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1 Introduction
In this paper, we collect definitions and propositions from the surface theory in terms of
quaternions. These are selected so that they complement the paper [7]. Proofs are omitted.
The details are described in [2], [3] and [5].

2 Mean curvature spheres
We explain the notion of a mean curvature sphere of a conformal map.

2.1 Sphere congruences
We model $S^{4}$ on the quaternionic projective line $\mathbb{H}P^{1}$ . Set

$Z:=\{C\in$ End$(\mathbb{H}^{2})|C^{2}=-$ Id $\}.$

This is the set of all quatenionic linear complex structures of $\mathbb{H}^{2}$ . Then two-spheres are
parametrized by $\mathcal{Z}$ :

Lemma 1 ([2], Proposition 2).

{oriented two-spheres in $\mathbb{H}P^{1}$ } $=\mathcal{Z}.$

In a classical terminology, a sphere congruence is a smooth family of two-spheres. Hence
a map from a Riemann surface A 1 to $Z$ is a sphere congruence in $\mathbb{H}P^{1}$ parametrized by $J|[.$

2.2 Mean curvature spheres
Let $M$ be a Riemann surface with complex structure $J$ and $f:Marrow \mathbb{R}^{4}$ a conformal map.

Definition 1. At a point $p\in M$ , a two-sphere in 11 $I$ is called the mean curvature sphere of
$f$ at $p$ if
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$\bullet$ the sphere is tangent to $f(\Lambda I)$ at $p,$

$\bullet$ the sphere is centered in the direction of the mean curvature vector at $p$ , and. the radius of the sphere is equal to the reciprocal of the norm of the mean curvature
vector at $p.$

A sphere congruence parametrized by 11 $\Gamma$ which consists of the mean curvature spheres of $f$

is called the mean curvature sphere of $f.$

We see that $f$ is the envelop of the mean curvature sphere of $f$ . The mean curvature of
$f$ at $p\in\Lambda I$ is equal to the mean curvature of the mean curvature sphere of $f$ at $p.$

Let $S$ be the mean curvature sphere of $f$ and $\tau$ a conformal transformation of $\mathbb{R}^{4}$ . Then
$\tau\circ S$ is the mean curvature sphere of $\tau\circ f$ . Hence the mean curvature sphere is a concept for
conformal geometry of surfaces in $S^{4}$ . For a conformal map $f:Marrow S^{4}\cong \mathbb{H}P^{1}$ , the mean
curvature sphere is a map from $M$ to $Z.$

2.3 Conformal Gauss maps
A mean curvature sphere is called a conformal Gauss map in [1]. This terminology is valid
as follows. For $C\in$ End $(\mathbb{H}^{2})$ , we set $\langle C\rangle$ $:= \frac{1}{8}tr_{\mathbb{R}}C$ . Then an indefinite scalar product $\langle$ $\rangle$

of End $(\mathbb{H}^{2})$ is defined by setting $\langle C_{1},$ $C_{2}\rangle$ $:=\langle C_{1}C_{2}\rangle$ for $C_{1},$ $C_{2}\in$ End $(\mathbb{H}^{2})$ .

Lemma 2 ([1], [2], Proposition4). The mean curvature sphere $S$ of a conformal map $f:\Lambda farrow$

$S^{4}$ is conformal with respect to $\langle$ $\rangle.$

2.4 Energy of a sphere congruence
Let $C:Marrow Z$ be a sphere congruence. For a one-form $\omega$ on $M$ , we $set*\omega$ $:=\omega\circ J.$

Definition 2 ([2], Definition 7).

$E(C):= \int_{M}\langle dC\wedge*dC\rangle$

is called the energy of a sphere congruence.

Because $\langle,$ $\rangle$ is indefinite. the functional $E$ might take negative values. Set $A_{C}$ $:=$

$\frac{1}{4}(*dC+CdC)$ . The Euler-Lagrange equation of $E(C)$ is written by the one-form $A_{C}.$

Proposition 1 ([2], Proposition 5). $A$ sphere congruence $C$ is harmonic if and only if $d*A_{C}=$

$0.$

3 Associated vector bundles
We explain a conformal map in terms of vector bundles.
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3. 1 Conformal maps
Let $\underline{\mathbb{H}^{2}}$ be the trivial right quaternionic vector bundle over $M$ of rank two. We consider
a standard basis $e_{1},$ $e_{2}$ of $\mathbb{H}^{2}$ as a section of $\underline{\mathbb{H}}^{2}$ . Then $de_{1}=de_{2}=0.$ $A$ conformal map
$f:1IIarrow \mathbb{H}P^{1}$ with mean curvature sphere $\mathcal{S}$ is translated in terms of vector bundles as Table
1 (See [2], Section 4, Section 5).

Table 1: Vector bundles

3.2 The Willmore functional
Let $L$ be a conformal map with mean curvature sphere $S.$

Definition 3 ([2], Definition 8).

$W(L):= \frac{1}{\pi}\int_{M}\langle A_{S}\wedge*A_{S}\rangle$

is called the Willmore energy of $L.$

Lemma 3 ([2], Lemma 8). For any conformal map $L$ , the functional $W$ takes non-negative
values.

A cirtical conformal map of the Willmore functional is called a Willmore conformal map.

Theorem 1 ([4], [8], [2]). $A$ conformal map with mean curvature sphere $S$ is Willmore if
and only if $S$ is harmonic.

