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Abstract

In this paper, for a group $G$ , we consider an Aut $G$-invariant ideal $J$ generated
by tr $x-2$ for any $x\in G$ in the ring of Fricke characters of $G$ . We study a
descending filtration $J\supset J^{2}\supset J^{3}\supset\cdots$ , and its graded quotients $gr^{k}(J)$ $:=$

$J^{k}/J^{k+1}$ for $k\geq 1$ . The first purpose of this paper is to determine the structure
of $gr^{k}(J)$ if $G$ is a free group $F_{n}$ of rank $n$ and $k=1,2.$

Next, we introduce a normal subgroup $\mathcal{E}_{G}(k)$ consisting of automorphisms of
$G$ which act on $J/J^{k+1}$ trivially. These normal subgroups define a central filtra-
tion of Aut $G$ . This is a Fricke character analogue of the Andreadakis-Johnson
filtration $\mathcal{A}_{G}(k)$ of Aut $G$ . The main purpose of the paper is to show that $\mathcal{E}_{F_{n}}(1)$

is equal to Inn $F_{n}\cdot \mathcal{A}_{F_{n}}(2)$ where Inn $F_{n}$ is the inner automorphism group of a
free group $F_{n}$ , and that $\mathcal{A}_{F_{n}}(2k)\subset \mathcal{E}_{F_{n}}(k)$ for any $k\geq 1.$

Let $G$ be a group generated by elements $x_{1},$
$\ldots,$

$x_{n}$ . We denote by

$R(G) :=Hom(G, SL(2, C))$

the set of all group homomorphisms from $G$ to $SL$ (2, $C$ ). Let

$\mathcal{F}(R(G), C) :=\{\chi:R(G)arrow C\}$

be the set of all complex-valued functions of $R(G)$ . Then we can consider
$\mathcal{F}(R(G), C)$ as a commutative ring in a natural way. For any $x\in G$ , we
define an element tr $x\in \mathcal{F}(R(G), C)$ to be

(tr $x$ ) $(\rho)$ $:=$ tr $\rho(x)$
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for any $\rho\in R(G)$ . Here “tr” in the right hand side means the trace
of $2\cross 2$ matrix $\rho(x)\in SL(2, C).$ The element tr $x$ in $\mathcal{F}(R(G), C)$ is
called the Fricke character of $x\in G$ . Let $\mathfrak{X}(G)$ be the $Z$-submodule of
$\mathcal{F}(R(G), C)$ generated by all tr $x$ for $x\in G$ . Then $\mathfrak{X}(G)$ is closed under
the multiplication of $\mathcal{F}(R(G), C)$ .

Classically, Fricke characters were begun to studied by Fricke for a free
group $F_{n}$ on $x_{1},$

$\ldots,$
$x_{n}$ in connection with certain problems in the theory

of Riemann surfaces. (See [3].) In 1970, Horowitz [5] and [6] investigated
algebraic properties of $\mathfrak{X}(G)$ using the combinatorial group theory. In
particular, he [5] showed that for any $x\in G$ , the Fricke character tr $x$

can be written as a polynomial with integral coefficients in $2^{n}-1$ char-
acters tr $x_{i_{1}}x_{i_{2}}\cdots x_{i_{l}}$ for $1\leq l\leq n$ and $1\leq i_{1}<i_{2}<\cdots<i_{l}\leq n.$

He [6] also showed that the subgroup of Aut $F_{n}$ consisting of automor-
phisms which act on $\mathfrak{X}(F_{n})$ tirivially is just the inner automorphism
group Inn $F_{n}$ of $F_{n}$ . Namely, the action of Aut $F_{n}$ on the ring of Fricke
characters $\mathfrak{X}(F_{n})$ induces a faithful representatrion of the outer auto-
morphism group Out $F_{n}$ $:=$ Aut $F_{n}/$Inn $F_{n}$ . However, since the rank of
$\mathfrak{X}(F_{n})$ as a $Z$-module is not finite in general, it is not so easy to study
this representation directly.

On the other hand, in order to make the structure of the Fricke char-
acters $\mathfrak{X}(F_{n})$ clear, it is important to study the ideal of polynomials in
the characters which vanish on any representations of $G$ . More precisely,
consider a polynomial ring

$Z[t]:=Z[t_{i_{1}\cdots i_{l}}|1\leq l\leq n, 1\leq i_{1}<i_{2}<\cdots<i_{l}\leqn]$

of $2^{n}-1$ indeterminates, and an ideal

$I=\{f\in Z[t]|f$ (tr $\rho(x_{i_{1}}\cdots x_{i\iota}))=0$ for any $\rho\in R(G)\}.$

In [5], for $G=F_{n}$ , Horowitz showed that $I$ is trivial for $n=1$ and 2, and
is principal for $n=3$ . Whittemore [17] showed that $I$ is not principal
for $G=F_{n}$ and $n\geq 4$ . Although the ideal $I$ has been studied by many
authors for over forty years, very little is known for it.

