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ABSTRACT. Complex secondary characteristic classes for transversely holo-
morphic foliations are discussed. Examining a complexification of an ex-
ample of Baker [3], we will present a family of rigid, linearly independent
complex secondary classes. Such a family is firstly given by Hurder [8],
from which ours is different. The content of this article is based on [2], in
which the details including proofs can be found. This is also based on a
talk given at ‘Integrated Research on Complex Dynamics’ held at RIMS,
Kyoto University in 2012.

Introduction

Let $B\Gamma_{q}$ be the classifying space for real codimension-q foliations. Given a
real codimension-q foliation $\mathcal{F}$ of a manifold $M$ , we can find a classifying map-
ping from $M$ to $B\Gamma_{q}$ . Similarly, there exists the classifying space for trans-
versely holomorphic foliations which is denoted by $B\Gamma_{q}^{\mathbb{C}}$ , where $q$ denotes the
complex codimension. As in the case of vector bundles, cohomology classes
in $H^{*}(B\Gamma_{q}^{\mathbb{C}})$ are characteristic classes for transversely holomorphic foliations,
where coefficients are chosen in $\mathbb{C}$ in this article. There is a dga (differential
graded algebra) denoted by $WU_{q}$ (see Section 1) and a homomorphism from
$H^{*}(WU_{q})$ to $H^{*}(B\Gamma_{q}^{\mathbb{C}})$ . The classes in the image other than (polynomials of)
classical Chern classes are called complex secondary classes, and the homo-
morphism is called the characteristic homomorphism and denoted by $\chi.$

$A$

natural question is if $\chi$ is injective, or surjective. They are still open. In
this article we will focus on the injectivity. Suppose that the kernel of the
characteristic homomorphism is non-trivial. Then, elements in the kernel are
linear relation among secondary classes. On the other hand, it is known that
some of secondary classes admit continuous deformations. Namely, they can
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vary continuously according to deformations of foliations. It is rare that fixed
linear relations are kept under deformations so that the linear independence
of some secondary classes can be shown. This kind of arguments is however
not valid for those classes which are rigid under deformations (such classes are
called rigid classes). In the case where complex normal bundles are trivial,
secondary characteristic classes are constructed by the classifying space $\overline{B\Gamma_{q}^{\mathbb{C}}}$

and a dga $W_{q}^{\mathbb{C}}$ (see Section 1 for a brief explanation). Hurder studied the
mapping $H^{*}(W_{q}^{\mathbb{C}})arrow H^{*}(\overline{B\Gamma_{q}^{\mathbb{C}}})[8]$, and obtained a family of rigid, linearly
independent classes. Hurder’s method is based on homotopies. We will dis-
cuss the case where complex normal bundles are not necessarily trivial. It will
be done by using an example of transversely holomorphic foliation which is a
complexification of an example of Baker [3]. By evaluating secondary classes
of the foliation, one can obtain a family of linearly independent classes in the
image of $H^{*}(WU_{q})$ in $H^{*}(B\Gamma_{q}^{\mathbb{C}})$ . Some of classes in the family are rigid (and
some others are variable), and are also products of secondary classes. These
classes form a family of rigid classes which is different from Hurder’s one. The
evaluation is based on a result of Baker [3].

This article is an announcement of [2], in which the details including proofs
can be found.
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1. Preliminaries

First we introduce secondary characteristic classes.

Definition 1.1. Let $\mathbb{C}[v_{1}, \ldots, v_{q}]$ be the polynomial ring generated by $v_{1},$
$\ldots,$ $v_{q},$

where the degree of $v_{j}$ is set to be $2j$ . We denote by $I_{q}$ the ideal generated by
monomials of degree greater than $2q$ , and set $\mathbb{C}_{q}[v_{1}, \ldots, v_{q}]=\mathbb{C}[v_{1}, \ldots, v_{q}]/I_{q}.$
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We also define $\mathbb{C}_{q}[\overline{v}_{1}, \ldots,\overline{v}_{q}]$ by replacing $v_{j}$ by $\overline{v}_{j}$ . We set

$WU_{q}=\wedge[\tilde{u}_{1}, \ldots,\tilde{u}_{q}]\otimes \mathbb{C}_{q}[v_{1},\ldots, v_{q}]\otimes \mathbb{C}_{q}[\overline{v}_{1}, \ldots,\overline{v}_{q}],$

$W_{q}=\wedge[u_{1}, \ldots, u_{q}]\otimes \mathbb{C}_{q}[v_{1}, \ldots, v_{q}],$

