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Abstract. This paper has as its main objective a critica review of typical classifications
based on the disciplines of application $(e.g.$ topology, algebra, geomerrv) and their particular
needs. Special attention is given to the example of geometric closure spaces and to the
question what property $0/\cdot$ properties should be used to distinguish $t/lis$ category. $Jn$ this
context, new class of closure spaces of character $n$ is introduced. Arguments are provided
that geometric closure spaces should be distinguished as closure spaces of character 2. Also,
some characteristics of closure spaces of character are given. Finally, the exchange
$prope/ty$ of closure spaces which is usually considered as defining for geometric closure
spaces is associated with the issue of $diS \backslash \int oint$ union decomposability of closure spaces. Some
suggestions are made regarding more meaningful, $comprehensl\iota’ e$ classification of closure

$\downarrow$spaces.
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1. INTRODUCTION
$\ln$ the hundred years of its presence in mathematics, concept of a closure space, or in other

words of a set with closure operator, has found applications in many disciplines. Closure spaces
are usually informally classified using additional properties which are added to the three axioms
of a closure operator understood as a function $f$ on the power set of a set $S$ such that (1) for every
subset A of $S,$ $A\subseteq f(A);(2)$ for all subsets A, $B$ of $S,$ $A\subseteq B\Rightarrow f(A)\subseteq f(B);(3)$ for every subset
A of $S.$ $f(f(A))=f(A)$ .

Additional conditions for classifications of closure spaces are being selected from the
properties of particular examples of closure spaces which played significant roles in the domains
of apphcation of this concept. Although the idcntification of the properties distinguishing
particular types of closure spaces (topological, algebraic, geometric, etc.) seems well motivated
and meaningful, actually when we look carefully, the choice turns out to be quite arbitrary.

This paper has as its main objective to review critically typical classification based on the
disciplines of application and their particular needs. Special attention is given to the example of
geometric closure spaces and to the question what property or properties should be used to
distinguish this category. Tn this context, new class of closure spaces of character $n$ is introduced.
Arguments are provided that geometric closure spaces should bc distinguished as closure spaces
of character 2. Also, some characteristics of closure spaces of character $n$ are given. Finally, the
exchange property of closure spaces which is usually considered as defining for geometric
closure spaces is associated with the issue of decomposability of closure spaces. Some
suggestions are made regarding more meaningful, comprehensive classification of closure spaces.

The text is $refei\tau ing$ to some results of the author which belong to the articles currently in
preparation for publication. For this reason in this paper the proofs will be omitted as they will be
presented elsewhere.
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2. PARADIGMATIC PROPERTIES OF CLOSURE SPACES
The concept of a closure operator was introduced about a hundred years ago. The early work

on closure operation which left trace in the hterature of the subject was published in 1910 by
Eliakim Hastings Moore in his “Introduction to a Form of General Analysis.” [1] However, it
was the formulation of the axioms for topological space in terms of a closure operator by
Kazimierz Kuratowski [2] in 1922 which introduced this concept into common use.

To be more precise, Kuratowski was analyzing the operation on subsets of a topological
space which assigned to each set an extension including in addition to its own elements its lilnit
points. Tt turned out that the closure operation with four axioms gives an alternative definition of
the original topological space.

The axioms considered by Kuratowski implied two conditions stronger than those considered
by Moore. In this latter more general approach it is not necessary to assume that closure of an
enrpty set is empty and that the operation is finitely additive with respect to union of sets (closure

of the finite union of sets is the union of closures). Soon it was recognized that there are many
closure operations of fundamental importance for mathematics, such as syntactic consequence
used by Alfred Tarski in his algebraization of logic, closing a subset of an $a$]gebra to the least
subalgebra including it, which do not require additivity.

The two examples of non-topological closures had in place of the additivity condition
another property called finite character, which in the simplified latter form asserts that if an
element $x$ belongs to the closure of a set $A$ , then it belongs to the closure of some finite subset of
$A$ (or equivalently that the closure of a set is equal to the union of closures of its all finite
subsets). Since metric spaces which served as the original structures in which topological
properties were studied, as well as the majority of early examples of topological spaces satisfy
the condition $(T_{1})$ that one element sets are closed, and combination of conditions for such
topological spaces with the finite character property produce the unique trivial closure system
with all subsets closed, it was natural to conceive the classification of closure spaces into
topological (additive). and algebraic (with finite character).

