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Abstract

In this paper, we give a survey on universality theorems of the collection
of various zeta-functions, when one of them has an Euler product and other
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1 Introduction

As usual, by $\mathbb{P},\mathbb{N},\mathbb{Z},\mathbb{R}$ and $\mathbb{C}$ we denote the set of all primes, positive integers,
integers, real and complex numbers, respectively, and let $s=\sigma+it$ be a complex
variable.

The most important zeta-function is the well-known Riemann zeta-function
$\zeta(s)$ , for $\sigma>1$ , defined by the Dirichlet series

$\zeta(s)=\sum_{m=1}^{\infty}\frac{1}{m^{s}},$

respectively by the Euler product

$\zeta(s)=\prod_{p\in \mathbb{P}}(1-\frac{1}{p^{s}})^{-1}$ (1)

The investigation of statistical properties of the Riemann zeta-function was
initiated by H. Bohr in 1910 and developed by many mathematicians. For examp-
le, B. Bagchi, V. Borchsenius, P.D.T.A. Elliott, R. Garunk\v{s}tis, A. Ghosh, A. Good,

J. Ignatavi\v{c}iute, B. Jessen, A. Laurin\v{c}ikas, K. Matsumoto, H. Mishou, H. Na-
goshi, T. Nakamura, A. Selberg, E. Stankus, J. Steuding, R. Steuding (formerly
$\check{S}le\check{z}evi\check{c}ien\dot{e})$, W. Schwarz, A. Wintner, and others. For more details, see [18],

[19], [26], [27].
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Limit theorems we can formulate in the terminology of the weak convergence
of probability measures. By $\mathscr{B}(S)$ we denote the family of Borel subsets of the
space $S$ . Let $P_{n}$ and $P$ be probability measures on the space $(S,\mathscr{B}(S))$ . We say
that $P_{n}$ converges weakly to $P$ as $n$ tends to infinity if, for all bounded continuous
functions $f$ : $Sarrow \mathbb{R},$

$\lim_{narrow\infty}\int_{S}fdP_{n}=\int_{S}fdP.$

Denote by meas$\{A\}$ the Lebesgue measure of a measurable set $A\subset \mathbb{R}$ , and,

for $T>0$ , define
$v_{T}(\cdots$ $)= \frac{1}{T}$ meas $\{\tau\in[O,T] :\cdots\},$

where in place of dots a condition satisfied by $\tau$ is to be written.
We can constmct limit theorems in various functional spaces. In this paper, the

main attention we devote to the limit theorems in the space of analytic functions.
Let $H(G)$ be the set of all analytic on the region $G$ functions with the topology

of umiform convergence on compacta. Let $\{K_{j}\}$ be a sequence of compact subsets
of $G$ such that:

(1) $G= \bigcup_{j=1}^{\infty}K_{j}$ ;

(2) $K_{j}\subset K_{j+1}$ for every $j\in \mathbb{N}$ ;

(3) if $K$ is compact and $K\subset G$, then $K\subset K_{j}$ for some $j\in \mathbb{N}.$

Now, for every functions $f,g\in H(G)$ , let

$p_{j}(f,g)= \max_{s\in K_{J}}|f(s)-g(s)|,$

and define
$\rho(f,g)=\sum_{j=1}^{\infty}\frac{1}{2^{j}}\frac{\rho_{j}(f,g)}{1+p_{j}(f,g)}.$

Then $\rho$ is a metric on $H(G)$ which induces its topology. It is well-known that the
space $H(G)$ is a separable complete metric space [3].

In [1], B. Bagchi proved following statement for the Riemann zeta-function
$\zeta(s)$ . Let $D= \{s\in \mathbb{C}:\frac{1}{2}<\sigma<\iota\}.$

Theorem 1 ([1]) There exists a probability measure QH on $(H(D), \mathscr{B}(H(D)))$

such that

$\frac{1}{T}meas\{\tau\in[O,T]:\zeta(s+i\tau)\in A\}, A\in \mathscr{B}(H(D))$ ,

weakly converges to QH as $Tarrow\infty.$
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Also, the explicit form of the probability measure is obtained, i.e. it is proved
that the probability measure QH coincides with the distribution of the random
element for the function $\zeta(s)$ .

A natural generalization without Euler product of the function $\zeta(s)$ is the Hur-
witz zeta-function. Let $\alpha$ be a fixed parameter, $0<\alpha\leq 1$ . The Hurwitz zeta-
function $\zeta(s, \alpha)$ in the half-plane $\sigma>1$ is defined by the series

$\zeta(s, \alpha)=\sum_{m=0}^{\infty}\frac{1}{(m+\alpha)^{s}},$

and has an analytic continuation to the whole complex plane except a simple pole
at $s=1$ with residue 1. If $\alpha=1$ , then the Hurwitz zeta-function $\zeta(s, 1)$ becomes
the Riemann zeta-function $\zeta(s)$ . On the other hand, when $\alpha\neq 1$ the situations of
the smdy of the value distribution of $\zeta(s,\alpha)$ are completely different according to
the arithmetical nature of $\alpha$ . When $\alpha=\frac{a}{q},$ $a,q\in \mathbb{N}$ , is rational number $\neq\frac{1}{2},1$ , the
Hurwitz zeta-function can be represented as a sum of Dirichlet $L$-functions

