Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry

Katsuhiro Moriya University of Tsukuba

1 Introduction

In this paper, we collect definitions and propositions from the surface theory in terms of quaternions. These are selected so that they complement the paper [7]. Proofs are omitted. The details are described in [2], [3] and [5].

2 Mean curvature spheres

We explain the notion of a mean curvature sphere of a conformal map.

2.1 Sphere congruences

We model S^4 on the quaternionic projective line $\mathbb{H}P^1$. Set

$$\mathcal{Z} := \{ C \in \operatorname{End}(\mathbb{H}^2) \, | \, C^2 = -\operatorname{Id} \}.$$

This is the set of all quatenionic linear complex structures of \mathbb{H}^2 . Then two-spheres are parametrized by \mathcal{Z} :

Lemma 1 ([2], Proposition 2).

{oriented two-spheres in $\mathbb{H}P^1$ } = \mathcal{Z} .

In a classical terminology, a sphere congruence is a smooth family of two-spheres. Hence a map from a Riemann surface M to \mathcal{Z} is a sphere congruence in $\mathbb{H}P^1$ parametrized by M.

2.2 Mean curvature spheres

Let M be a Riemann surface with complex structure J and $f: M \to \mathbb{R}^4$ a conformal map.

Definition 1. At a point $p \in M$, a two-sphere in M is called the mean curvature sphere of f at p if

- the sphere is tangent to f(M) at p,
- the sphere is centered in the direction of the mean curvature vector at p, and
- the radius of the sphere is equal to the reciprocal of the norm of the mean curvature vector at p.

A sphere congruence parametrized by M which consists of the mean curvature spheres of f is called the mean curvature sphere of f.

We see that f is the envelop of the mean curvature sphere of f. The mean curvature of f at $p \in M$ is equal to the mean curvature of the mean curvature sphere of f at p.

Let S be the mean curvature sphere of f and τ a conformal transformation of \mathbb{R}^4 . Then $\tau \circ S$ is the mean curvature sphere of $\tau \circ f$. Hence the mean curvature sphere is a concept for conformal geometry of surfaces in S^4 . For a conformal map $f: M \to S^4 \cong \mathbb{H}P^1$, the mean curvature sphere is a map from M to \mathbb{Z} .

2.3 Conformal Gauss maps

A mean curvature sphere is called a conformal Gauss map in [1]. This terminology is valid as follows. For $C \in \text{End}(\mathbb{H}^2)$, we set $\langle C \rangle := \frac{1}{8} \operatorname{tr}_{\mathbb{R}} C$. Then an indefinite scalar product \langle , \rangle of $\operatorname{End}(\mathbb{H}^2)$ is defined by setting $\langle C_1, C_2 \rangle := \langle C_1 C_2 \rangle$ for $C_1, C_2 \in \operatorname{End}(\mathbb{H}^2)$.

Lemma 2 ([1], [2], Proposition 4). The mean curvature sphere S of a conformal map $f: M \to S^4$ is conformal with respect to \langle , \rangle .

2.4 Energy of a sphere congruence

Let $\mathcal{C}: M \to \mathcal{Z}$ be a sphere congruence. For a one-form ω on M, we set $*\omega := \omega \circ J$.

Definition 2 ([2], Definition 7).

$$E(\mathcal{C}) := \int_M \langle d\mathcal{C} \wedge * d\mathcal{C} \rangle$$

is called the energy of a sphere congruence.

Because \langle , \rangle is indefinite, the functional E might take negative values. Set $A_{\mathcal{C}} := \frac{1}{4} (* d\mathcal{C} + \mathcal{C} d\mathcal{C})$. The Euler-Lagrange equation of $E(\mathcal{C})$ is written by the one-form $A_{\mathcal{C}}$.

Proposition 1 ([2], Proposition 5). A sphere congruence C is harmonic if and only if $d * A_C = 0$.

3 Associated vector bundles

We explain a conformal map in terms of vector bundles.