$W_{q}^{\mathbb{C}}=\wedge[u_{1}, \ldots, u_{q},\overline{u}_{1}, \ldots,\overline{u}_{q}]\otimes \mathbb{C}_{q}[v_{1}, \ldots, v_{q}]\otimes \mathbb{C}_{q}[\overline{v}_{1}, \ldots,\overline{v}_{q}].$

These algebras are equipped with derivatives such that $d\tilde{u}_{i}=v_{i}-\overline{v}_{i},$ $du_{i}=v_{i},$

$d\overline{u}_{i}=\overline{v}_{i}$ and $dv_{i}=d\overline{v}_{i}=0$ . The degree of $\tilde{u}_{i},$
$u_{i}$ and $\overline{u}_{i}$ are set to be $2i-1$ . We

define $\overline{W_{q}}$ by replacing $u_{i}$ and $v_{j}$ by $\overline{u}_{i}$ and $\overline{v}_{j}$ in $W_{q}$ . Then, $W_{q}^{\mathbb{C}}=W_{q}\wedge\overline{W_{q}}.$

It is easy to see that $H^{*}(W_{q}^{\mathbb{C}})$ is isomorphic to $H^{*}(W_{q})\otimes H^{*}(\overline{W_{q}})$ , and that
there is a natural inclusion from $H^{*}(W_{q})$ to $H^{*}(W_{q}^{\mathbb{C}})$ . There is also a natural
mapping from $H^{*}(WU_{q})$ to $H^{*}(W_{q}^{\mathbb{C}})$ which maps $\tilde{u}_{i}$ to $u_{i}-\overline{u}_{i},$ $v_{i}$ to $v_{i}$ and $\overline{v}_{i}$

to $\overline{v}_{i}$ , respectively. Indeed, this mapping corresponds to the natural mapping
from $\overline{B\Gamma_{q}^{\mathbb{C}}}$ to $B\Gamma_{q}^{\mathbb{C}}$ , which is a part of the homotopy fibration $\overline{B\Gamma_{q}^{\mathbb{C}}}arrow B\Gamma_{q}^{\mathbb{C}}arrow$

BGL $(q;\mathbb{C})$ and also is the classifying map of the $\Gamma_{q}^{\mathbb{C}}$-structure $of\overline{B\Gamma_{q}^{\mathbb{C}}}$ , namely,
the map which forgets the triviality of the complex normal bundle.

The following result is classical.

Theorem 1.2. Let $B\Gamma_{q}^{\mathbb{C}}$ be the classifying space of tmnsversely holomorphic

foliations of complex codimension $q$ , and $let\overline{B\Gamma_{q}^{\mathbb{C}}}$ the classifying space of tmns-
versely holomorphic foliations of complex codimension $q$ with trivialized com-
plex normal bundles. Then, there is a well-defined homomorphism $H^{*}(WU_{q})arrow$

$H^{*}(B\Gamma_{q}^{\mathbb{C}})$ and $H^{*}(W_{q}^{\mathbb{C}})arrow H^{*}(\overline{B\Gamma_{q}^{\mathbb{C}}})$ .

The above homomorphisms are called the characteristic homomorphisms.
Let $M$ be a manifold and $\mathcal{F}$ a transversely holomorphic foliation of $M$ , of
complex codimension $q$ . Then, the classifying map induces a homomorphism
from $H^{*}(WU_{q})$ to $H^{*}(M)$ . If the complex normal bundle of $\mathcal{F}$ is trivial, then
by fixing the homotopy type of a trivialization, we obtain a homomorphism
from $H^{*}(W_{q}^{\mathbb{C}})$ to $H^{*}(M)$ . Elements of $H^{*}(WU_{q}),$ $H^{*}(W_{q}^{\mathbb{C}})$ and $H^{*}(W_{q})$ or
their image under the characteristic homomorphisms which involve $\tilde{u}_{i},$

$u_{i}$ or $\overline{u}_{i}$

are called complex secondary characteristic classes.
Let $\rho$ be a mapping from $WU_{q+1}$ to $WU_{q}$ such that if $i\leq q$ then $\rho(\tilde{u}_{i})=\tilde{u}_{i},$

$\rho(v_{i})=v_{i},$ $\rho(\overline{v}_{i})=\overline{v}_{i}$ and if $i=q+1$ then $\rho(\tilde{u}_{i})=0,$ $\rho(v_{i})=0$ and $\rho(\overline{v}_{i})=0,$

respectively. Then, $\rho$ induces a homomorphism $\rho_{*}:H^{*}(WU_{q+1})arrow H^{*}(WU_{q})$ .
It is known that classes in the image of $\rho_{*}$ are rigid under deformations of
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foliations. Such classes are called rigid classes. Similar homomorphisms from
$W_{q+1}$ to $W_{q}$ and from $W_{q+1}^{\mathbb{C}}$ to $W_{q}^{\mathbb{C}}$ are also defined. The classes in the image
are also rigid under deformations, and called rigid classes. On the other hand,
a class $\omega\in H^{*}(WU_{q})$ is said to be variable if $\omega$ varies continuously with respect
to a family of foliations.