$\zeta(s, \frac{a}{q})=q^{s}\sum_{\chi}\overline{\chi}(a)L(s,\chi)$ ,

where $\chi$ runs over the set of Dimrichlet characters modulo $q$ . We recall that the
$D\ddot{m}$chlet $L$-function $L(s,\chi)$ attached to a character $\chi mod d,$ $d\in \mathbb{N}$ , on the half-
plane $\sigma>1$ , is given by the series

$L(s, \chi)=\sum_{m=1}^{\infty}\frac{\chi(m)}{m^{s}}.$

If $\chi_{0}$ is the principal character modulo $d$, then $L(s,\chi_{0})$ is analytic for $\sigma>1$ , and,
if $\chi$ is a non-principal character, then $L(s,\chi)$ is analytic in the half-plane $\sigma>0.$

For $\sigma>1$ , the function $L(s,\chi)$ has the Euler product representation

$L(s, \chi)=\prod_{p\in \mathbb{P}}(1-\frac{\chi(p)}{p^{s}})^{-1}$

When $\alpha$ is a transcendental real number, then the function $\zeta(s, \alpha)$ has no
such expression as (1). Instead, it follows from the transcendency of $\alpha$ that the
set $\{\log(m+\alpha) : m\in \mathbb{N}\cup\{0\}\}$ is linearly independent over the field of rational
numbers $\mathbb{Q}$ . In both cases, some statistical properties of the Hurwitz zeta-function
have been obtained (see, for example, B. Bagchi [1], S.M. Gonek [5]).

Also, interesting objects are so called periodic zeta-functions, i.e., the zeta-
functions with periodic coefficients.

Let $\mathfrak{a}=\{a_{m}:m\in \mathbb{N}\}$ be a periodic with the least period $k\in \mathbb{N}$ sequence of
complex numbers. The periodic zeta-function $\zeta(s;\mathfrak{a})$ , for $\sigma>1$ , is deftned by the
series

$\zeta(s;\mathfrak{a})=\sum_{m=I}^{\infty}\frac{a_{m}}{m^{s}},$
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and by analytic continuation elsewhere. From the periodicity of sequence $\mathfrak{a}$ fol-
lows that, for $\sigma>1,$

$\zeta(s;\mathfrak{a})=\frac{1}{k^{s}}\sum_{m=1}^{k}a_{m}\zeta(s, \frac{m}{k})$ , (2)

where $\zeta(s, \alpha)$ is the Hurwitz zeta-function. Equality (2) gives an analytic conti-
nuation to the whole complex plane for the function $\zeta(s;\mathfrak{a})$ , except, maybe for the
point $s=1$ with residue

$a= \frac{1}{k}\sum_{m=1}^{k}a_{m}.$

If $a=0$, then $\zeta(s;\mathfrak{a})$ is an entire function.
Note, if the sequence $\mathfrak{a}$ is completely multiplicative, then the periodic zeta-

function $\zeta(s;\mathfrak{a})$ coincides with the $D\ddot{m}$chlet $L$-function (we say that the sequence
$\mathfrak{a}$ is completely multiplicative if, for all $m,n\in \mathbb{N}$ , the equality $a_{mn}=a_{m}\cdot a_{n}$ holds).

The periodic Hurwitz zeta-function $\zeta(s, \alpha;\mathfrak{b})$ with a fixed parameter $\alpha,$ $0<$

$\alpha\leq 1$ , is defined, for $\sigma>1$ , by

$\zeta(s, \alpha;\mathfrak{b})=\sum_{m=0}^{\infty}\frac{b_{m}}{(m+\alpha)^{s}},$

where $b=\{b_{m}:m\in \mathbb{N}\cup\{0\}\}$ is a periodic sequence of complex numbers $b_{m}$ with
a minimal period $l\in \mathbb{N}$ . From the periodicity of $b$ , for $\sigma>1$ , we have

$\zeta(s, \alpha;\mathfrak{b})=\frac{1}{l^{s}}\sum_{m=0}^{l-1}b_{m}\zeta(s, \frac{m+\alpha}{l})$ .

This gives an analytic continuation of the function $\zeta(s, \alpha;\mathfrak{b})$ to the whole complex
plane, except, for a simple pole at $s=1$ with residue

$b= \frac{1}{l}\sum_{m=0}^{l-1}b_{m}.$

If $b=0$, then periodic Hurwitz zeta-function is an entire function.
Many authors, among them A. Javtokas, A. Ka\v{c}enas, A. Laurin\v{c}ikas, R. Ma-

caitiene, J. Steuding, D. \v{S}iau\v{c}iunas, the author and other mathematicians investi-
gated the value distribution of periodic zeta-functions (see [6], [7], [8], [15], [17],

[25] $)$ .
Functional limit theorems characterize the asymptotic behaviour of the zeta-

functions. In [1], B. Bagchi noted that they can be applied to the proof of univer-
sality.

In [29], S.M. Voronin proved that every analytic non-vanishing function on
compact subsets can be approximated by the shifts of the Riemann zeta-function
$\zeta(s)$ . Now this property we call as universality.
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Theorem 2 ([29]) Let $0<r< \frac{1}{4}$ , and let $f(s)$ be any non-vanishing continuous

function on the disc $|s|\leq r$ which is analytic in the interior of this disc. Then, for
every $\epsilon>0$, there exists a number $\tau=\tau(\epsilon)\in \mathbb{R}$ such that

$\max_{|s|\leq r}|\zeta(s+\frac{3}{4}+i\tau)-f(s)|<e.$

We can state it in modem terninology.