The algebraic closure spaces were in the privileged situation. Very early, when the theory of
closure spaces started to develop, Garrett Birkhoff and Orrin Frink [3] showed that whenever
closure space on a set A has finite character, there exists on this set an algebra (i.e. algebraic
structure), so that the closure is its subalgebra closure. In contrast, topological closures defined
simply by the finite additivity condition were very far from closures defined in metric spaces, the
original structures in which topologies were being introduced. This stimulated intensive studies
of the conditions which have to be added to additivity to make the topological space
homeomorphic with some topological space on a memc space (i.e. to find a representation in a
metric space).

lnterest in the metrization produced a wide range of conditions of increasing strength which
were intended to bring back realization of a topological space in a metric space. They had two
main forms of separation (and therefore are called separation axioms and indicated with the letter
$T$ (from German $Trem$)ungsaxiom) with an index $i$ indicating strength of the condition. One type
was based on the requirement that a pair of disjoint subsets of specific properties (viz. one
element set, closed set) can be included in disjoint open subsets (i.e. in complemems of closed
subsets). The other is based on the existence of a continuous function from the topological space
to real numbers, such that a pair of disjoint sets (as before) has distinct point images $(uSua\mathfrak{l}$ly $0$
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and 1, but this is a matter of convenience). Although metrizable topological space satisfies the
strongest $T_{6}$ axiom, it turns out that this cdondition is still not sufficient for metrizability, which
requires additional conditions.

Separation axiom were important for the development of topology, but they are of marginal
interest in more general considerations of closure spaces. However, the large variety of examples
of topological spaces very different from those metrizable which were introduced to make
distinctions in this partially hierarchic classification shows that the choice of additivity as the
defining property of topology is very weak and quite arbitrary.

On the other hand, some considerations related to generalizations of metric spaces led to
abandoning of the third condition for closure operator (called transitivity) which assumes that
closure of a set is closed, without giving up the additivity. These so called pre-closure operators
remain in the margin)$s$ of topology, but are of some interest for other disciplines. We will be
using pre-closure operators (called simply operators) defined by only two first axioms for closure
operators (as it is now a common practice) to formulate a conceptual framework for
classification of closure spaces.

In spite of the representation theorem, the situation is not better for algebraic closures.
Representation of algebraic closures as subalgebra closures requires algebras which may have n-
ary operations of finite type, but for arbitranily high $n.$ $1t$ is not a problem in theoretical setting of
universal algebra, but is going way beyond typical algebras with at most binary operations.
Moreover, the finite character property belongs to axioms of some more specific closure spaces.
Conscquence operator has been mentioned above, but an example closcr to the interests of
topology can be found in geometry.

Using example of topology, geometry has been formulated in terms of closure spaces. The
work in this direction was initiated by Reinhold Baer [4] in 1952 in his axiomatization of
projective geomctry. Further attempts to grasp the essence of geometry reduced the axioms of
geometry to a closure operator on a set $S$ which in addition to the conditions already known in
topology that the empty set is closed and that one element set is closed $(T_{1})$ , and to the condition
of finite character defining algebraic closures, has apparently very “geometric” exchange
property: For every subset A of $S$ and for all x, y belonging to $S$ , if $x\in f(Au\{y\})$ , but $x\not\in f(A)$ ,
then $y\in f(Au\{x\})$ .

It was a surprise that when in tum convex geometries were axiomatized in terms of closure
operators, this axiom had to be replaced by another seemingly (but not exactly) $con(radictory$

condition called anti-exchange property: if $x\neq y,$ $x\in f(Au\{y\})$ and $x\not\in f(A)$ , then $y\not\in f(Au$

$\{x\})$ .
As it was in the case of topology, some additional conditions were added to the exchange

property to bring back the axiomatics in terms of closure spaces to original axioms of projective
and affine geometry [5]. However, the existing approach while making consistent projective and
affine geometries, does not resolve inconsistency with convex geometry. In axiomatizations in
terms of closure spaces they are formulated separately, as if they did not have a common root in
synthetic geometry.