3.1 Conformal maps

Let $\underline{\mathbb{H}}^2$ be the trivial right quaternionic vector bundle over M of rank two. We consider a standard basis e_1 , e_2 of \mathbb{H}^2 as a section of $\underline{\mathbb{H}}^2$. Then $de_1 = de_2 = 0$. A conformal map $f: M \to \mathbb{H}P^1$ with mean curvature sphere S is translated in terms of vector bundles as Table 1 (See [2], Section 4, Section 5).

map	vector bundle
$f: M \to \mathbb{H}P^1$: map	$L \subset \underline{\mathbb{H}^2}$: quaternionic line subbundle
	$L_p = f(p)$
$df: TM \to T\mathbb{H}P^1$	$\pi: \underline{\mathbb{H}^2} \to \underline{\mathbb{H}^2}/L$: projection
	$\delta := \pi d _{\Gamma(L)}$
f: conformal	$\mathcal{S}L = L$
\mathcal{S} : the mean curvature sphere	$* \delta = \mathcal{S} \delta = \delta \mathcal{S} _{\Gamma(L)}$

Table 1: Vector bundles

3.2 The Willmore functional

Let L be a conformal map with mean curvature sphere \mathcal{S} .

Definition 3 ([2], Definition 8).

$$W(L) := \frac{1}{\pi} \int_{M} \langle A_{\mathcal{S}} \wedge *A_{\mathcal{S}} \rangle$$

is called the Willmore energy of L.

Lemma 3 ([2], Lemma 8). For any conformal map L, the functional W takes non-negative values.

A cirtical conformal map of the Willmore functional is called a Willmore conformal map.

Theorem 1 ([4], [8], [2]). A conformal map with mean curvature sphere S is Willmore if and only if S is harmonic.

By Proposition 1, the mean curvature sphere S is harmonic if and only if $d * A_S = 0$.

We connect the above discussion with the classical terminology. Let L be a conformal map and $f: M \to \mathbb{H}$ a stereographic projection of S^4 followed by L. We induce a (singular) metric on M by a conformal map $f: M \to \mathbb{H}$. Let K be the Gauss curvature, K^{\perp} the normal curvature, and \mathcal{H} the mean curvature vector of f.

Lemma 4 ([2], Example 19).

$$W(L)=rac{1}{4\pi}\int_M (|\mathcal{H}|^2-K-K^\perp)|df|^2.$$

4 Transforms

We explain transforms of conformal maps and sphere congruences.

4.1 Darboux transforms

Let L be a conformal map with mean curvature sphere S. For $\phi \in \Gamma(\underline{\mathbb{H}^2}/L)$, we denote by $\hat{\phi} \in \Gamma(\underline{\mathbb{H}^2})$ a lift of ϕ , that is $\pi \hat{\phi} = \phi$. Set

$$D(\phi) := \frac{1}{2} (\pi \, d\hat{\phi} + \mathcal{S} * \pi \, d\hat{\phi}).$$

We denote by \widetilde{M} the universal covering of M. Similarly, for an object B defined on M, we denote by \widetilde{B} for the object induced from B by the universal covering map of M.

Theorem 2 ([3], Lemma 2.1). Let $\phi \in \Gamma(\widetilde{\mathbb{H}^2/L})$. If $\widetilde{D}(\phi) = 0$, then there exists $\widehat{\phi} \in \Gamma(\widetilde{\mathbb{H}^2})$ uniquely such that $\widetilde{\pi}d\phi = 0$. The line bundle $\widehat{\widetilde{L}} := \widehat{\phi}\mathbb{H}$ is conformal

Definition 4 ([3], Definition 2.2). The line bundle $\widehat{\widetilde{L}}$ in the above theorem is called the Darboux transform of L.

4.2 μ-Darboux transforms

Let $\mathcal{C}: M \to \mathcal{Z}$. We set $I\phi := \phi i$. We identify \mathbb{H}^2 with \mathbb{C}^4 by taking I as a complex structure.

Theorem 3 ([5], Theorem 4.1). The sphere congruence C is harmonic if and only if $d_{\lambda} := d + (\lambda - 1)A_{\mathcal{C}}^{(1,0)} + (\lambda^{-1} - 1)A_{\mathcal{C}}^{(0,1)}$ is flat for all $\lambda \in \mathbb{C} \setminus \{0\}$

Definition 5. We call d_{λ} the associated family of d.