There are some significant classes.

Definition 1.3. 1) The class $u_{1}v_{1}^{q}\in H^{2q+1}(W_{q})$ or its image in $H^{2q+1}(W_{q}^{\mathbb{C}})$

is called the Bott class.
2 $)$ The class $\tilde{u}_{1}(v_{1}^{q}+v_{1}^{q-1}\overline{v}_{1}+\cdots+\overline{v}_{1}^{q})\in H^{2q+1}(WU_{q})$ is called the imaginary

part of the Bott class.
3 $)$ The class $\sqrt{-1}\tilde{u_{1}}v_{1}^{q}\overline{v}_{1}^{q}\in H^{4q+1}(WU_{q})$ is called the Godbillon-Vey class.

These classes are known to be non-trivial. We have the following.

Theorem 1.4. 1) The image of the imaginary part of the Bott class in
$H^{*}(W_{q}^{\mathbb{C}})$ is equal to $u_{1}v_{1}^{q}-\overline{u}_{1}\overline{v}_{1}^{q}.$

2 $)$ The image of the Godbillon-Vey class in the sense of Definition 1.3 under
the characteristic $homomorphi\mathcal{S}mcoincide\mathcal{S}$ with the $cla\mathcal{S}$sical Godbillon-
$Vey$ class (for real foliations). Moreover, the Godbillon-Vey $clas\mathcal{S}$ belongs
to the image of $\rho_{*}:H^{*}(WU_{q+1})arrow H^{*}(WU_{q})$ so that it is a rigid $cla\mathcal{S}\mathcal{S}.$

Remark 1.5. It is known that real secondary classes for transversely holo-
morphic foliations are complex secondary classes defined in terms of $H^{*}(WU_{q})$ .
It is in particular the case for the Godbillon-Vey class which is the most
significant real secondary class. The second claim of Theorem 1.4 implies
that the image of the classical Godbillon-Vey class in $H^{4q+1}(WU_{q})$ is equal to
$\sqrt{-1}\tilde{u_{1}}v_{1}^{q}\overline{v}_{1}^{q}$ . It is well-known that the Godbillon-Vey class admits continuous
deformations in the category of real foliations [11], [12], nevertheless, it is rigid
in the category of transversely holomorphic foliations (see Theorem 2.3).

2. Independent classes of $H^{*}(WU_{q})$

We begin with a classical example.

Example 2.1 ([4]). Let $X$ be a holomorphic vector field on $\mathbb{C}^{n+1}$ defined by

$X(z)= \sum_{i=0}^{n}\lambda_{i}z_{i^{\frac{\partial}{\partial z_{i}’}}}$
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where each $\lambda_{i}$ is a non-zero complex number. Then, the integral curves of $X$

form a holomorphic foliation of $\mathbb{C}^{n+1}\backslash \{0\}$ . This foliation is invariant under
homothecies so that a holomorphic foliation $\mathcal{F}_{\lambda}$ is induced on $(\mathbb{C}^{n+1}\backslash \{0\})/\cross$

$2\cong S^{1}\cross S^{2n+1}$ It is well-known that the complex normal bundle of $\mathcal{F}_{\lambda}$ is triv-

ial, and $u_{1}v_{J}( \mathcal{F}_{\lambda})=\frac{v_{1}v_{J}(\lambda_{0},.\cdot.\cdot\cdot,\lambda_{n})}{\lambda_{0}\cdot\lambda_{n}}vo1_{S^{2n+1}}$ , where $v_{J}$ is a Chern polynomial

of degree $n[4]$ (see also [7]). It follows that the classes $u_{1}v_{J}$ are variable and
linearly independent.

We study the following example, which is a complexification of Baker’s ex-
ample [3, Example $1(a)$ ].

Example 2.2. Let $G=SL(k+n;\mathbb{C})$ , where $n>k>0$ or $n=k=1,$ $H=$

$\{(a_{ij})\in G|a_{ij}=0$ if $i>k$ and $j\leq k\},$ $K=S(U(k)\cross U(n))$ and $T=T^{k+n-1}$

the maximal torus in $G$ realized as diagonal matrices. Then, the left cosets of
$H$ induce transversely holomorphic foliations of complex codimension $kn$ on
$\Gamma\backslash G/T$ and $\Gamma\backslash G/K$ , where $\Gamma$ is a discrete subgroup of $G$ such that $\Gamma\backslash G/K$

is a closed manifold.

