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 Abstract It is well-known that a quadratic residue is adopted to public
key cryptosystem, for example, we show Rabin cryptosystem. In this paper,
we describe a composite residue and its application to cryptography.

1. Introduction

At first, we review a quadratic residue and its application to cryptog-
raphy. Suppose p is an odd prime and a is an integer. a is defined to
be a quadratic residue modulo p if a # 0 (mod p) and the congruence
y?> =a (mod p) has a solution y where nonnegative y is less than n. It is
well-known that a quadratic residue is adopted to public key cryptosystems.
For example, we show Rabin Cryptosystem [5]. Let n = pq, where p and ¢
are primes, and p,g =3 (mod 4). The value n is the public key, while p
and q are the private key. For a plaintext m < n, we define the cipertext
c=m? (mod n). Quadratic residue is adopted in a trapdoor mechanism
of this public key cryptosystem. As well, the public key cryptosystem by
Kurosawa et. al. [2] also utilized a quadratic residue. Moreover, the pub-
lic key cryptosystem by Naccache and-Stern [3] utilized a higher residue.
Further, the public key cryptosystem by Paillier [4] utilized a composite
residue. In this paper, we describe a composite residue and its application
to cryptography. ~

2. Composite residue

In this section, we describe a definition of a composite residue. A com-
posite residue, that is, an n-th residue is introduced by Benaloh [1].

We set n = pg where p and q are large primes. In this case, we denote
by ¢(n) = (p — 1)(q — 1) the Euler’s function. And we denote by A(n) =
lem(p — 1,¢ — 1) the least common multiple of p — 1 and ¢ — 1. We adopt
A instead of A(n) for visual comfort.
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We denote by Z,2 a residue class ring modulo n?. And We denote by
Z, its invertible element set. The set Z*; is a multiplicative subgroup of
Zya of order ¢(n?) = ng(n) = pg(p — 1)(q — 1).

For any w € Z,, the following equations hold,

w=1 (mod n),

w =1 (mod n?).

Definition 2.1. A number z is said to be an n-th residue modulo n? if
there exists a number y € Z,, such that

z=1y" (mod n?).

For example, we suppose p = 3, ¢ = 5, that is, n = 15. Then we
obtain ¢(n) = 8, A = 4, ¢(n?) = 120, and that every element of the set
{1,26,82,107,118, 143,199, 224} an n-th residue modulo n?2.

3. Property of Composite residue

In this section, we describe some properties of an n-th residue. We set
n = pq where p and g are large primes.

The set of n-th residues is a multiplicative subgroup of Z*; of order
@¢(n). The problem of deciding n-th residuosity, that is, distinguishing n-th
residues from non n-th residues will be denoted by CR[n]. As for prime
residuosity, deciding n-th residuosity, is believed to be computationally
hard.

Let g be some element of Z}, and denote by ¢, the integer-valued
function defined by

ZnXZ4y = Zrg
(z,y) +— g%y" (mod n?).

Here, depending on g, ¢, may feature an interesting property such as
the following lemma.

Lemma 3.1.  If the order of g is a nonzero multiple of n then g4 is
bijection.



We denote by B,CZ7, the set of elements of order na and by B their
disjoint union for a = 1,--+, A.
In the case of n = 15, we obtain the following sets as B, and B;
B; = {16,31,46,61,76,91,106,121, 136, 151, 166, 181,196,211},
By = {14,29,44,59,74,89,104,119, 134, 149, 164,179, 194, 209},
By ={2,4,7,8,11,13,17, 19, 22, 23, 26, 28, 32, 34, 37, 38,41, 43, 47,
49, 52,53, 56, 58, 62, 64,67,68,71,73,77,79, 82, 83, 86, 88,92,
94,97,98,101,103,107,109,112,113,116,118,122,124, 127,
128,131,133,137,139, 142,143, 146, 148, 152, 154, 157, 158,
161, 163, 167,169,172,173,176,178, 182, 184, 187,188, 191,
193,197,199, 202, 203, 206, 208, 212, 214, 217, 218, 221, 223},
B = B;UB;UB;,.
Here, we verify that B;NB; = ¢ for i, j(i # 7).

Definition 3.2. Assume that g€B. For we€Z>,, we call n-th residuosity
class of w with respect to g the unique integer t€Z, for which there exists
yEZy, such that

eg(z,y) = w.

Adopting Benaloh’s notations [1], the class of w is denoted [[w]]4. It is
worthwhile noticing the following property.

Lemma 3.2. [[w]]y = 0 if and only if w is an n-th residue modulo n?.
Furthermore,

Vwy,we € Z7a [[wrwe]]y = [[wi]lg + [[we]l; (mod n)

that is, the class function w — [[w]]y is a homomorphism from (Z%,, x)
to (Zn,+) for any g€B.

By Lemma 3.2, it can easily be shown that, for any w € Z}, and
91,92 € B, we have

[[w]]g: = [[w]lg,[[g2]lg, (mod n), (3.1)

which yields {[g1]],, = [[g2]]s, ~* mod n and thus [[g2]],, is invertible modulo
n.
The set
Sp={u<n?|u=1 (modn)}

is a multiplicative subgroup of integers modulo n? over which the function

L such that 1
Yu € Sy, L(u) = 4
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is clearly well-defined.

Lemma 3.3. For any w € Z7,, there holds as follows,

L(w? (mod n?)) = A[w]]i4+n (mod n).

By Lemma 3.3, for any g € B and w € Z,, we can compute

Lw* (modn?) _ Mwlitn _ [[wlhitn
L(g* (modn?)  Alglli+n  [lgli+n

By virtue of Equation 3.1, for any g € B and w € Z7,, we can compute

(mod n).

bollen _ 1y,

[[9”1+n (mod n).

Therefore, for any g € B and w € Z,, we can compute

L(w* (mod n?))
L(g* (mod n?))

= [[wlly (mod n). (3.2)

4. Application to cryptography

Now, we describe the public key cryptosystem based on the n-th resid-
uosity class problem.

Set n = pgq and randomly select a base g € B. We review that €4 be the
function defined by

InXZy = Zr,

(xvy) — Eg(w,y)zg“’yn (mOd n2)_ (41)

For the plaintext z, we employ this function &, as an encryption function.
Moreover, we review that we define the function L as follows:

Sp={u<n?|u=1 (modn)} — 2Z,

u +— L(u)= %=,

(4.2)

For the cipertext ¢ = €4(z,y), we employ the rate of these two functions
L(c*) and L(g*) as an decryption function.

Theorem 4.1. We setn = pq and A = lem(p—1,q—1). For any g €
B, we obtain public-key cryptosystem as public keys (n,g) and private keys
(p,q). For a plaintert m < n, we select a random r < n, and compute



the cipertext ¢ by Equation 4.8. For a cipertext ¢ < n?, we compute the
plaintext m by Equation 4.4.

c=g™r" (mod n?), (4.3)

_ L(¢* (mod n?))
m= L(g* (mod n?))

(mod n). (4.4)

For example, we suppose n = 15 and g = 14. Then, for a plaintext
m = 3 and a random r = 4, we compute the cipertext ¢ = 206 by Equation
4.3. For a cipertext ¢ = 206, we compute the plaintext

_ L(206* (mod n?))  L(46)

™= T4 (modn?) — L(166) o¢™)

by Equation 4.4. Here, we compute

46 — 1

L(46) = —— =3 (mod n)

15

-1

L(166) = 16?5 —11 (mod n)
by Equation 4.2. Therefore, we can obtain
3

m=T(1e6) T 11

For n = pq, we obtain the public key cryptosystem based on the n-th
residuosity class problem.
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