Theorem 3 $([l])$ Let $K$ be a compact subset of the strip $D= \{s\in \mathbb{C}:\frac{1}{2}<\sigma<1\}$

with connected complement. Let $f(s)$ be a continuous non-vanishingfunction on
$K$ which is analytic in the interior ofK. Then, for every $\epsilon>0,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\sup_{s\in}|\zeta(s+i\tau)-f(s)|<\epsilon)>0.$

Theorem 3 shows that the set of translations of the Riemann zeta-function
which approximate a given analytic function $f(s)$ has positive lower density. Be-
cause of the uniqueness of factorization in prime numbers, the set $\{\log p$ :
$p$ is prime} is linearly independent over $\mathbb{Q}$ . This fact and the Euler product repre-
sentation for $\zeta(s)$ play essential role in the proof of the universality theorem.

The universality property holds for several zeta-functions with Euler product.
We mention some results. Conceming zeta-functions over algebraic number
fields, A. Reich obtained the universality for Dedekind zeta-functions [24], H. Mi-
shou obtained the universality for Hecke $L$-functions in the Gr\"ossencharacter as-
pect [20]. Let $f$ be a Hecke eigen-cusp form. If $f$ is holomorphic, the universality
property for the automorphic $L$-function $L(s,f)$ was obtained by A. Laurin\v{c}ikas

and K. Matsumoto [16]. H. Nagoshi proved the universality for $L(s,f)$ in the case
where $f$ is a Maass cusp form [23]. Further, A. Laurin\v{c}ikas [13] investigated the
Matsumoto zeta-function, for which he found a condition for the universality.

There exists a conjecture of Linnik-Ibragimov that all functions in some half-
plane defined by Dirichlet series, analytically continuable to the left of absolute
convergence half-plane and satisfying some natural growth conditions are univer-
sal in Voronin sense.

2 Joint value-distribution of different
zeta-functions

The first result on joint value-distribution of zeta-functions belongs to S.M. Vo-
ronin [28]. He investigated the collection of $D\ddot{m}$chlet $L$-functions with pairwise
non-equivalent characters.

More complicated situation we have in the two-dimensional case when one of
the zeta-functions has Euler product but the other has no.
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2.1 Some joint limit theorems of continuous case
Joint hmit theorems in the sense of the weakly convergent probabihty measures
for different zeta-functions were obtained in particular by H. Mishou [21], [22].

He investigated the joint value distribution of the Riemann zeta-function $\zeta(s)$ and
the Hurwitz zeta-function $\zeta(s, \alpha)$ with the transcendental parameter $\alpha.$

In the proof of the limit theorem, the fact that if $\alpha$ is transcendental number,

the set
$\{\log(m+\alpha) : n\in \mathbb{N}\cup\{0\}\}\cup$ {$\log p:p$ is prime}

is also linearly independent over $\mathbb{Q}$, plays an important role.
Let $D_{0}$ be the half-plane $D_{0}= \{s\in \mathbb{C} : \sigma>\frac{1}{2}\}$ . Denote by $H^{2}(D_{0})$ the

Cartesian product of the spaces of analytic on $D_{0}$ functions equipped with the
topology of uniform convergence on compact subsets $H(D_{0})$ , i.e., $H^{2}(D_{0})=$

$H(D_{0})\cross H(D_{0})$ .
Let $\gamma$ be the unit circle on the complex plane, i.e, $\gamma=\{s\in \mathbb{C}:|s|=1\}$ , and

define

$\Omega_{1}=\prod_{p\in \mathbb{P}}\gamma_{p}$
and $\Omega_{2}=\prod_{m=0}^{\infty}\gamma_{m},$

where $\gamma_{p}=\gamma$ for all primes $p$, and $\gamma_{m}=\gamma$ for all $m\in \mathbb{N}\cup\{0\}$ . By the Tikhonov
theorem, the infinite-dimensional tori $\Omega_{1}$ and $\Omega_{2}$ with product topology and point-
wise multiplication are compact topological Abelian groups. Then on the space
$(\Omega_{j},\mathscr{B}(\Omega_{j}))$ there exists a probability Haar measure $m_{Hj},$ $j=1,2$. This leads to

a probability space $(\Omega_{j},\mathscr{B}(\Omega_{j}),m_{Hj}),$ $j=1,2$. Let $\Omega=\Omega_{1}\cross\Omega_{2}$ . Then $\Omega$ also is
a compact topological Abelian group, and $(\Omega,\mathscr{B}(\Omega),m_{H})$ is a probability space,
where $m_{H}$ is the product ofHaar measures $m_{H1}$ and $m_{H2}$ on the probability spaces
$(\Omega_{1},\mathscr{B}(\Omega_{1}))$ and $(\Omega_{1},\mathscr{B}(\Omega_{2}))$ , respectively, i.e., $m_{H}=mH1\cross m_{H2}$ . Denote by
$\omega_{1}(p)$ the projection of $\omega_{1}\in\Omega_{1}$ to the coordinate space $\gamma_{p}$ for any $p$ , and, for any
positive integer $m$, define

$\omega_{1}(m)=\prod_{p^{g}\Vert m}\omega_{1}^{g}(p)$
,

where $p^{g}\Vert m$ means that $p^{g}|m$ but $p^{g+1}\nmid m$ . Also, denote by $\omega_{2}(m)$ the projection
of $\varpi_{2}\in\Omega_{2}$ to the coordinate space $\gamma_{m}$ for any $m\in \mathbb{N}\cup\{0\}.$