Secondary characteristic classes of this kind of foliations, so-called locally

homogeneous foliations, are well-studied, e.g. [9], [3], [1]. In particular, if
$n=k=1$ , then it is a complexification of an example of Roussarie [6]. If
$k=1$ , then the Godbillon-Vey class is studied in [1]. The case where $n=3$

and $k=2$ is studied by Enatsu [5].
We have a complexification of [3, Theorem 5.3] as follows. If $I=\{i_{1}, \ldots, i_{l}\}$

then we set $\tilde{u}_{I}=\tilde{u}_{i_{1}}\cdots\tilde{u}_{i_{l}}$ . We denote $\tilde{u}_{I}$ also by $u_{i_{1},\ldots,i_{l}}$ . If $I=\emptyset$ then we set
$\tilde{u}_{I}=1$ and regard $i_{1}=+\infty.$

Theorem 2.3 ([2, Theorem 2.2]). Let $I=\{i_{1}, \ldots, i_{l}\}$ and suppose that $k<$

$i_{1}<\cdots<i_{l}\leq n$ . The $clas\mathcal{S}e\mathcal{S}$ of the form $\tilde{u}_{1,\ldots,k}\tilde{u}_{I}v_{1}^{kn}\overline{v}_{1}^{kn}$ are non-trivial and
linearly independent in $H^{*}(\Gamma\backslash SL(k+n;\mathbb{C})/T)$ . These $cla\mathcal{S}ses$ are rigid classes,

namely, rigid under deformations of foliations if $k=1$ and $i_{1}>2.$

The last claim can be seen as follows. The cochain $\tilde{u}_{1,\ldots,k}\tilde{u}_{I}(v_{1}^{kn+1}\overline{v}_{1}^{kn-1}+$

$v_{1}^{kn}\overline{v}_{1}^{kn}+v_{1}^{kn-1}\overline{v}_{1}^{kn+1})$ is mapped to the cocycle $\tilde{u}_{1,\ldots,k}\tilde{u}_{I}v_{1}^{kn}\overline{v}_{1}^{kn}$ under $\rho:WU_{q+1}arrow$

$WU_{q}$ , and is closed if $k=1$ and $i_{1}>2.$

Let $n=3$ and $k=2$ in Example 2.2. Then, we obtain a transversely holo-
morphic foliation of complex codimension 6. We set $\eta_{2,6}=\tilde{u}_{2}v_{1}^{6}+\tilde{u}_{1}(v_{1}^{5}+v_{1}^{4}\overline{v}_{1}+$
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$+\overline{v}_{1}^{5})\overline{v}_{2}$ . Then $\xi_{6}$ and $\eta_{2,6}$ are non-trivial, because we have $\xi_{6}\eta_{2,6}=\tilde{u}_{1}\tilde{u}_{2}v_{1}^{6}\overline{v}_{1}^{6}$

and it is non-trivial by Theorem 2.3. Hence we have a non-trivial class which
is a product of secondary classes. On the other hand, if we set $\mu=\tilde{u}_{1}\tilde{u}_{2}(v_{1}^{6}\overline{v}_{1}^{5}+$

$v_{1}^{5}\overline{v}_{1}^{6})$ , then $\mu$ is closed and $\mu v_{1}=\tilde{u}_{1}\tilde{u}_{2}v_{1}^{6}\overline{v}_{1}^{6}$ . Hence $\mu$ and $v_{1}$ are also non-trivial.
Actually $v_{1}^{6}$ is a generator of $H^{12}(SU$ (5) $/S(U(2)\cross U(3)))$ . On the other hand, by
examining the degree of generators of $H^{*}$ ( $SU$ (5) ) $\otimes H^{*}(SU(5)/S(U(2)\cross U(3)))$ ,
we see that the Godbillon-Vey class $\tilde{u}_{1}v_{1}^{6}\overline{v}_{1}^{6}$ is trivial. We have $\tilde{u}_{1}v_{1}^{6}\overline{v}_{1}^{6}=\xi_{6}v_{1}^{6}.$

Hence, unlike the above cases, a product of non-trivial classes yields a triv-
ial class.

We remark finally that using a result of Kamber-Tondeur [10], one can show
an analogue of Theorem 2.3 [2, Theorem 2.3].
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