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Abstract

This short note surveys some new and not so new constructions of infinite families of
constant degree regular graphs with large girth. Many of these families are constructed as
follows: interpret algebraically the infinite $d$-regular tree as a Cayley graph on a relevant free
group defined over $\mathbb{Z}$ . Take finite quotients of this tree realized as Cayley graphs on groups
defined by taking projections $\mathbb{Z}arrow \mathbb{F}_{q}$ of this free group, for an infinite set of primes $q$ . For
these families, the finite quotients are Cayley graphs over $GL_{2}(\mathbb{F}_{q}),$ $SL_{2}(\mathbb{F}_{q})$ or $PGL_{2}(\mathbb{F}_{q})$ ,
$PSL_{2}(\mathbb{F}_{q})$ . We highlight the use of quatemion groups, allowing to obtain new constructions
of regular graphs displaying a girth larger than what were able to achieve some “classical”
constructions.

1 Introduction

The girth of a graph is the length of one of its shortest cycle. For large graphs, it is difficult
to compute, and a natural question raises: how large the girth of a graph with $N$ vertices can
be? This very general question is not trivial as soon as there are some vertices of degree of
regularity greater than 2 (otherwise it is a cycle graph which have girth equal to $N$). If one
restricts the kind of graphs to regular graphs, this question has a more precise signification, due
to an upper bound found out by Moore. This “Moore bound” is a simple counting observation
that can be summed up as follows. In a regular graph of girth $g:=$ girth $(G)$ , the set of vertices
at distance less than $t$ from a given vertex (the root) is a regular tree, assuming that $t\leq L_{2}^{2}\rfloor$

( $g$ is odd) or $t<g2$ ( $g$ is even). It follows that:

$g\leq\{\begin{array}{ll}2\log_{d-1}|G|+1 if g is odd,2\log_{d-1}|G|+2-2\log_{d-1}2 if g is even.\end{array}$ (1)

This implies that for $d\geq 5,$

$g \leq(2+\frac{2}{\log_{d-1}|G|})\log_{d-1}|G|=(2+o(1))\log_{d-1}|G|$ (2)

Consequently given a family of $d$-regular graphs $(G_{n})_{n\in \mathbb{N}},$

$\lim_{narrow}\inf_{\infty}\frac{girth(G_{n})}{\log_{d-1}|G_{n}|}\leq 2.$
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This motivates the following definition due to Biggs [1]. $A$ family of $d$-regular graphs is said to
be of large girth if $\lim\inf_{narrow\infty}\frac{girth(G_{n})}{\log_{d-1}|G_{n}|}\geq\epsilon$ for some $\epsilon>0.$

Application. The property of large girth, besides its own theoretical interest, finds an ap-
plication in error-correcting codes theory, and more precisely for “Low Density Parity Check”
(LDPC) codes. This approach was pioneered by Margulis in [10], where he gave the first con-
structive example of a family of LDPC codes of unbounded minimum distance by providing
explicit families of regular graphs of large girth. Such a property is quite useful in this context
for several reasons:
(i) Tanner gave in [14] a construction of codes based on graphs together with a lower bound on
the code minimum distance growing exponentially with the girth;
(ii) these LDPC codes are decoded with the help of iterative decoding algorithms working on
a certain graph associated to the code construction and the performance of such algorithms
is known to deteriorate in the presence of small cycles. This phenomenon is related to the
fact that these iterative decoding algorithms compute symbol probabilities conditioned on an
exponentially large (in the number of iterations) number of received symbols as long as the
number of iterations is smaller than half the girth [5], but that does not hold anymore for a
larger number of iterations.

This motivates the construction of graphs with the largest girth possible. Define:

$\gamma(\{G_{n}\}) :=\lim_{narrow}\inf_{\infty}\frac{girth(G_{n})}{\log_{d-1}|G_{n}|}$ . (3)

We wish to determine for each integer $d\geq 3$ the constant

$\gamma_{d}:= \sup \gamma(\{G_{n}\})$ .
$\{G_{n}\}_{n\in N}$ family of $d$-regular graphs

The Moore bound (2) implies that $\gamma_{d}\leq 2$ for all $d\geq 3$ . Lower bounds can be found in several
works. Here is a non exhaustive list, written in chronological order:

Table 1: Old and new results about graphs with large girth

Except the graphs in [15, 8] all these families of graphs are defined as Cayley graphs on the
groups $GL_{2}(\mathbb{F}_{q}),$ $SL_{2}(\mathbb{F}_{q})$ or their projective counterparts $PGL_{2}(\mathbb{F}_{q})$ or $PSL_{2}(\mathbb{F}_{q})$ . In this
survey, we will focus on the constructions in [9, 11] and especially on how to modify these to
obtain the graphs in [3] that display a larger girth than what previously known for many special
cases.
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2 The LPS-Margulis construction
These are the famous Ramanujan graphs that are optimal expanders [6] with respect to the
eigenvalue bound. These can be defined using quatemions due to a well-known isomorphism
between the “Hamilton” quaternion algebra $\mathbb{H}(\mathbb{F}_{q})$ over the finite field with $q$ elements,

$\mathbb{H}(\mathbb{F}_{q}):=\{x_{0}+x_{1}i+X\dot{\mathfrak{U}}+x_{3}k, x_{i}\in\mathbb{F}_{q}\}$ , where $i^{2}=j^{2}=-1,$ $ij=k$

and the $2x2$ matrix algebra over $\mathbb{F}_{q}$ . In particular, denoting $\mathbb{H}^{1}(\mathbb{F}_{q})$ $:=\{x=x_{0}+x_{1}i+x_{2}j+x_{3}k\in$

$\mathbb{H}(\mathbb{F}_{q})|N(x)=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\}$, and $\mathcal{Z}$ $:=\{x=\overline{x}:=2x_{0}-x, x\in \mathbb{H}(\mathbb{F}_{q})^{\cross}\}$ the center
group of $\mathbb{H}(\mathbb{F}_{q})^{x}$ , holds:

$\mathbb{H}(\mathbb{F}_{q})^{\cross}/Z\simeq PGL_{2}(\mathbb{F}_{q})$ and $\mathbb{H}^{1}(\mathbb{F}_{q})/\{\pm 1\}\simeq PSL_{2}(\mathbb{F}_{q})$ .

Following a famous theorem of Jacobi, every prime integer $p$ can be written in $8(p+1)$ different
ways as the sum of the squares of 4 integers. Consequently there are in $\mathbb{H}(\mathbb{Z})8(p+1)$ quatemions
of norm $p$ . The group of invertible quaternions $\mathbb{H}(\mathbb{Z})^{\cross}$ over $\mathbb{Z}$ has exactly 8 elements, and this
group acts naturally on the set of quaternions of norm $p$ . If we isolate one quaternion per orbit
under this action, this defines a special set $\mathscr{P}(p)$ of $p+1$ quatemions of norm $p$ , and a quite
natural way to achieve this is the following:

$\mathscr{P}(p)=\{\pi\in \mathbb{H}(\mathbb{Z})$ primitive : $N(\pi)=p,$ $\pi_{0}>0,$ $\pi-1\in 2\mathbb{H}(\mathbb{Z})\}$ if $p\equiv$ lmod4, (4)

$\mathscr{P}(p)=\{\pi\in \mathbb{H}(\mathbb{Z})$ primitive: $N(\pi)=p,$ $\pi_{0}>0$ if $\pi_{0}\neq 0$ , or $\pi_{1}>0$ $if\pi_{0}=0,$

and $\pi-i-j-k\in 2\mathbb{H}(\mathbb{Z})\}$ if $p\equiv 3$ $mod 4$ (5)

For each prime $q>p$ , define $\mathscr{S}_{p,q}$ the image of $\mathscr{P}(p)\subset \mathbb{H}(\mathbb{Z})$ in $\mathbb{H}(\mathbb{F}_{q})^{\star}/\mathcal{Z}$ and let $X_{p,q}$ $:=$

$\mathscr{C}ay(\mathbb{H}^{1}(\mathbb{F}_{q})/\{\pm 1\}, \mathscr{S}_{p,q})$ if $(\begin{array}{l}Rq\end{array})=1$ or $X_{p,q}$ $:=\mathscr{C}ay(\mathbb{H}(\mathbb{F}_{q})^{\cross}/\mathcal{Z}, \mathscr{S}_{p,q})$ if $(\begin{array}{l}2q\end{array})=-1$ . These

are the Ramanujan graphs of [9, 11]. They are $p+1$-regular, connected graphs, bipartite if
$(\begin{array}{l}eq\end{array})=-1$ and not bipartite otherwise, and have the following remarkable property: let $\lambda(X_{p,q})$

be the second largest eigenvalue of the adjacency matrix of $X_{p,q}$ . It verifies $\lambda(X_{p,q})\leq 2\sqrt{p},$

which for large graphs is essentially the lowest possible. The construction of this kind of graphs
reaching the optimal lower bound was quite a breakthrough in graph theory. Besides this
“spectral” property, these graphs also have large girth, with the result mentioned in Table 1.