Before we look more carefully at the properties of closure spaces which were used to
axiomatize geometry, some important aspects of the paradigm of the study of closure spaces
should be presented. From the very beginning, i.e. from the work of Moore at the beginning of
the 1900‘ $s$ , closure spaces were associated with Moore famiiies of subsets of a set $S$ , defined as
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families of subsets which include all set $S$ and the intersections of their arbitrary subfamilies.
Moore families are in bijective correspondence with closure operators. For each closure operator
$f$ on a set $S$ , the family of its closed subsets f-Cl is a Moore family of subsets. On the other hand,
given Moore family of subsets defines a closure operator assigning to a set A the intersection of
all members of the family including A.

As soon as lattices appeared in mathematics, it has been recognized that Moore families are
complete lattices of subsets. Thus, it is natural to investigate the properties of the lattice $L_{i}$ of the
closed subsets for the closure operator $f$. From that time lattice theory has become the main tool
of the study of closure spaces, and closure spaces provided set theoretical realizations of
complete lattices. Garret Birkhoff’s classical book on lattice theory [6] includes almost all early
significant contributions to the study of closure spaces.

When we are looking for the justification for the finite additivity of the closure operator as a
criterion for topological character of the closure space, it may seem that the reason could be in
the fact that when closure operator $f$ is additive, the lattice $L_{l}$ is distributive. However, finite
additivity is a stronger condition, as the following simple example shows. There are closure
operators which have distributive lattice of closed subsets, but which are not additive. If $T,$ $U$ are
disjoint, but not complementary subsets of $S$ , we can define a closure operator $f$ by its Moore
family of closed subsets consisting of the empty set, $T,$ $U$ , and S. Of course, the lattice of closed
subsets is distributive (or even Boolean), but $f(TuU)=S$ and $f(T)uf(U)=TuU\neq S.$

It is easy to understand the strength of the finite additivity condition, if we recognize that it
simply means that the lattice join of closed subsets, which in the general case is the closure of the
union of closures $(i.e. f(A)\vee f(B)=f(f(A)uf(B)))$ , in this case is simply the union of closures
$(i.e. f(A)\vee f(B)=f(A)uf(B))$ . Since the dual equality holds for all closure operators (i.e. $f(A)\wedge$

$f(B)=f(A)\cap f(B))$ . in finitely additive closure spaces join and meet of $L_{f}$ are identical with set
union and intersection. However, the strength of the condition does not help to answer the
question why this particular type of closure space should be distinguished. The only answer is
purely pragmatic, it is very useful in some apphcations, and distnbutivity of $L_{f}$ is only one of
convenient consequences.

Later, the modularity of $L_{f}$ as well as its weakening to senrimodularity have been associated
with geometry, but the association of closure spaces with the properties of $L_{f}$ remains without
systematization.

Another source of the paradigmatic methods of closure space classification is in the
particular example of the closure space defined by the Moore family of all subspaces of a vector
space. From vector spaces we can generahze the concept of independence and generation for
subsets of any closure space.

The family f-Ind of independent subsets of a closure space with closure operator $f$ is defined
by the condition that subset $B$ is independent if for every element $x$ in $B$ we have $x\not\in f(B\backslash \{x\})$ .

Set $B$ generates closure space, if $f(B)=$ S. Finally, the independent, generating subsets can be
called bases. This gives a namral distinction of closure spaces which have bases, and then which
have equicardinal bases. But both these classes, especially the latter are quite narrow, and the
properties are meaningful or even fundamental in some applications (e.g. in matroid theory), but
marginal from the point of view of general $theo1^{r}y$ of closure spaces.

One of the reasons for the original interest in the concept of a base of a closure space had its
source in misunderstanding. The fact that a set generates all closure space is crncial in a vector
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space, because we can express every element of the vector space using only eIements of this
generating set. Moreover, we can express every subspace using only elements of the generating
set. lt does not work this way in more general closure spaces. Generating set (or base) generates
all set $S$ and only limited subset of subspaces. Thus, the analogy with the concepts in vector
spaces is limited.

