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Abstract It is well-known that a quadratic residue is adopted to pubhc
key cryptosystem, for example, we show Rabin cryptosystem. In this paper,
we describe a composite residue and its application to cryptography.

1. Introduction

At first, we review a quadratic residue and its application to,cryptog-
raphy. Suppose $p$ is an odd prime and $a$ is an integer. $a$ is defined to
be a quadratic residue $mo$dulo $p$ if $a\not\equiv 0$ $(mod p)$ and the congruence
$y^{2}\equiv a$ $(mod p)$ has a solution $y$ where nonnegative $y$ is less than $n$ . It is
well-known that a quadratic residue is adopted to public key cryptosystems.
For example, we show Rabin Cryptosystem [5]. Let $n=pq$ , where $p$ and $q$

are primes, and $p,$ $q\equiv 3$ $(mod 4)$ . The value $n$ is the public key, while $p$

and $q$ are the private key. For a plaintext $m<n$ , we define the cipertext
$c=m^{2}$ $(mod n)$ . Quadratic residue is adopted in a trapdoor mechanism
of this public key cryptosystem. As well, the pubhc key cryptosystem by
Kurosawa et. al. [2] also utilized a quadratic residue. Moreover, the pub-
lic key cryptosystem by Naccache and Stern [3] utilized a higher residue.
Further, the public key cryptosystem by Paillier [4] utilized a composite
residue. In this paper, we describe a composite residue and its application
to cryptography.

2. Composite residue

In this section, we describe a definition of a composite residue. $A$ com-
posite residue, that is, an n-th residue is introduced by Benaloh [1].

We set $n=pq$ where $p$ and $q$ are large primes. In this case, we d\’enote
by $\phi(n)=(p-1)(q-1)$ the Euler’s function. And we denote by $\lambda(n)=$

lcm$(p-1, q-1)$ the least common multiple of $p-1$ and $q-1$ . We adopt
$\lambda$ instead. of $\lambda(n)$ for visual comfort.
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We denote by $Z_{n^{2}}$ a residue class ring modulo $n^{2}$ . And We denote by
$Z_{n^{2}}^{*}$ its invertible element set. The set $Z_{n^{2}}^{*}$ is a multiplicative subgroup of
$Z_{n^{2}}$ of order $\phi(n^{2})=n\phi(n)=pq(p-1)(q-1)$ .

For any $w\in Z_{n^{2}}^{*}$ , the following equations hold,

$w^{\lambda}=1 (mod n)$ ,

$w^{n\lambda}=1 (mod n^{2})$ .

Definition 2.1. $A$ number $z$ is said to be an n-th residue modulo $n^{2}$ if
there exists a number $y\in Z_{n^{2}}^{*}$ , such that

$z=y^{n} (mod n^{2})$ .

For example, we suppose $p=3,$ $q=5$, that is, $n=15$. Then we
obtain $\phi(n)=8,$ $\lambda=4,$ $\phi(n^{2})=120$ , and that every element of the set
$\{1_{\tau}26,82,107,118,143,199,224\}$ an n-th residue modulo $n^{2}.$

3. Property of Composite residue

In this section, we describe some properties of an n-th residue. We set
$n=pq$ where $p$ and $q$ are large primes.

The set of n-th residues is a multiplicative subgroup of $Z_{n^{2}}^{*}$ of order
$\phi(n)$ . The problem of deciding n-th residuosity, that is, distinguishing n-th
residues from non n-th residues will be denoted by $CR[n]$ . As for prime
residuosity, deciding $narrow th$ residuosity, is believed to be computationally
hard.

Let $g$ be some element of $Z_{n^{2}}^{*}$ and denote by $\epsilon_{g}$ the integer-valued
function defined by

$Z_{n}\cross Z_{n}^{*} arrow Z_{n^{2}}^{*}$

$(x, y) \mapsto g^{x}y^{n} (mod n^{2})$ .

Here, depending on $g,$ $\epsilon_{g}$ may feature an interesting property such as
the following lemma.

Lemma 3.1. If the order of $g$ is a nonzero multiple of $n$ then $\epsilon_{g}$ is
bijection.
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We denote by $\mathcal{B}_{\alpha}\subset Z_{n^{2}}^{*}$ the set of elements of order $n\alpha$ and by $\mathcal{B}$ their
disjoint union for $\alpha=1,$ $\cdots,$

$\lambda.$

In the case of $n=15$ , we obtain the following sets as $\mathcal{B}_{\alpha}$ and $\mathcal{B}$ ;
$\mathcal{B}_{1}=\{16,31,46,61,76,91,106,121,136,151,166,181,196,211\},$

$\mathcal{B}_{2}=\{14,29,44,59,74,89,104,119,134,149,164,179,194,209\},$

$\mathcal{B}_{4}=\{2,4,7,8,11,13,17,19,22,23,26,28,32,34,37,38,41,43,47,$

$49, 52, 53, 56, 58, 62, 64, 67, 68, 71, 73, 77, 79, 82, 83, 86, 88, 92$ ,
$94, 97, 98, 101, 103, 107, 109, 112, 113, 116, 118, 122, 124, 127$,
$128, 131, 133, 137, 139, 142, 143, 146, 148, 152, 154, 157, 158$,
$161, 163, 167, 169, 172, 173, 176, 178, 182, 184, 187, 188, 191$ ,
193, 197, 199, 202, 203, 206, 208, 212, 214, 217, 218, 221, 223},

$\mathcal{B}=\mathcal{B}_{1}\cup \mathcal{B}_{2}U\mathcal{B}_{4}.$

Here, we verify that $\mathcal{B}_{i}\cap \mathcal{B}_{j}=\phi$ for $i,$ $j(i\neq j)$ .