3 Modification of the construction

The LPS graphs and its later generalization by Morgenstem yields $\gamma_{d}\geq 4/3$ for $d=p^{k}+1$ and
$\gamma_{2^{k}+1}\geq 2/3$ , for $k\in \mathbb{N}^{\star}$ . For other values of $d$ the best lower bounds for $\gamma_{d}$ are due to Imrich [7]
(following a work of previous work of Margulis [10]). In this section we show a modification of
the LPS construction as done in [3] that allows to get the improvements in the last columns of
Table 1.

The idea is to consider a “symmetric” subset $\mathscr{D}(d)$ of $\mathscr{P}(p)$ of size $d+1<p+1$ . If
$d+1$ is even, such a set exists if and only if $p\equiv 3mod 8$ . Consider $\mathscr{D}_{p,q}$ the image of $\mathscr{D}(d)$

in $\mathbb{H}(\mathbb{F}_{q})^{\cross}/\mathcal{Z}$ . Again, if $(\begin{array}{l}Eq\end{array})=1$ , then this image is contained in $\mathbb{H}^{1}(\mathbb{F}_{p})/\{\pm 1\}$ . Take the

Cayley graphs $G_{d,p,q}$ $:=\mathscr{C}ay(\mathbb{H}^{1}(\mathbb{F}_{q})/\{\pm 1\}, \mathscr{D}_{p,q})$ if $(\begin{array}{l}2q\end{array})=1$ or $G_{d,p,q}$ $:=\mathscr{C}ay(\mathbb{H}(\mathbb{F}_{q})^{\cross}/\mathcal{Z}, \mathscr{D}_{p,q})$

if $(\begin{array}{l}2q\end{array})=-1$ . It is then not very difficult to prove that girth $(G_{d,p,q})\geq 4\log_{p}q-2\log_{p}2$ if

$(\begin{array}{l}Rq\end{array})=-1$ or girth$(G_{d,p,q})\geq 2\log_{p}q$ if $(\begin{array}{l}Rq\end{array})=1.$
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It is more complicated to prove that these graphs are connected, and actually this can
be proved only if $q>p^{8}$ . This is due to some properties of subgroups of $PSL_{2}(\mathbb{F}_{q})$ (see [3,
\S 2.3] $)$ . Therefore the families (indexed by $q;p$ and $d$ are fixed) of non-bipartite graphs $\mathscr{X}_{d,p}:=$

$\{G_{d,p,q}\}_{q>p^{8},(\begin{array}{l}Rq\end{array})=1}$ and the families (indexed by $q;p$ and $d$ are fixed) of bipartite graphs $\mathscr{X}_{d,p}^{bip}:=$

$q>p^{8},(\begin{array}{l}2q\end{array})=-1$

$\{G_{d,p,q}\}$ are all connected and it comes that:

girth $(G_{d,p,q})\geq\{\begin{array}{ll}\frac{2}{31og_{d}(p)}log_{d}|G_{d,p,q}| if\frac{4}{31og_{d}(p)}log_{d}|G_{d,p,q}|-4log_{p}4 if\end{array}\}qq\{\begin{array}{l}=1=-1\end{array}$ (6)

These lower bounds on the girth are maximized when $\log_{d}(p)$ is minimal, or equivalently when
$p$ is the lowest above $d$ . There exists some bounds on the smallest next prime or smallest next
prime equal to 3 modulo 8 to a given number $d$ . Let $\kappa$ $:= \log_{d}\min\{p\geq d|p$ prime$\}$ if $d$ is odd,
and $\kappa$ $:= \log_{d}\min\{p\geq d|p$ prime $\equiv 3mod 8\}$ if $d$ is even. By using the results in [13] one gets
the following:

Table 2: $d+1$ is even $d+1$ is odd

Considering Equality (3), it follows that $\gamma_{d+1}\geq\frac{4}{3\kappa}$ with the values taken from the two tables
above. When $d$ is not the power of an odd prime, these lower bounds surpass the 0.48 of [7].
When $d$ is not equal to a power of 2, this surpass the previous best lower bound of 2/3 found
in [12].
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