Theorem 4 ([5], Theorem 4.2). We assume that $\mathcal{C}: M \to \mathcal{Z}$ is harmonic, $A_{\mathcal{C}} \neq 0, \mu \in \mathbb{C} \setminus \{0\}, \psi_1, \psi_2 \in \Gamma(\underline{\mathbb{H}}^2)$ are linearly independent over $\mathbb{C}, d_{\mu}\psi_1 = d_{\mu}\psi_2 = 0, W_{\mu} := \operatorname{span}\{\psi_1, \psi_2\},$ and $\Gamma(\underline{\mathbb{H}}^2) = W_{\mu} \oplus jW_{\mu}$. Then for $G := (\psi_1, \psi_2): M \to \operatorname{GL}(2, \mathbb{H}), a = G\left(\frac{\mu + \mu^{-1}}{2}E_2\right)G^{-1}, b = G\left(I(\frac{\mu^{-1}-\mu}{2}E_2)\right)G^{-1}$, and $T := \mathcal{C}(a-1)+b$, the sphere congruence $\widehat{\mathcal{C}} := T^{-1}\mathcal{C}T: M \to \mathcal{Z}$ is harmonic.

Definition 6 ([5]). The sphere congruence $\widehat{\mathcal{C}}$ is called the μ -Darboux transform of \mathcal{C} .

It is known that a μ -Darboux transform is a Darboux transform.

Let S be a mean curvature sphere of a Willmore conformal map L. Then S is harmonic by Theorem 1. Hence a harmonic sphere congruence \widehat{S} is defined.

Theorem 5 ([5], Theorem 4.4). Let L be a Willmore conformal map with harmonic mean cuvature sphere S such that $A_S \neq 0$. Then, $\hat{L} := T(a-1)^{-1}L$ is a Willmore conformal map and \hat{S} is the mean curvature sphere of \hat{L} .

Hence a μ -Darboux transform of a mean curvature sphere induces a transform of a Willmore conformal map.

4.3 Simple factor dressing

Let L be a conformal map with the mean curvature sphere S. Because S is a harmonic sphere congruence, the associated family d_{λ} is defined. We assume that $r_{\lambda} \colon M \to \mathrm{GL}(4, \mathbb{C})$ is a map parametrized by $\lambda \in \mathbb{C} \setminus \{0\}$ such that, with respect to λ , it is meromorphic with the only simple pole on $\mathbb{C} \setminus \{0\}$ and holomorphic at 0 and ∞ .

Definition 7 ([6]). If $\hat{d}_{\lambda} := r_{\lambda} \circ d_{\mu} \circ r_{\lambda}^{-1}$ is an associated family of a harmonic map $\hat{\mathcal{C}}$, then $\hat{\mathcal{C}}$ is called a simple factor dressing of \mathcal{C} .

A simple factor dressing is a harmonic map.

References

- R. L. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), no. 1, 23-53.
- [2] F. E. Burstall, D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Conformal geometry of surfaces in S⁴ and quaternions, Lecture Notes in Mathematics 1772, Springer-Verlag, Berlin, 2002.
- [3] E. Carberry, K. Leschke, and F. Pedit, Darboux transforms and spectral curves of constant mean curvature surfaces revisited, to appear in Ann. Glob. Anal. Geom., DOI: 10.1007/s10455-012-9347-8.
- [4] N. Ejiri, Willmore surfaces with a duality in $S^{N}(1)$, Proc. London Math. Soc. (3) 57 (1988), no. 2, 383–416.
- [5] K. Leschke, Harmonic map methods for Willmore surfaces, Harmonic maps and differential geometry, Contemp. Math. 542, 203–212, Amer. Math. Soc., Providence, RI, 2011.
- [6] K. Leschke and K. Moriya, Simple factor dressing of minimal surfaces, in preparation.
- [7] K. Moriya, Simple factor dressing of minimal surfaces, to appear in RIMS kokyuroku.
- [8] M. Rigoli, The conformal Gauss map of submanifolds of the Möbius space, Ann. Global Anal. Geom. 5 (1987), no. 2, 97–116.