For $\sigma>\frac{1}{2}$ and $(\omega_{1}, \infty)\in\Omega$ , we define

$\underline{Z}(s, \omega)=(\zeta(s, \omega_{1}), \zeta(s, \alpha, W))$ , (3)

where

$\zeta(s, \omega_{1})=\sum_{m=1}^{\infty}\frac{\omega_{1}(m)}{m^{s}}$ and $\zeta(s, \alpha, \omega_{2})=\sum_{m=0}^{\infty}\frac{の_{}2(m)}{(m+\alpha)^{s}}.$
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Since, for almost all $\omega\in\Omega$ , these series converge uniformly on compact sub-
sets of $D_{0},\underline{Z}(s, \omega)$ is an $H^{2}(D_{0})$ -valued random element on the probability space
$(\Omega,\mathscr{B}(\Omega),m_{H})$ . Denote by $P_{\underline{Z}}$ the distribution of the random element $\underline{Z}(s, \omega)$ , i.e.,

$P_{\underline{Z}}(A)=mH(\omega\in\Omega:\underline{Z}(s, \omega)\in A) , A\in \mathscr{B}(H^{2}(D_{0})))$

and
$\underline{Z}(s)=(\zeta(s), \zeta(s,\alpha))$ .

Theorem 4 ([21]) Suppose that $\alpha$ is tmnscendental real number such that $0<$

$\alpha<1$ . Then the probability measure

$v_{T}(\underline{Z}(s+i\tau)\in A) , A\in \mathscr{B}(H^{2}(D_{0}))$ ,

converges weakly to the probability measure $P_{\underline{Z}}$ as $Tarrow\infty.$

In [12], A. Laurin\v{c}ikas and the author obtained thejoint value distribution of
periodic zeta-function and periodic Hurwitz zeta-function [12].

Let $D= \{s\in \mathbb{C}:\frac{1}{2}<\sigma<1\}$ . Denote $H^{2}(D)=H(D)\cross H(D)$ . Furthermore,

define
$\zeta(s, \omega_{1};a)=\sum_{m=1}^{\infty}\frac{a_{m}\omega_{1}(m)}{m^{s}}, \omega_{1}\in\Omega_{1},$

and
$\zeta(s, \alpha, w;\mathfrak{b})=\sum_{m=0}^{\infty}\frac{b_{m}\omega_{2}(m)}{(m+\alpha)^{s}}, \omega_{2}\in\Omega_{2}.$

Since the sequences $\mathfrak{a}$ and $b$ (the same as in Introduction) are bounded, by a stan-

dard way, using the Rademacher theorem on series of pairwise orthogonal ran-
dom variables, it can be proved that the series for $\zeta(s, \omega_{1};\mathfrak{a})$ and $\zeta(s, \alpha, \omega_{2};\mathfrak{b})$

converge uniformly on compact subsets of $D$ for almost all $\omega_{1}$ and $\omega_{2}$ , respec-
tively, and thus they define $H(D)$ -valued random elements on the probability
spaces $(\Omega_{1},\mathscr{B}(\Omega_{1}),m_{H1})$ and $(\Omega_{2},\mathscr{B}(\Omega_{2}),m_{H2})$ , respectively. Moreover, since
the sequence $\mathfrak{a}$ is multiplicative, we have that, for almost all $\omega_{1}\in\Omega_{1},$

$\zeta(s, \omega_{1};\mathfrak{a})=\prod_{p\in \mathbb{P}}(1+\sum_{k=1}^{\infty}\frac{a_{p^{k}}\omega_{1}^{k}(p)}{p^{ks}}) , s\in D.$

Let $\omega=(\omega_{1}, \omega_{2})$ , and define

$\underline{\zeta}(s)=\underline{\zeta}(s, \alpha;\mathfrak{a};\mathfrak{b})=(\zeta(s;\mathfrak{a}), \zeta(s, \alpha;b))$

and
$\underline{\zeta}(s, \omega)=\underline{\zeta}(s, \alpha,\omega;\mathfrak{a};\mathfrak{b})=(\zeta(s, \omega_{1};\mathfrak{a}), \zeta(s, \alpha, \omega_{2};\mathfrak{b}))$.

Then $\underline{\zeta}(s, \omega)$ is an $H^{2}(D)$ -valued random element defined on the probability space
$(\Omega,\mathscr{B}(\Omega),mH)$ . Denote by $P_{\underline{\zeta}}$ the distribution of the random element $\underline{\zeta}(s, \omega)$ , i. e.,

$P_{\underline{\zeta}}(A)=m_{H}(\omega\in\Omega:\underline{\zeta}(s, \alpha, \omega;\mathfrak{a};b)\in A) , A\in \mathscr{B}(H^{2}(D))$ .
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Theorem 5 ([12]) Let $\mathfrak{a}$ be a $multiplicati\cdot ve$ periodic sequence and $\mathfrak{b}$ be another
periodic sequence. Suppose that $\alpha$ is transcendental. Then the probability mea-
sure

$\frac{1}{T}$ meas $(\tau\in[O,T]:\underline{\zeta}(s+i\tau)\in A)$ , $A\in \mathscr{B}(H^{2}(D))$ ,

converges weakly to $P_{\underline{\zeta}}$ as $Tarrow\infty.$

In [14], A. Laurin\v{c}ikas studied the joint value distribution of zeta-functions in
the multidimensional space of analytic functions for the set of functions $\zeta(s;\mathfrak{a}_{1})$ ,
$\cdots$ , $\zeta(s;\mathfrak{a}_{r_{1}}),$ $\zeta(s,\alpha_{1};\mathfrak{b}_{1}),$

$\ldots,$
$\zeta(s,\alpha_{r_{2}};\mathfrak{b}_{r_{2}})$ .