Here, we consider the rationalization of the situation above. Let
$\mathfrak{X}_{Q}(G)$ be a $Q$-subspace of $\mathcal{F}(R(G), C)$ generated by tr $x$ for any $x\in G.$

Similary to $\mathfrak{X}(G),$ $\mathfrak{X}_{Q}(G)$ is closed under the multiplication of $\mathcal{F}(R(G), C)$ ,
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and has a multiplicative unit $1= \frac{1}{2}$tr $1_{G}$ . Hence, $\mathfrak{X}_{Q}(G)$ is a ring. We
call $\mathfrak{X}_{Q}(G)$ the ring of Fricke characters of $G$ over Q. By a result of
Horowitz, we see that for any $x\in G$ , the Fricke character tr $x$ can be
written as a polynomial with ratinal coefficients in $n+(\begin{array}{l}n2\end{array})+(\begin{array}{l}n3\end{array})$ charac-
ters tr $x_{i_{1}}x_{i_{2}}\cdots x_{i_{l}}$ for $1\leq l\leq 3$ and $1\leq i_{1}<i_{2}<\cdots<i_{l}\leq n$ . Consider
a polynomial ring

$Q[t]:=Q[t_{i_{1}\cdots i_{\iota}}|1\leq l\leq 3, 1\leq i_{1}<i_{2}<\cdots<i_{l}\leq n]$

and its ideal

$I_{Q}:=\{f\in Q[t]|f(tr\rho(x_{i_{1}}\cdots x_{i\iota}))=0$ for any $\rho\in R(G)\}.$

Similarly to $I$ , the ideal $I_{Q}$ plays important roles in the various study
of the ring structure of $\mathfrak{X}_{Q}(G)$ . One of the most advantages to consider
the rationalization of the Fricke characters is that the number of the
indeterminates of $Q[t]$ is fewer than that of $Z[t]$ , and it makes various
computation much easy to handle.

In the present paper, in order to construct finite dimensinal representa-
tions of Aut $G$ , we consider a descending filtration of Aut $G$-invariant ide-
als of $Q[t]/I_{Q}$ , and take its graded quotients. Set $t_{i_{1}\cdots i_{l}}’$ $:=t_{i_{1}\cdots i_{l}}-2\in Q[t].$

We also denote by $t_{i_{1}\cdots i_{l}}’$ its coset class in $Q[t]/I_{Q}$ . Consider an ideal

$J:= (t_{i_{1}\cdots i_{l}}’|1\leq l\leq 3, 1\leq i_{1}<i_{2}<\cdots<i_{l}\leq n)\subset Q[t]/I_{Q}$

generated by all $t_{i_{1}\cdots i_{l}}"s$ . Then, we have a descending filtration

$J\supset J^{2}\supset J^{3}\supset\cdots$

of Aut $G$-invariant ideals of $Q[t]/I_{Q}$ . Set

gr$k(J):=J^{k}/J^{k+1}$

Each of gr$k(J)$ is Aut $G$-invariant $Q$-vector space of finite dimension for
any $k\geq 1$ . This technique is deeply inspired by a result of Magnus [12]
who originally studied the behavior of the action of Aut $F_{3}$ on grl $(J)$ . In
[12], he pointed out the difficulties to find Aut $F_{n}$-invariant ideals of $\mathfrak{X}(F_{n})$

and its quotient rings as a finite dimensional representation of Aut $F_{n}$ in
general. Moreover, he [12] also stated that in order to get accessible
situation, it seems to be better to use rational functions rather than
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integral polynomials. In this paper, however, we consider the rational
polynomials to obtain finite dimensional representations of Aut $F_{n}.$

The first purpose of the paper is to determine the structure of $gr^{k}(J)$

for $G=F_{n},$ $n\geq 3$ and $k=1,2$ . Set

$T:=\{t_{i}’|1\leq i\leq n\}\cup\{t_{ij}’|1\leq i<j\leq n\}\cup\{t_{ijk}’|1\leq i<j<k\leq n\}\subset J$

and
$S:=\{t_{i}’t_{j}’|1\leq i\leq j\leq n\}\cup\{t_{i}’t_{ab}’|1\leq i\leq n, 1\leqa<b\leq n\}$