3. WHAT MAKES CLOSURE SPACE GEOMETRICAL?
The following part of the paper will require more formal formal. $I$ will use the concept of a

pre-closure space (in the following simply operator space) $<S,f>$ defined on a set $S$ as mapping $f$

(operator) of its power set into itself, such that for all subsets A, $B$ of $S:(i)A\subseteq f(A)$ and (ii) If
$A\subseteq B$ , then, $f(A)\subseteq f(B)$ .

As in the case of closure spaces. the subsets of $S$ satisfying $A=f(A)$ . i.e. closed subsets
always form a complete lattice $L_{f}$ . But different operators may have the same family of closed
subsets.

Closure spaces are spaces in which operator $f$ satisfies the transitivity condition:
(I) $f(f(A))=f(A)$ . In such case we can write $f\in I(S)$ .
It is commonly assumed that geometric closure spaces satisfy two additional conditions:
(N) $f(\emptyset)=\emptyset$, written in short as $f\in N(S)$ and
(T) $\forall a\in S:f(\{a\})=a$ , in short $f\in T_{1}(S)$ .There will be also mentioned a weaker condition:

(T) $\forall a,b\in S:f(\{a\})=f(\{b\})\Rightarrow a=b.$

In the first, more popular of the two dominating approaches to geometry focusing on the
projective or affine geometries and their generalizations, a geometry is defined as a closure space
$<S,f>$ in which $f\in NT_{1}I(S)$ , and such that $f$ satisfies two additional conditions, the ”finite
character” property:

$(tC)\forall A\subseteq S\forall x\in S:x\in t(A)\Rightarrow\exists B\in$ Fin(A): $x\in t(B)$ , where Fin(A) is a set of all finite subsets
of A), and the“exchange property” (of Steinitz):

$(wE)\forall A\subseteq S\forall x,y\in S:x\not\in f(A)$ & $x\in f(Au\{y\})\Rightarrow y\in f(Au\{x\})$

At (his point, the fomula$(ion$ of projective or affine geometries in terms of closure operators
splits into a wide range of different, sometimes non-equivalent theories.

A projective geometry is frequently defined by only one additional condition for a geometry
called th$e^{}$ projective law”:

$(pL)\forall A,B\subseteq S$ & $A,B\Rightarrow\emptyset\neq$ f(Au$B$)$=\{f(\{x,y\}):x\in f(A) \ y\in f(B)\}.$

However, such geometry may have very strange properties contradicting our spatial intuition
(e.g. different lines intersecting in more than one point,) so other conditions are sometimes added.

In geometries defined as closure spaces $(f\in NT_{1}fCwEI(S))$ the additional condition making
such a structure consistcnt with our intuition of spatial relations gives a special role to the
closures of pairs of points (lines): $\forall A\subseteq S:[A=f(A)$ iff $\forall x,y\in A:f(\{x,y\})\subseteq A].$

Thus, projective geometries are sometimes defined by the Projective Law and the condition
of linearity (above).

To inaintain the usual relationship between projective and affine geometries, the definition of
the latter includes the usual condition of Euclid’ $s^{I}$‘Fifth Postulate”:

$\forall x,y,z,p,q,r\in S:f(\{p,q\})\sigma f(\{x,y,x\})$ & $r\not\in f(\{p,q\})$ $\Rightarrow$

$\exists$t,u$\in f(\{x,y,x\}):t\neq u$ & $r\in f$({t,u} &f({p,q} $\cap$f({t,u}) $=\emptyset$ and
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every other closure of two points satisfying this condition is identical with $f(\{t,u\})$ .
Along with the Fifth Postulate, the condition called ”strong planarity,” which is satisfied
automatically by projective geometries, is assumed in order to maintain the relationship between
the two forms of geometry. as it has to be expected from affine geometries.