Let $\mathfrak{a}_{j}=\{a_{jm} : m\in \mathbb{N}\cup\{0\}\}$ be a periodic sequence of complex numbers
with mimimal period $k_{j}\in \mathbb{N}$ , and let $\zeta(s;\mathfrak{a}_{j})$ be the corresponding periodic zeta-
function, $j=1,$ $\ldots,r_{1},$ $r_{1}>1$ . Define the matrix

$B=(\begin{array}{llll}a_{1\eta_{1}} a_{2\eta_{1}} \cdots a_{r_{1}\eta_{1}}a_{1\eta_{2}} a_{2\eta_{1}} \cdots a_{r_{l}\eta_{2}}a_{l\eta_{\phi(k)}}\cdots a_{2\eta_{\phi\langle k)}} \cdots a_{r_{1}\eta_{\phi(k)}}\end{array}),$

where coefficients denote the reduced system of residues modulo $k$ by $\eta l,$ $\ldots,\eta_{\phi(k)},$

and $k$ is the least common multiple of $k_{1},$ $\ldots,k_{r_{1}}$ with Euler function $\phi(k)$ . Let
$\mathfrak{b}_{j}=\{b_{jm} : m\in \mathbb{N}\cup\{0\}\}$ be an another periodic sequence of complex numbers
with minimal period $l_{j}\in \mathbb{N}$ , and let $\zeta(s, \alpha_{j};\mathfrak{b}_{j})$ be the corresponding periodic
Hurwitz zeta-function with fixed parameter $\alpha_{j},$ $0<\alpha_{j}\leq 1.$

By $H_{r_{1},r_{2}}(D)$ denote the Cartesian product of $r_{1}+r_{2}$ spaces of analytic func-
tions in $D$ . Let

$\underline{\Omega}=\Omega_{1}\cross\hat{\Omega}_{1}\cross\ldots\cross\hat{\Omega}_{r_{2}},$

where $\hat{\Omega}_{j}=\Omega_{2}$ for all $j=1,$ $\ldots,r_{2}$ . Then $\underline{\Omega}$ is a compact topological group,
and we obtain the probability space $(\underline{\Omega},\mathscr{B}(\underline{\Omega}),\underline{m}_{H})$ , where $\underline{m}_{H}$ is the product of
Haar measures $m_{H1}$ and $\hat{m}_{1H},$ $\ldots,\hat{m}_{r_{2}H}$ with the probability Haar measures $\hat{m}_{jH}$ on
$(\hat{\Omega}_{j}, \mathscr{B}(\hat{\Omega}_{j})),$ $j=1,$ $\ldots,$

$r_{2}$ . Denote by $\hat{\omega}_{j}(m)$ the projection of an element $\delta_{j}\in\hat{\Omega}_{j}$

to the coordinate space $\gamma_{m},$ $m\in \mathbb{N}\cup\{0\},$ $j=1,$ $\ldots,r_{2}.$

Let $\underline{\alpha}=(\alpha_{1}, \alpha_{2}, \ldots,\alpha_{r}),$ $\underline{\omega}=(\omega_{1}, \delta_{T}, \ldots, \alpha_{2}),$ $\underline{\mathfrak{a}}=(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r_{1}}),$ $\underline{\mathfrak{b}}=(\mathfrak{b}_{1},$

$\ldots,$

$b_{r_{2}})$ , and define an $H_{r_{1},r_{2}}(D)$-valued random element $\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},\underline{\mathfrak{b}})$ on the proba-
bility space $(\underline{\Omega},\mathscr{B}(\underline{\Omega}),\underline{m}_{H})$ by the formula

$\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{a},\underline{\mathfrak{b}})$

$=(\zeta(s, \omega_{1};\mathfrak{a}_{1}), \ldots, \zeta(s,\omega_{1};\mathfrak{a}_{r_{1}}), \zeta(s,\hat{\alpha}_{1}, \omega_{1};b_{1}), \ldots, \zeta(s,\alpha_{r_{2,2}}b_{r};\mathfrak{b}_{r}2))$,

where
$\zeta(s,\omega_{1};a_{j})=\sum_{m=1}^{\infty}\frac{a_{jm}\omega_{1}(m)}{m^{s}}, j=1, \ldots,r_{1},$
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$\zeta(s, \alpha_{j},\hat{\omega}_{j};\mathfrak{b}_{j})=\sum_{m=0}^{\infty}\frac{b_{jm^{(}}b_{j}(m)}{(m+\alpha_{j})^{s}}, j=1, \ldots,r_{2}.$

The distribution of the random element $\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}},\underline{\mathfrak{b}})$ we denote by

$P^{H_{r_{1},r_{2}}}=\underline{m}_{H}(\underline{\omega}\in\underline{\Omega}:\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{a},\underline{\mathfrak{b}})\in A) , A\in \mathscr{B}(H_{r_{1},r_{2}}(D))$ .
$\underline{\zeta}$

Let

$\underline{\zeta}(s,\underline{\alpha};\underline{a},\underline{\mathfrak{b}})=(\zeta(s;a_{1}), \ldots, \zeta(s;a_{r_{1}}), \zeta(s,\alpha_{1};\mathfrak{b}_{1}), \ldots, \zeta(s, \alpha_{\gamma_{2}};\mathfrak{b}_{r_{2}}))$ .