By Proposition 1, the mean curvature sphere $\mathcal{S}$ is harmonic if and only if $d*A_{S}=0.$

We connect the above discussion with the classical terminology. Let $L$ be a conformal
map and $f:lIIarrow \mathbb{H}$ a stereographic projection of $S^{4}$ followed by $L$ . We induce $a$ (singular)
metric on 111 by a conformal map $f:Marrow \mathbb{H}$ . Let $K$ be the Gauss curvature, $FC^{\perp}$ the normal
curvature, and $\mathcal{H}$ the mean curvature vector of $f.$

Lemma 4 ([2], Example 19).

$W(L)= \frac{1}{4\pi}\int_{M}(|\mathcal{H}|^{2}-K-K^{\perp})|df|^{2}.$
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4 Transforms
We explain transforms of conformal maps and sphere congruences.

4.1 Darboux transforms
Let $L$ be a conformal map with mean curvature sphere $S$ . For $\phi\in\Gamma(\underline{\mathbb{H}^{2}}/L)$ , we denote by
$\hat{\phi}\in\Gamma(\underline{\mathbb{H}^{2}})$ a lift of $\phi$ , that is $\pi\hat{\phi}=\phi$ . Set

$D( \phi):=\frac{1}{2}(\pi d\hat{\phi}+S*\pi d\hat{\phi})$ .

We denote by $\overline{M}$ the universal covering of $\Lambda I$ . Similarly, for an object $B$ defined on $M$ , we
denote by $\tilde{B}$ for the object induced from $B$ by the universal covering map of $M.$

Theorem 2 ([3], Lemma 2.1). Let $\phi\in\Gamma(\overline{\underline{\mathbb{H}^{2}}/L})$ . If $\tilde{D}(\phi)=0$ , then there exists $\hat{\phi}\in\Gamma(\overline{\underline{\mathbb{H}^{2}}})$

uniquely such that $\tilde{\pi}\overline{d\phi}=0$ . The line bundle $\hat{\tilde{L}}:=\underline{\hat{\phi}\mathbb{H}}$ is conformal

Definition 4 ([3], Definition 2.2). The line bundle
$\wedge\tilde{L}$

in the above theorem is called the
Darboux transform of $L.$

4.2 $\mu$-Darboux transforms
Let $C:Marrow Z$ . We set $I\phi$ $:=\phi i$ . We identify $\mathbb{H}^{2}$ with $\mathbb{C}^{4}$ by taking $I$ as a complex structure.

Theorem 3 ([5], Theorem 4.1). The sphere congruence $C$ is harmonic if and only if $d_{\lambda}$ $:=$

$d+(\lambda-1)A_{C}^{(1,0)}+(\lambda^{-1}-1)A_{C}^{(0,1)}$ is flat for all $\lambda\in \mathbb{C}\backslash \{0\}$

Definition 5. We call $d_{\lambda}$ the associated family of $d.$

Theorem 4 ([5], Theorem 4.2). We assume that $C:Afarrow Z$ is harmonic, $A_{C}\neq 0,$ $\mu\in \mathbb{C}\backslash \{0\},$

$\psi_{1},$ $\psi_{2}\in\Gamma(\underline{\mathbb{H}^{2}})$ are linearly independent over $\mathbb{C},$ $d_{\mu}\psi_{1}=d_{\mu}\psi_{2}=0,$ $W_{\mu}:=$ span $\{\psi_{1}, \psi_{2}\},$

and $\Gamma(\underline{\mathbb{H}^{2}})=W_{\mu}\oplus jW_{\mu}$ . Then for $G:=(\psi_{1}, \psi_{2}):Marrow GL(2, \mathbb{H}),$ $a=G( \frac{\mu+\mu^{-1}}{2}E_{2})G^{-1},$

$b=G(I( \frac{\mu^{-1}-\mu}{2}E_{2}))G^{-1}$ , and $T$ $:=C(a-1)+b$, the sphere congruence $\hat{C}:=T^{-1}CT:Marrow Z$

is harmonic.

Definition 6 ([5]). The sphere congruence $\hat{C}$ is called the $\mu$-Darboux transform of $C.$

It is known that a $\mu$-Darboux transform is a Darboux transform.
Let $S$ be a mean curvature sphere of a Willmore conformal map $L$ . Then $S$ is harmonic

by Theorem 1. Hence a harmonic sphere congruence $\hat{S}$ is defined.

Theorem 5 ([5], Theorem 4.4). Let $L$ be a Willmore conformal map with harmonic mean
cuvature sphere $S$ such that $A_{\mathcal{S}}\neq 0$ . Then, $\hat{L}$ $:=T(a-1)^{-1}L$ is a Willmore conformal map
and $\hat{S}$ is the mean curvature sphere of $\hat{L}.$

Hence a $\mu$-Darboux transform of a mean curvature sphere induces a transform of a Will-
more conformal map.
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4.3 Simple factor dressing
Let $L$ be a conformal map with the mean curvature sphere $S$ . Because $S$ is a harmonic
sphere congruence, the associated family $d_{\lambda}$ is defined. We assume that $r_{\lambda}:Marrow GL(4, \mathbb{C})$

is a map parametrized by $\lambda\in \mathbb{C}\backslash \{0\}$ such that, with respect to $\lambda$ , it is meromorphic with
the only simple pole on $\mathbb{C}\backslash \{0\}$ and holomorphic at $0$ and $\infty.$

Definition 7 ([6]). If $\hat{d}_{\lambda}$

$:=r_{\lambda}\circ d_{\mu}\circ r_{\lambda}^{-1}$ is an associated family of a harmonic map $\hat{C}$ , then
$\hat{\mathcal{C}}$ is called a simple factor dressing of $C.$

A simple factor dressing is a harmonic map.
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