Strong planarity adds to the planarity $(\forall A\subset S:[A=f(A) iff \forall x,y,z\in A:f(\{x,y,x\})\subsetneq A])$

additional condition: $(sP)\forall A\subset S\forall p,q\in S\forall r\in f(A):p\in f(Au\{q\})\Rightarrow\exists s\in f(A):p\in f(\{q,r,s\}.$

This conceptual framework gives complete translation of projective and affine geometries
into the language of closure spaces, but does not allow recovery of all geometry without $going-\backslash$

outside of it.
All earlier or recent attempts to recover either Hilbert’s Axioms of Order or the concept of

convexity are referring to external concepts such as for instance orientation.
Convex geometries belong to the other direction in geometry, less known and studied, but

still witlh big volume of literature. They are (usually) defined as closure spaces $<S,f>$ such that
$f\in NT_{1}fC(S)$ and that $f$ satisfies anti-exchange” condition:

$(awE)VA\subseteq S\forall x,y\in S:x\neq y$ & $x\not\in f(A)$ & $x\in f(Au\{y\})\Rightarrow y\not\in f(Au\{x\})$

It is easy to see that the anti-exchange condition is a generalization of the basic property of
Hilbert’s“betweenness,” which also is related to exchange property. However. the connection of
such convex geometries with projective and affine geometries on one hand, and synthetic
geometry on the other is not as simple as could be expected, unless we assume some additional
strong conditions.

There is a natural question about properties common for both types of geometries. Of course,
in both cases we have $f\in NT_{1}fC(S)$ .

Also, it is obvious that in both cases we have:
(linearity) $\forall A\subset S:[A=f(A) iff \forall x,y\in A:f(\{x,y\})\subsetneq A]$, or at least
(planarity) $\forall A\sigma S:[A=f(A) iff \forall x,y,z\in A:f(\{x,y.x\})\subset A].$

Notice that Hlbert’s Axioms of Connection $ale$ related to the first of the conditions when
$f(\{x,y\})$ is interpreted as a line, and at the same time his Axioms of Order are used to define
convexity by using the same condition when $f(\{x,y\})$ is interpreted as a $segmen\iota.$

The conditions above have some affinity with the second of the equivalent formulations of
the finite character property $(fC)$ :

i$)$ $\forall A\subseteq S\forall x\in S:x\in f(A)\exists\Rightarrow B\in$Fin(A): $x\in f(B)$,
ii) $\forall A\subseteq S:A=f(A)$ iff $\forall B\in$ Fin(A): $f(B)\subseteq A.$

$\ddot{u}i)\forall A\sigma S:f(A)=\cup\{f(B):B\in Fin(A)\}.$

However. the equivalence is lost when instead of assuming finiteness of set $B$ , we assume
some particular finite number of elements, as in the conditions of linearity or plananity.

DEFINITION 3.1 An operator $f$ on set $S$ is ofcharacter $n$ if:
$(C_{n})VAd:A=f(A)iff\triangleright B\ovalbox{\tt\small REJECT}$; IBIsh $\Rightarrow f(B)\ovalbox{\tt\small REJECT}.$

There is a straightforward relationship between different levels of character $n$ property and
finite character property:

PROPOSmoN 3 $.1$ $f\epsilon C_{n}(S)\Rightarrow f\epsilon C_{n+1}(S)\Rightarrow f\epsilon fC(S)$ .
Thus, when we define geometry using $C_{2}$ (or $C_{n}$ for any n) the finite character property

becomes redundant.

150



The $n$ character property for lowest values of $n$ is relating closure operators (i.e. transitive
operators) to binary relations.

PROPOSITION 3.2
i$)f\epsilon K_{0}(S)$ iff$\Xi T\subseteq S:f(A)=A$for $T\ovalbox{\tt\small REJECT} andJ(A)=AUT$ otherwise.
ii) $f\epsilon nC_{1}(S)$ iff there exists a reflexive and transitive relation (quasiorder) $R$ on $S$, such that

$VA\subset S:frA)=R^{e}(A):=/y\epsilon S:3x\epsilon S:xRy.$

iii) $f\epsilon nT_{0}C_{1}(S)$ iff there exists partial order $R$, such that$f(A)=R(A)$

iv) $f(A)=Re(A)$ and $R$ is an equivalence relation $i\parallel feXVC_{1}(S)$ and $f$ satisfies: $Vx,y\epsilon S$:
$x\epsilon f((y)\Rightarrow y\epsilon f([x)$ .

For closure spaces of character $n$ higher than one we can easily get an analogue of the
Birkhoff-Fring theorem for finite character closure spaces using the same idea for the proof.