Theorem 6 ([14]) Suppose that the sequences $a_{1},$
$\ldots,$

$\mathfrak{a}_{r_{1}}$ are multiplicative and
the numbers $\alpha_{1},$

$\ldots,$
$\alpha_{r_{2}}$ are algebraically independent over $\mathbb{Q}$. Then the measure

$v_{T}(\underline{\zeta}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}},\underline{b})\in A) , A\in \mathscr{B}(H_{r_{1},r_{2}}(D))$

converges weakly to $P_{\underline{\zeta}}^{H_{r_{1},r_{2}}}$ as $Tarrow\infty.$

2.2 Joint discrete value-distribution

In continuous limit theorems we deal with mathematical objects given by integ-
rals, while in the case of discrete limit theorems, trigonometric and other sums
appear. Therefore, discrete theorems are more complicated, they depend on a
chosen discrete set used to define relevant probability measures.

For $N\in \mathbb{N}\cup\{0\}$ , define

$\mu_{N}(\cdots )=\frac{1}{N+1}\sum_{r=,.0}^{N}1,$

where in place of dots a condition satisfied by $r$ is to be written.
In [11], D. Korsakiene and the author investigated joint discrete value dis-

tribution for the $D\ddot{m}$chlet $L$-function $L(s,\chi)$ and periodic Hurwitz zeta-function
$\zeta(s, \alpha;\mathfrak{b})$ (in this Section and later we use the same notations as before). For
$s\in D$ , define

$L(s, \chi, \omega_{1})=\sum_{m=1}^{\infty}\frac{\chi(m)\omega_{1}(m)}{m^{s}}, \omega_{1}\in\Omega_{1},$

and
$\zeta(s, \alpha, \omega_{2};b)=\sum_{m=0}^{\infty}\frac{b_{m}\omega_{2}(m)}{(m+\alpha)^{s}}, \omega_{2}\in\Omega_{2}.$

For $\omega=(\omega_{1}, ab)$ , we define

$\underline{\zeta}(s+irh)=\underline{\zeta}(s+irh, \alpha;\chi;\mathfrak{b})=(L(s+irh,\chi), \zeta(s+irh, \alpha;b))$ ,

and
$\underline{\zeta}(s, \omega)=\underline{\zeta}(s, \alpha, \omega;\chi;b)=(L(s,\chi, \omega_{1});\zeta(s, \alpha, w;b))$ .
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Then $\underline{\zeta}(s,\omega)$ is an $H^{2}(D)$-valued random element defined on the probability space
$(\Omega,\mathscr{B}(\Omega),m_{H})$ . Denote by $P_{\underline{\zeta}}$ the distribution of the random element $\underline{\zeta}(s, \omega)$ , i. e.,

$P_{\underline{\zeta}}^{H^{2}}(A)=m_{H}(\omega\in\Omega:\underline{\zeta}(s, \alpha, \omega;\chi;\mathfrak{b})\in A) , A\in \mathscr{B}(H^{2}(D))$ .

Consider the probability measure

$b(A)=\mu_{N}(\underline{\zeta}(s+irh)\in A) , A\in \mathscr{B}(H^{2}(D))$ .

Theorem 7 ([11]) Suppose that $\alpha$ is transcendental. Let $h>0$ be afixed num-
$ber$ such that $\exp\{\frac{2\pi}{h}\}$ is a rational number. Then the probability measure $P_{N}$

converges weakly to $P_{\underline{\zeta}}^{H^{2}}$ as $Narrow\infty.$

3 Joint universality theorems

As in the case of joint theorems for the zeta-functions, the joint universality is
more complicated problem.

The ftrst result on joint approximation of a given collection of analytic func-
tions by a collection of shifts of zeta-functions belongs to S.M. Voronin [28]. He
proved ajoint universality for $D\ddot{m}$chlet $L$-functions.

Theorem 8 ([28]) Let $\chi_{1},$ $\ldots,\chi_{n}$ be pairwise non-equivalent Dirichlet charac-
ters, and $L(s,\chi_{1}),$ $\ldots,L(s,\chi_{n})$ are the corresponding Dirichlet $L$-functions. For
$j=1,$ $\ldots,n$, let $K_{j}$ denote a compact subset ofthe strip $D$ with connected comple-
ment, and $f_{j}(s)$ be a continuous non-vanishingfunction on $K_{j}$ and analytic in the
interior of $K_{j}$ . Then, for every $\epsilon>0,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\sup_{1\leq j\leq n}\sup_{s\in K_{j}}|L(s+i\tau,\chi_{j})-f_{j}(s)|<\epsilon)>0.$

3.1 Continuous joint universality

As an application of Theorem 4, H. Mishou proved the joint universality theorem
for the Riemann zeta-function $\zeta(s)$ and Hurwitz zeta-function $\zeta(s, \alpha)$ attached to

a transcendental parameter $\alpha[21].$

Theorem 9 ([21]) Suppose that $\alpha$ is a transcendental number such that $0<\alpha<$

$1$ . Let $K_{1}$ and $K_{2}$ be compact subsets of the strip $\frac{1}{2}<\sigma<1$ with connected
complements. Assume thatfiunctions $f_{j}(s)$ are continuous on $K_{j}$ and analytic in
the interior of $K_{j}$ for each $j=1,2$. In addition, we suppose that $f_{1}(s)$ does not

vanish on $K_{1}$ . Then, for all positive $e,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\max_{s\in K_{1}}|\zeta(s+i\tau)-f_{1}(s)|<\epsilon,\max_{s\in K_{2}}|\zeta(s+i\tau, \alpha)-f_{2}(s)|<\epsilon)>0.$
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The joint approximation of a given collection of analytic functions by a col-
lection of shifts of periodic zeta-function and periodic Hurwitz zeta-function is
obtained by A. Laurin\v{c}ikas and the author in [12].

