E}z_{i}z_{j}(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{j}})^{2}-\frac{m}{2}(z_{i}-z_{j})(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{j}})$ (1.2)

This is the Brownian Energy Process, BEP(m). The model (1.2) can actually be de-

fined for a real number $m\in \mathbb{R}$ (i.e. $m$ does not need to be an integer). It is easy to

check that the BEP(m) model has stationary measures given by product measures with

marginals Gamma distributions with shape parameter $m/2$ and scale parameter $1/\lambda$ , i.e.

the marginal stationary density at site $i$ is

$f_{\lambda}(z_{i})= \frac{\lambda^{\frac{m}{2}}}{\Gamma(\frac{m}{2})}z_{i}^{\frac{m}{2}-1}e^{-\lambda z_{?}}$ (1.3)

In particular, for $m=2$ one has products of Exponential distributions with parameter $\lambda.$

2 Symmetric Inclusion process: SIP(m)

The Symmetric Inclusion Process, SIP(m), is an interacting particle systems defined by

the generator

$(L^{SIP(m)}f)( \xi)=\sum_{(i,j)\in E}\xi_{i}(\xi_{j}+\frac{m}{2})[f(\xi^{i,j})-f(\xi)]+\xi_{j}(\xi_{i}+\frac{m}{2})[f(\xi^{j,i})-f(\xi)]$
. (2.4)
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Here $\{\xi_{i}\}_{i\in V}$ are integer variables counting the number of particles at every site $i$ of the

graph. Given the configuration $\xi=(\xi_{1}, \ldots, \xi_{|V|})$ , we denote by $\xi^{i,j}$ the configuration

obtained from $\xi$ by removing one particle at $i$ and placing it at $j.$

One can easily check that product measures with marginals given by Negative Bino-

mials, i,e. with marginal probability mass function at site $i$ given by $(0\leq p\leq 1)$

$\nu_{p}(\xi_{i})=(1-p)^{\frac{m,}{2}}\frac{\Gamma(\frac{m}{2}+\xi_{i})p^{\xi_{i}}}{\Gamma(\frac{m}{2})\xi_{i}!}$ , (2.5)

are reversible, and therefore stationary, measures of the SIP(m) process. In particular,

for $m=2$ one has marginal Geometric distributions with parameter $1-p.$

3 Duality

Definition 3.1 Let $\{X(t)\}_{t\geq 0}$ and $\{Y(t)\}_{t\geq 0}$ be two stochastic processes. We say that

they are dual with duality function $D(\cdot, \cdot)$ if the following relation hold for all $(x, y)$ and

all times $t$

$\mathbb{E}_{x}(D(X(t), y))=\mathbb{E}_{y}(D(x, Y(t)))$ . (3.6)

On the left-hand side we have expectation with respect to the $X(t)$ process initialized at $x,$

while on the right-hanl side we have expectation with respect to the $Y(t)$ process initialized

at $y.$

Theorem 3.1 The process $\{z(t)\}_{t\geq 0}$ with genemtor $L^{BEP(m)}$ and the process $\{\xi(t)\}_{t\geq 0}$

with genemtor $L^{SIP(m)}$ are dual, with duality functions

$D(z, \xi)=\prod_{i\in V}z_{i}^{\xi_{i}}\frac{\Gamma(\frac{m}{2})}{\Gamma(\frac{m}{2}+\xi_{i})}$ (3.7)

Proof: Duality is a consequence of the fact that the generator of the BEP(m) process and

the generator of the SIP (m) process correspond to the same abstract operator $\mathcal{L}_{(m)}$ in two

different representations. The abstract operator is given by the ferromagnetic quantum

spin chain on the graph $G$ , with spins satisfying the $SU(1,1)$ algebra. Namely,