PROPOSITION 3.3 For every closure space く$SJ>of$character $n$ there exists an algebra
with operations of $n$-arity not exceeding $n$, such that $f$ is its subalgebra closure operator.
Thus, closure operators of character 2 are associated with algebras equipped only with unary

and binary opcrations.
As I mentioned before, the equivalence between the three folmulations of the finite character

property is lost for character $n$ . In this case the first condition is obviously equivalent to the third:
$(sC)VA\subseteq S:f(A)=u${ $f(B)$ : $B\subseteq A$ &IBI $\leq \mathfrak{n}$ },

but they are stronger than $C_{n}$ itself, i.e. $sC_{n}(S)\subseteq C_{n}(S)$ . Surprisingly, the Projective Law
defining projective geometries

$(pL)\forall A,B\subseteq S$ & $A,B\Rightarrow\emptyset\neq f(AuB)=\{f(\{x,y\});x\in f(A) \ y\in f(B)\}$

tums out to be a weakening of this stronger condition for $n=2$, which places projective
geometries between $C_{2}$ and $sC_{2}.$

PROPOSITION 3.4 $sC_{2}(S)\Xi pL(S)ae_{2}(S)$.
Finally, the condition $C_{2}$ with the direct translations of the Axioms of Order in terms of

closure operators and one additional condition (third condition below) allow formulating axioms
of synthetic geometry in terms of closure spaces. The closure here is a generalization of the
convex hull operation, which is consequently used to define the concept of $a$ ]ine. If in addition
to these three conditions we assume the projective law, we can recover the anti-exchange
propelty and the closure operator becomes a familiar convex hull operator.

More specifically we need the following three conditions:
i $)$ $\forall x,y,z\in S;y\in f(\{x,z\})$ & $x\in f(\{y,z\})\Rightarrow x=y.$

ii) $\forall p,q,r,s,t,u\in S:t\neq u$ & $\{t,u\}\subseteq f(\{p,r\})\cap f(\{q,s\})\Rightarrow$

$\exists$x,y$\{\in p,q,r,s\};x\neq y$ &f({p,q,r,s}) $\subseteq$ t({x,y}.
iii) $\forall x,y,z\in S:z\in f(\{x,y\})$ $\Rightarrow f(\{x,y\})=f(\{x,z\})uf(\{z,y\})$

Then we can derive:
iv) $\forall p,q,r,s\in S;q\in f(\{p,r\})$ & $r\in f(\{q,s\})\Rightarrow$ $\{q,r\}\subseteq f(\{p,s\})$ .
v$)$ $\forall A\subseteq S\forall x,y\in S:A\subseteq t(\{x,y\})$ & $A\in$ Fin$(S)\Rightarrow\exists$ r,s$\in A:A\subseteq f(\{r,s\})$ .

Then, we can define a line passing through two different points w,z$\in S$ as the set:
$L_{\tau,z}=u\{f(\{r,s\}):\{w,z\}\subseteq f(\{r,s\})\}.$

It can be shown that this definition is consistent with the general definition of a hne in
geometry $<S,f>$ as a set $L$ such that:
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a$)$ $\forall x,y\in L;f(\{x,y\})\sigma\iota$ . (redundant, can be omitted)

b$)$ $\forall K\subset L\forall x,y\in S$ : IKI $\geq 2$ & $K\subseteq f(\{x,y\})\Rightarrow f(\{x,y\})\subseteq L.$

c$)$ $\forall K\subset L:A\in$ Fin(S) $\exists\Rightarrow r,sK\in:K\sigma f(\{r,s\})$ & $r\neq s.$

With the set of lines defined this way we can recover all synthetic geometry. This way we
can see that it is the property of character 2 for closure spaces which makes them geometnical,
not exchange property. Thus the question is what is the role of the exchange property? To answer
this question, we have to consider how closure spaces can be combined using disjoint sum.

4. DISJOINT SUMS OF CLOSURE SPACES
Relatively httle has been done in the past in the study of the constructions combining

general spaces, or even closure spaces defined on different sets. In this paper we will consider
only disjoint sums of spaces and their relationship to the direct product of their lattices of closed
subsets.