Theorem 10 ([12]) Suppose that $\alpha$ is a transcendental number. Let $K_{1}$ and $K_{2}$ be
a compact subsets of the strip $D= \{s\in \mathbb{C}:\frac{1}{2}<\sigma<1\}$ with connected comple-
ments, $f_{1}(s)$ be a continuous non-vanishing function on $K_{1}$ which is analytic in
the interior of $K_{1}$ , and let $f_{2}(s)$ be a continuous function on $K_{2}$ which is analytic
in the interior of $K_{2}$ . Then, for every $\epsilon>0,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\sup_{s\in K_{1}}|\zeta(s+i\tau;a)-f_{1}(s)|<\epsilon,\sup_{s\in K_{2}}|\zeta(s+i\tau, \alpha;\mathfrak{b})-f_{2}(s)|<\epsilon)>0.$

The most general result on continuous joint universality of different zeta func-
tions is obtained by A. Laurin\v{c}ikas in [14].

Theorem 11 ([14]) Suppose that the sequences $\mathfrak{a}_{1},$ $\ldots,a_{r_{1}}$ are multiplicative,
rank$(B)=r_{1}$ , and, for all $p\in \mathbb{P}$, holds the inequality

$\sum_{j=1}^{\infty}\frac{|a_{jp^{g}}|}{p^{g/2}}<1, j=1, \ldots,r1.$

Let $\alpha_{1},$
$\ldots,$

$\alpha_{r_{2}}$ be algebmically independent over $\mathbb{Q}$ . Suppose that $K_{1},$ $\ldots,K_{r_{1}}$ and
$\hat{K}_{1,}\hat{K}_{r_{2}}$ are compact subsets of the strip $D$, their complements are connected.
Suppose that $f_{1}(s),$ $\ldots,f(s)_{r_{1}}$ are continuous non-vanishingfunctions in $K_{i},$

$\ldots,$
$K_{r_{1}}$

and analytic in interior $K_{1},$ $\ldots,K_{r_{|}}$ , and $\hat{f}_{1}(s),$ $\ldots,\hat{f}_{r_{2}}(s)$ are continuous in $\hat{K}_{1},$

$\ldots,$

$\hat{K}_{r_{2}}$ and analytic in interior $\hat{K}_{1},$ $\ldots,\hat{K}_{r_{2^{y}}}$ respectively. Then, for every $\epsilon>0,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\sup_{1\leq j\leq r_{1}}\sup_{s\in K_{j}}|\zeta(s+i\tau;\mathfrak{a}_{j})-f_{j}(s)|<\epsilon,$

$\sup_{1\leq j\leq r_{2}}\sup_{s\in\hat{K}_{j}}|\zeta(s+i\tau, \alpha_{j};b_{j})-\hat{f}_{j}(s)|<\epsilon)>0.$

The approximation of analytic functions by a collection comaining the Rie-
mann zeta-function and periodic Hurwitz zeta-functions is obtained by J. Genys,
R. Macaitiene, S. Ra\v{c}kauskaine, D. \v{S}iau\v{c}iunas in [4]. They considered the joint
universality of the Riemann zeta-function $\zeta(s)$ and the periodic Hurwitz zeta-
functions $\zeta(s, \alpha_{j};\mathfrak{b}_{jl}),$ $j=1,$ $\ldots,$

$r,$ $l=1,$ $\ldots,l_{j}.$

Theorem 12 ([4]) Let $\alpha_{1},$
$\ldots,$

$\alpha_{r}$ be the same as in Theorem 11. Suppose that $K_{jl}$

and $f_{jl},$ $j=1,$ $\ldots,$
$r,$ $l=1,$ $\ldots,l_{j}$, satisfies the same hypotheses as $\hat{f}_{j}(s)$ and $\hat{K}_{j},$

$j=1,$ $\ldots,r_{2}$ , in Theorem 11, and let $K$ and $f$ be as $K_{1}$ and $f_{1}$ in Theorem 7,

respectively. Then, for every $\epsilon>0,$

$\lim_{Tarrow}\inf_{\infty}v_{T}(\sup_{s\in K}|\zeta(s+i\tau)-f(s)|<\epsilon,$
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$\sup_{1\leq j\leq r}\sup_{1\leq l\leq l_{j}}\sup_{s\in K_{jl}}|\zeta(s+i\tau, \alpha_{j};\mathfrak{b}_{jl})-f_{jl}(s)|<\epsilon)>0.$

3.2 Some remarks on discrete universality

In [9], the author obtains joint discrete umiversality of $D\ddot{m}$chlet $L$-function $L(s,\chi)$

and periodic Hurwitz zeta-function $\zeta(s,\alpha;\mathfrak{b})$ .