Definition 3.2. Assume that $g\in \mathcal{B}$ . For $w\in Z_{n^{2}}^{*}$ , we call n-th residuosity
class of $w$ with respect to $g$ the unique integer $x\in Z_{n}$ for which there exists
$y\in Z_{n}^{*}$ , such that

$\epsilon_{g}(x, y)=w.$

Adopting Benaloh’s notations [1], the class of $w$ is denoted $[[w]]_{g}$ . It is
worthwhile noticing the following property.

Lemma 3.2. $[[w]]_{g}=0$ if and only if $w$ is an n-th residue modulo $n^{2}.$

Furthermore,

$\forall w_{1},$ $w_{2}\in Z_{n^{2}}^{*}$ $[[w_{1}w_{2}]]_{g}=[[w_{1}]]_{g}+[[w_{2}]]_{g}$ (mod n)

that is, the class function $w\mapsto[[w]]_{g}$ is a homomorphism from $(Z_{n^{2}}^{*}, \cross)$

to $(Z_{n}, +)$ for any $g\in \mathcal{B}.$

By Lemma 3.2, it can easily be shown that, for any $w\in Z_{n^{2}}^{*}$ and
$g_{1},$ $g_{2}\in \mathcal{B}$ , we have

$[[w]]_{g_{1}}=[[w]]_{g_{2}}[[g_{2}]]_{g_{1}} (mod n)$ , (3.1)

which yields $[[g_{1}]]_{g_{2}}=[[g_{2}]]_{g_{1}}$
“ $1_{mod n}$ and thus $[[g_{2}]]_{g_{1}}$ is invertible modulo

$n.$

The set
$S_{n}=\{u<n^{2}|u=1 (mod n)\}$

is a multiplicative subgroup of integers modulo $n^{2}$ over which the function
$L$ such that

$\forall u\in S_{n} L(u)=\frac{u-1}{n}$
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is clearly well-defined.

Lemma 3.3. For any $w\in Z_{n^{2}}^{*}$ , there holds as follows,

$L(w^{\lambda} (mod n^{2}))=\lambda[[w]]_{1+n} (mod n)$ .

By Lemma 3.3, for any $g\in \mathcal{B}$ and $w\in Z_{n^{2}}^{*}$ , we can compute

$\frac{L(w^{\lambda}(mod n^{2}))}{L(g^{\lambda}(mod n^{2}))}=\frac{\lambda[[w]]_{1+n}}{\lambda[[g]]_{1+n}}=\frac{[[w]]_{1+n}}{[[g]]_{1+n}} (mod n)$ .

By virtue of Equation 3.1, for any $g\in \mathcal{B}$ and $w\in Z_{n^{2}}^{*}$ , we can compute

$\frac{[[w]]_{1+n}}{[[g]]_{1+n}}=[[w]]_{g} (mod n)$ .

Therefore, for any $g\in \mathcal{B}$ and $w\in Z_{n^{2}}^{*}$ , we can compute

$\frac{L(w^{\lambda}(mod n^{2}))}{L(g^{\lambda}(mod n^{2}))}=[[w]]_{g} (mod n)$ . (3.2)

4. Application to cryptography

Now, we describe the public key cryptosystem based on the n-th resid-
uosity class problem.

Set $n=pq$ and randomly select a base $g\in \mathcal{B}$ . We review that $\epsilon_{g}$ be the
function defined by

$Z_{n}\cross Z_{n}^{*} arrow Z_{n^{2}}^{*}$

$(x, y) \mapsto \epsilon_{g}(x,y)=g^{x}y^{n} (mod n^{2})$ . (4.1)

For the plaintext $x$ , we employ this function $\epsilon_{g}$ as an encryption function.
Moreover, we review that we define the function $L$ as follows:

$S_{n}=\{u<n^{2}|u=1 (mod n)\} arrow Z_{n}$
$u \mapsto L(u)=\frac{u-1}{n}.$

(4.2)

For the cipertext $c=\epsilon_{g}(x, y)$ , we employ the rate of these two functions
$L(c^{\lambda})$ and $L(g^{\lambda})$ as an decryption function.

Theorem 4.1. We set $n=pq$ and $\lambda=lcm(p-1, q-1)$ . For any $g\in$

$\mathcal{B}$ , we obtain public-key cryptosystem as public keys $(n,g)$ and private keys
$(p, q)$ . For a plaintext $m<n$ , we select a mndom $r<n$ , and $\omega mpute$
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the cipertext $c$ by Equation 4.3. For a cipertext $c<n^{2}$ , we compute the
plaintext $m$ by Equation 4.4.

$c=g^{m}r^{n} (mod n^{2})$ , (4.3)

$m= \frac{L(c^{\lambda}(mod n^{2}))}{L(g^{\lambda}(mod n^{2}))}$ (mod $n$ ). (4.4)

For example, we suppose $n=15$ and $g=14$. Then, for a plaintext
$m=3$ and a random $r=4$ , we compute the cipertext $c=206$ by Equation
4.3. For a cipertext $c=206$ , we compute the plaintext

$m= \frac{L(206^{4}(mod n^{2}))}{L(14^{4}(mod n^{2}))}=\frac{L(46)}{L(166)} (modn)$

by Equation 4.4. Here, we compute

$L(46)= \frac{46-1}{15}=3 (mod n)$

$L(166)= \frac{166-1}{15}=11 (mod n)$

by Equation 4.2. Therefore, we can obtain

$m= \frac{L(46)}{L(166)}=\frac{3}{11}=3. (mod n)$

For $n=pq$ , we obtain the public key cryptosystem based on the n-th
residuosity class problem.
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