DEFINITION 4.1 Let$f$be an operator on a set $S,$ $g$ an operator on set $T$, and $\varphi$ be a
function from $S$ to $T$ The function $\varphi$ is $(fg)$-continuous if $VA\Phi:\psi(A)_{-}\alpha\emptyset A)$ . We will write
continuous, ifno confusion is likely.
PROPOSITION 4.1 Continuity of thefunction $\varphi as$ defined above is equivalent to each of
the following statements:
(1) $VA\ovalbox{\tt\small REJECT}^{\tau}.\cdot f(A)\subseteq\varphi^{-\int}gq_{A}),$ (2) $V\mathcal{B}\subset T:f\varphi^{1}(B)\subseteq\varphi^{-l}g(B),(3)m\subseteq T:ff\varphi^{J}(B)\subseteq g(B)$ .
Ifboth operators $f$and $g$ are transitive, continuity of the function $\varphi$ is equivalent to the
condition:(4) $W\epsilon g-Cl:\varphi^{1}(B)\epsilon$ f-Cl.
DEFINITION4.2 Letfbe an operator on a set $S,$ $g$ an opemtor on set $T$, and $\varphi$ be a
function from $S$ to T. Thefunction $\varphi$ is $(fg)$-isomorphism if it is bijective and
$VA\Phi:ff(A)=g\emptyset A)$ . We will write isomorphism, ifno confusion is likely.
DEFINITION 4.3 Disjoint sum $(\theta J_{l},g)$ of the indexedfamily $J_{l}$ ofsets equipped with
operators is defined as the disjoint sum ofsets $\theta J_{I}$ with its family ofcanonical injections
[ $\theta_{i}:S_{i}arrow\theta J_{I},$ $i\epsilon IJ$ equipped with the operator $g$ defmed by $VA\subseteq\theta J_{l};g(A)=\cup[\theta f_{i}\theta_{i}^{l}(A)$:
$i\epsilon I.$ $lf$ no confusion is likely we will use the symbol $\theta J_{I}$ for $(\theta f_{I},gJ$

When the operators involved are transitive, we will call $(\theta J_{I},g)$ a disjoint sum ofclosure
spaces. Evidently, when the operator $g$ is defined as above, all canonical injections become

$(f_{i},g)$-continuous.
PROPOSITION 4.2 The disjoint sum ofarbitmry family ofsets with transitive operators has
its opemtor transitive, $i.e$ . the disjoint sum ofa family of closure spaces is a closure space.
PROPOSITION 4.3 The lattice ofclosed subsets of the disjoint sum ofarbitraryfamily of
closure spaces is isomorphic to the direct product of lattices ofclosed subsets for the
component closure spaces, $i.e.$ $(l_{g},s)\approx(\Phi l_{l},\mathcal{Z})$, where $(ae_{g},9$ is a lattice of $g$-closed sets in
the disjoint union ofclosure spaces $(\theta J_{I},g)$ whose components are closure spacesfrom the

family $J_{I}=((S_{i}f\cdot J.\cdot i\epsilon I, (\Phi f_{I},\mathcal{S})$ is the cardinal product of lattices from the family $((L_{i},\underline{<}J.\cdot$

$i\epsilon I]$, where each lattice $\iota_{i},\underline{<}_{i}$) is a lattice ofclosed subsets in the closure space $(S_{i}f_{i}),$ $and\sim$

is the order isomorphism.
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The isomorphism of the lattice of the closed subsets of the disjoint sum of closure spaces
with the direct product of the lattices of closed subsets in the factors opens a rich toolbox of the
methods developed in lattice theory, which can be used for the study of decomposition of closure
spaces. It is obviously of great interest for the study of classification of closure spaces.

There is a natural question about the conditions for simple (irreducible) closure spaces. Of
course, as a consequence of the preceding proposition it is equivalent to the question of direct
product irreducibility of the lattice of closed subsets. It is rather a surprise, that the exchange
property appears at this point.

5. DECOMPOSITION INTO DISJOINT SUMAND EXCHANGE PROPERTY
Non-transitive operators cannot be defined by their families of closcd (or open) subsets, but

some other cryptomorphic descriptions remain valid. For instance the derived set operator
defined as a function mapping a subset A of $S$ to $A^{d}=\{x\in S:x\in f(A\backslash \{x\})$ , has a set of properties
which can be used for an alternative definition of a not necessarily transitive closure space.