Theorem 13 ([9]) Suppose that $\alpha,$ $K_{1},$ $K_{2},$ $f_{1}(s)$ and $f_{2}(s)$ are the same as in

Theorem 10, Let $h>0$ be afixed number such that $\exp\{\frac{2\pi}{h}\}$ is rational. Then, for
every $\epsilon>0,$

$\lim_{Narrow}\inf_{\infty}\mu_{N}(\sup_{s\in K_{1}}|L(s+irh,\chi)-f_{1}(s)|<\epsilon,\sup_{s\in K_{2}}|\zeta(s+irh,\alpha;\mathfrak{b})-f_{2}(s)|<\epsilon)>0.$

It is possible to generalize Theorem 7 and obtain joint discrete limit theorem
in the sense of weakly convergent probability measures in the multidimensional
space of analytic functions for the collection of functions $L(s,\chi_{1}),$ $\ldots,L(s,\chi_{r})$ ,
$\zeta(s, \alpha;\mathfrak{b})$ .

By $\hat{H}(D)$ we denote the Cartesian product of $r+1$ spaces $H(D)$ , i.e., $\hat{H}(D)=$

$H(D)\cross\ldots\cross H(D)$ . Let $\chi=(\chi_{1}, \ldots,\chi_{r})$ . On the probability space $(\Omega,\mathscr{B}(\Omega),m_{H})$ ,

$r+1$

define an $\hat{H}(D)$ -valued random element $\zeta(s,\chi, \alpha, b;\mathfrak{b})$ by

$\zeta(s,\hat{\chi}, \alpha,b;b)=(L(s,\chi_{1},\omega_{1}), \ldots,L(s,\chi_{r},\omega_{1}), \zeta(s, \alpha,\varpi_{2};b))$ ,

where
$L(s, \chi_{j}, \omega_{1})=\sum_{m=1}^{\infty}\frac{\chi_{j}(m)\omega_{1}(m)}{m^{s}}, j=1, \ldots,r,$

is $H(D)$ -valued random element defined on the probability space $(\Omega_{1}, \mathscr{B}(\Omega_{1})$ ,
$m_{H1})$ . Denote by $P_{\hat{\zeta}}$ the distribution of the random element $\hat{\zeta}(s,\hat{\chi}, \alpha,\hat{\omega};b)$ , i.e.,

$P_{\zeta}(A)=m_{H}(\Phi\in\Omega:\hat{\zeta}(s,\hat{\chi}, \alpha,\hat{\omega};\mathfrak{b})\in A) , A\in \mathscr{B}(H(D))$.

We put

$\zeta(s+ilh,\chi, \alpha;\mathfrak{b})=(L(s+ilh,\chi_{i}), \ldots,L(s+ilh,\chi_{r}), \zeta(s+ilh,\alpha;\mathfrak{b}))$ .

Theorem 14 ([10]) Suppose that $\alpha$ is a tmnscendental number such that $0<\alpha<$

$1$ . Let $h>0$ be afixed number such that $\exp\{\frac{2\pi}{h}\}$ is mtional. Suppose that $\chi_{1},$
$\ldots,$

$\chi_{r}$ are pairwise non-equivalent Dirichlet characters, and $L(s,\chi_{1}),$
$\ldots,$

$L(s,\chi_{r})$ are
the corresponding $Di$nchlet $L$-functions. Then the probability measure

$\mu_{N}(\zeta(s+ikh,\hat{\chi}, \alpha;b)\in A) , A\in \mathscr{B}(\hat{H}(D))$ ,

weakly converges to the measure $\hat{P}_{\zeta}$ as $Narrow\infty.$
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The above mentioned theorem can be applied to the proof of the following
statement on the universality of collection of Dirichlet $L$-functions and periodic
Hurwitz zeta-function with transcendental parameter $\alpha.$

Theorem 15 Suppose that $\alpha,$ $h\chi_{1},$ $..,\chi_{r},$ $L(s,\chi_{1}),$
$\ldots,$

$L(s,\chi_{r})$ satisfy the hypothe-
ses of Theorem 14, and $K_{1},$ $..,K_{r},$ $f_{1}(s),$ $\ldots,f_{r}(s)$ satisfy the hypothesis of Theo-
rem 11. Let $K_{r+1}$ be a compact subset of the strip $D$ with connected complement,
and $f_{r+1}(s)$ be a continuous fiunction on $K_{r+1}$ which is analytic in the inside of
$K_{r+1}$ . Let $h>be$ a fixed number such that $\exp\{\frac{2\pi}{h}\}$ is mtional. Then, for every
$\epsilon>0,$

$\lim_{narrow}\inf_{\infty}\mu_{N}(\sup_{1\leq j\leq r}\sup_{s\in K_{j}}|L(s+ikh,\chi_{j})-f_{j}(s)|<\epsilon,$

$\sup_{s\in K_{r+1}}|\zeta(s+ikh, \alpha;\mathfrak{b})-f_{r+1}(s)|<\epsilon)>0$

Remark. The discrete universality theorem similar to Theorem 11 can be ob-
tained if we extend the collection of functions noted at begining of this Section,

namely to $L(s,\chi_{1}),$ $\ldots,L(s,\chi_{r_{1}}),$ $\zeta(s, \alpha_{1};b_{1}),$
$\ldots,$

$\zeta(s, \alpha_{r}2;\mathfrak{b}_{r_{2}})$ .
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