$\mathcal{L}_{(m)}=\sum_{(i,j)\in E}(\mathcal{K}_{(m),i}^{+}\mathcal{K}_{(m),j}^{-}+\mathcal{K}_{(m),i}^{-}\mathcal{K}_{(m),j}^{+}-2\mathcal{K}_{(m),i}^{o}\mathcal{K}_{(m),j}^{o}+\frac{m^{2}}{8})$ (3.8)
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where the spins $\{\mathcal{K}_{(m),i}^{+},$
$\mathcal{K}_{(m),i}^{-},$ $\mathcal{K}_{(m),i}^{o}\}_{i\in V}$ satisfy the $SU(1,1)$ commutation relations:

$[\mathcal{K}_{(m),i}^{O}, \mathcal{K}_{(m),j}^{\pm}]=\pm\delta_{i,j}\mathcal{K}_{(m),i}^{\pm} [\mathcal{K}_{(m),i}^{-}, \mathcal{K}_{(m),j}^{+}]=2\delta_{i,j}\mathcal{K}_{(m),i}^{o}$ (3.9)

The $SU(1,1)$ algebra admit the following two families (labelled by $m$) of infinite dimen-

sional representations:

$\{\begin{array}{l}\mathcal{K}_{(m),i}^{+}=z_{i} \mathcal{K}_{(m),i}^{+}|\xi_{i}\rangle=(\xi_{i}+\frac{m}{2})|\xi_{i}+1\rangle\mathcal{K}_{(m),i}^{-}=z_{i}\partial_{z_{i}}^{2}+\frac{m}{2}\partial_{z_{i}} \mathcal{K}_{(m),i}^{-}|\xi_{i}\rangle=\xi_{i}|\xi_{i}-1\rangle\mathcal{K}_{(m),i}^{0}=z_{i}\partial_{z_{i}}+\frac{m}{4} \mathcal{K}_{(m),i}^{o}|\xi_{i}\rangle=(\xi_{i}+m)|\xi_{i}\rangle\end{array}$ (3.10)

The BEP(m) generator is obtained when writing the abstract operator (3.8) in the rep-

resentation with second order differential operators; the SIP(m) generator is obtained
$w1_{1}e$ writing the abstract operator (3.8) in the representation with infinite dimensional

matrices. The duality functions (3.7) are found by imposing on each site that the action

of the two representations on $D(z_{i}, \xi_{i})$ is the same.
口

4 Heat conduction

As an application to the heat conduction problem, we consider the case with $m=1$ on

a chain with $N$ sites, and couple the BMP(I) process to two heat reservoirs (modeled by

Ornstein-Uhlenbeck process) at different temperatures. Namely we consider the generator

$L^{res}=L_{1}+L_{N}+ \sum_{i=1}^{N-1}L_{i,i+1}^{BMP(1)}$ (4.11)

with

$L_{1}f=T_{L} \frac{\partial^{2}f}{\partial x_{1}^{2}}-x_{1}\frac{\partial f}{\partial x_{1}}$

$L_{N}f=T_{R} \frac{\partial^{2}f}{\partial x_{N}^{2}}-x_{N}\frac{\partial f}{\partial x_{N}}$
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$L_{i,i+1}^{BMP(1)}f=(x_{i} \frac{\partial}{\partial x_{i+1}}-x_{i+1}\frac{\partial}{\partial x_{i}})^{2}(f)$ .

The dual process will be a SIP(I) process with absorbing boundaries. Considering the

two additional sites $0$ and $N+1$ and configurations $\overline{\xi}=(\xi_{0}, \xi_{1}, \ldots, \xi_{N,}.\xi_{N+1})$ the dual

evolution will be given by the generator

$L^{abs}=L_{1}^{abs}+L_{N}^{abs}+ \sum_{i=1}^{N-1}L_{i,i+1}^{SIP(1)}$ (4.12)

with
$(L_{1}^{abs}f)(\overline{\xi})=2\xi_{1}(f(\overline{\xi}^{1,0})-f(\overline{\xi}))$

$(L_{N}^{abs}f)(\overline{\xi})=2\xi_{N}(f(\overline{\xi}^{N,N+1})-f(\overline{\xi}))$