The derived set operator can be used to define the concept of duality of operators. For an
operator $f$ on $S$ , the dual operator $f^{*}$ is defined by $f^{*}(A)=AuA^{cdc}$, where $A^{c}$ is the complement
of A in S. Of course, $f^{*}$ is actually an operator, but the dual operator of a transitive operator may
not be transitive.

Consequently, we can define dual properties of operators. If $f^{*}$ has some property $xY$ , then
we can say that $f$ has property $xY^{*}$ . Victor Klee [7] showed that $I^{*}$ is a strengthening of the weak
exchange property $(wE)$ , i.e. $I^{*}=E$ , where $E$ is as follows.
(E) $\forall A,B\subseteq S\forall x\in S:x\not\in f(A\backslash B)$ & $x\in f(A)*\exists y\in B:y\in f((A\backslash \{y\})u\{x\})$ .

$\ln$ his paper Klee also considered an additional property $C$ :
(C) $\forall A\subseteq S\forall x\in S:x\in f(A)\Rightarrow\exists B\subseteq A:B$ is minimal such that $B\in f-Ind$ & $y\in f(B)$ .
He showed that $IfC\subseteq IC$ & $wEC\subseteq$ E. From that we can get easily:
fCw$EI\subseteq EI$ and therefore $NT1^{fCwEI(S)=}NT1^{fCEI(S)}$

Since in all contexts of traditionally defined geometric closure spaces, as well as in the
context of closure spaces defined in vector spaces we have the combination $fCwE$ of $prope\iota ties,$

it is not just $wE$ weak exchange property which is involved, but actually its stronger version E. It
is also interesting that $IE$ operators can be characterized in general as closure operators whose
dual operators are transitive, i.e. $IE=II^{*}.$

However, it is even more surprising that from the properties $IE$ combined with another
property follows irreducibility of the closure space into a disjoint union of closure spaces.

PROPOSITION 5.1 $Ixtf\epsilon EI(S)$ . $Then<Sf>is$ disjoint-sum-irreducible if closure
opemtor$f$ satisfies the condition:
Vfu,$y\epsilon Sxgf([yJ)$ & $ygf([xJ)\Rightarrow\ovalbox{\tt\small REJECT}\epsilon S:z\mathcal{B}f([yJ)$ &zef$([xJ)$ & $z\epsilon f([x,yJ)$.

We can see here, that the exchange propcrty appeared in the study of geometric closure
spaces not because it is related to any geometric characteristics, but because it is related to
irreducibility into disjoint sum.

6. CONCLUSIONS
The paradigm (or rather paradigms) in the study of closure space classification is based on

properties which are quite arbitrary. They have sources in the particular interests of the
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disciplines of mathematics where they served as tools for making generalizations, but their
selection was guided more by convenience, than by deeper methodological reflection.

Although the correspondence between closure spaces and lattices provided a great
opportunity to enrich methodology of closure spaces generating a large number of deep results, it
was not exploited sufficiently for the purpose of classifications at the level of generality beyond
disciplinary divisions. Topological, algebraic and geometric closure spaces were distinguished
by properties which are too strong (topology) or too weak (algebra or geometry) to have direct
interpretation in terms of lattice theoretic analysis meaningful for the study of all closure spaces.
In case of geometric closure spaces, the property (weak exchange property) used to distinguish
this class tums out to have other important consequences (irreducibility of the closure space)
rather than introduction of geometric characteristics, which are more a matter of introduced here
property of being of character 2.

Correspondence between disjoint unions of the closure spaces and direct products of the
lattices of closed subsets opens new direction in the study of classification. First step in this
direction should be characterization of irreducibility of closure spaces with respect to disjoint
sums (a sufficient, but not necessarily necessary conditions were given here), and the next step
should be comprehensive classification of such irreducible closure spaces. Similarly, the smdy
should establish the relationship between direct products of closure spaces and appropriate
constructions on lattices of closed subsets, followed by the analogous classification of the direct
product irreducible closure spaces.
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