$\cup\{t_{i}’t_{abc}’|1\leq i\leq n, 1\leq a<b<c\leq n\}$

$\cup\{t_{ij}’t_{ab}’|1\leq i<j\leq n, 1\leq a<b\leq n, (i, j)\leq(a, b)\},$

$\cup\{t_{ab}’t_{abc}’, t_{ac}’t_{abc}’, t_{bc}’t_{abc}’|1\leq a<b<c\leq n\}$

$\cup\{t_{ia}’t_{abc}’, t_{ib}’t_{abc}’, t_{ic}’t_{abc}’, t_{ia}’t_{ibc}’, t_{ab}’t_{iac}’, t_{ab}’t_{ibc}’, t_{ac}’t_{ibc}’, t_{ib}’t_{iac}’$

$|1\leq i<a<b<c\leq n\}$

$\cup\{t_{ja}’t_{ibc}’, t_{jb}’t_{iac}’, t_{jc}’t_{iab}’, t_{ab}’t_{ijc}’, t_{ac}’t_{ijb}’, t_{bc}’t_{ija}’$

$|1\leq i<j<a<b<c\leq n\}$

$\subset J^{2}$

respectively. We show

Theorem 1. For $G=F_{n}$ and $n\geq 3$ , the sets $T$ and $S$ are basis of the
$Q$ -vector spaces $gr^{1}(J)$ and $gr^{2}(J)$ respectively.

In general, it seems to be very complicated to find a basis of gr$k(J)$

for general $k\geq 3.$

Next, for any group $G$ , we consider a descending filtration of Aut $G.$

For any $k\geq 1$ , let $\mathcal{E}_{G}(k)$ be the subgroup of Aut $G$ consisting of auto-
morphisms which act on $J/J^{k+1}$ trivially. Then we see that the groups
$\mathcal{E}_{G}(k)$ define a descending filtration

$\mathcal{E}_{G}(1)\supset \mathcal{E}_{G}(2)\supset\cdots\supset \mathcal{E}_{G}(k)\supset\cdots$

of Aut $G.$

This filtration is a Fricke character analogue of the Andreadakis-
Johnson filtration $\mathcal{A}_{G}(k)$ of Aut $G$ . The Andreadakis-Johnson filtration
was originally introduced by Andreadakis [2] in $1960’ s$ . In a series of

86



his pioneer works [7], [8], [9] and [10], Johnson established the theory
of Johnson homomorphisms in the study of the mapping class of sur-
faces. Togather with the theory of the Johnson homomorphisms, the
Andreadskis-Johnson filtration is one of powerful tools to study the group
structure of the automorphism group of a group. (See [14] or $[15]$ for basic
materials concerning the Andreadakis-Johnson filtration and the Johnson
homomorphisms.)

The main purpose of the paper is to show

Proposition 1. For any $k,$ $l\geq 1,$ $[\mathcal{E}_{G}(k), \mathcal{E}_{G}(l)]\subset \mathcal{E}_{G}(k+l)$ .

and

Theorem 2. For any $n\geq 3,$

1. $\mathcal{E}_{F_{n}}(1)=$ Inn $F_{n}\cdot \mathcal{A}_{F_{n}}(2)$ .

2. $\mathcal{A}_{F_{n}}(2k)\subset \mathcal{E}_{F_{n}}(k)$ .

From Proposition 1, we see that $\{\mathcal{E}_{G}(k)\}$ is a central filtration of $\mathcal{E}_{G}(1)$ .
Then a natural problem to consider is how different is $\{\mathcal{E}_{G}(k)\}$ from
the Andreadakis-Johnson filtration $\{\mathcal{A}_{G}(k)\}$ . The partial answer to this
question for $G=F_{n}$ is the theorem above.

On the other hand, since $\{\mathcal{E}_{G}(k)\}$ is central, each of the graded quo-
tient $gr^{k}(\mathcal{E}_{F_{n}})$ $:=\mathcal{E}_{G}(k)/\mathcal{E}_{G}(k+1)$ is an abelian group. At the end of the
paper, we show

Theorem 3. For any $n\geq 3,$

1. Each of $gr^{k}(\mathcal{E}_{F_{n}})$ is torsion-free.
2. $\dim_{Q}(gr^{k}(\mathcal{E}_{F_{n}})\otimes_{Z}Q)<\infty.$

To show this, we introduce Johnson homomorphism like homomor-
phisms $\eta_{k}$ . Observing Theorem 2, we see that gr $1(\mathcal{E}_{F_{n}})$ is finitely gener-
ated. In general, however, it seems to be quite a difficult to determine
the structure of $gr^{k}(\mathcal{E}_{F_{n}})$ even the case where $k=1.$
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