$(L_{i,i+1}^{SIP(1)}f)( \overline{\xi})=\xi_{i}(\xi_{i+1}+\frac{1}{2})[f(\overline{\xi}^{i,i+1})-f(\overline{\xi})]+\xi_{i+1}(\xi_{i}+\frac{1}{2})[f(\overline{\xi}^{i+1,i})-f(\overline{\xi})]$

Then one has the following

Proposition 4.1 The process $\{x(t)\}_{t\geq 0}$ with generator $L^{}$ is dual to the process $\{\overline{\xi}(t)\}_{t\geq 0}$

with genemtor $L^{abs}$ on

$D(x, \overline{\xi})=T_{1}^{\xi_{0}}(\prod_{i=1}^{N}\frac{x_{i}^{2\xi_{i}}}{(2\xi_{i}-1)!!})T_{N}^{\xi_{N+1}}$ (4.13)

Proof: It follows from Theorem 3.1 and the identity

$\Gamma(n+\frac{1}{2})=\frac{(2n-1)!!}{2^{n}}\sqrt{\pi}.$

The boundaries terms are checked with an explicit computation. 口

Proposition 4.2 $Let\mathbb{E}(\cdot)$ be the expectation in the stationary states of the non-equilibreum

statistical mechanics process with generator $L^{res}$ and let $\xi=(0, \xi_{1}, \ldots, \xi_{N}, 0)$ . Then the

following holds

$\mathbb{E}(D(x, \xi))=\sum_{a,b:a+b=|\xi|}T_{1}^{a}T_{N}^{b}\mathbb{P}_{\overline{\xi}}(\xi_{0}(\infty)=a, \xi_{N+1}(\infty)=b)$
(4.14)

where $| \xi|=\sum_{i=1}^{N}\xi_{i}$ denotes the total number of SIP dual walkers and $\mathbb{P}_{\xi}(\xi_{0}(\infty)=$

$a,$ $\xi_{N+1}(\infty)=b)$ de77,otes the probability that, starting $f_{7’}om$ the configumtion $\xi$ , the number

of dual walkers eventually absorbed in $0$ is $a$ and the number of those absorbed in $N+1$

is $b.$
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Proof: It is a consequence of the fact that, asymptotically, the dual process voids the

chain:

$\mathbb{E}(D(x, \xi)) = \lim_{tarrow\infty}\int \mathbb{E}_{x}(D(x_{t}, \xi))d\mu(x)$

$= \int\lim_{tarrow\infty}\mathbb{E}_{\overline{\xi}}(D(x,\overline{\xi}_{t}))d\mu(x)$

$= \int\sum_{a,b:a+b=|\xi|}T_{1}^{a}T_{N}^{b}\mathbb{P}_{\overline{\xi}}(\xi_{0}(\infty)=a, \xi_{N+1}(\infty)=b)d\mu(x)$ .

口

Remark 4.1 If one start from a chain with $m=2$ and consi der an instantaneous ther-

malization limit of the $BEP(2)$ model, then the $KMP$ model $[15J$ is recovered (see $[11J$ for
details).

5 Open problems

A theory of transport in non-equilibrium models is under constrcution [1, 7, 21]. The

problem of heat conduction for Hamiltonian systems is still under hot debate [2, 3, 5,

9, 16, 22]. Stochastic models are useful because they allow sometimes exact solutions

[6, 7, 15]. $A$ class of interacting diffusions-the BEP(m) model-have been introduced in

[10] and further studied in [4, 11, 14, 19]. The dual stochastic process-the SIP(m) model

[12]-resembles in the form of its rates the well-know exclusion process [8, 17, 20] but it

has attractive interactions [13], rather than repulsive. In [11] the origin of duality has been

traced back to the underlying geometrical structure of a group (see also [18]). Among the

open problem we mention: i) the construction of duality between an asymmetric version

of inclusion process $ASIP_{q}(m)$ and brownian energy process $ABEP_{q}(m)$ . Following the

scheme developed in [11] this should involve the deformed quantum group $SU_{q}(1,1)$ ; ii) a

full ergodic theory of SIP$/BEP$ model; iii) the explicit solution for the stationary measure

for models with reservoirs, akin to the exclusion process.
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