Simple factor dressing of a minimal surface

Katsuhiro Moriya University of Tsukuba

1 Introduction

In this paper, we announce the results in [6]. A simple factor dressing is a transform of a harmonic map from a Riemann surface. A Gauss map of a constant mean curvature surface in \mathbb{R}^3 is a harmonic map from a Riemann surface to S^2 . It is shown that every μ -Draboux transform of a harmonic map $N: M \to S^2$ is given by a simple factor dressing of N ([1], Theorem 6.1). A conformal Gauss map of a Willmore conformal map from a Riemann surface to S^4 is a harmonic map from a Riemann surface to $\mathcal{Z} = \{C \in \text{End}(\mathbb{H}) | C^2 = -\text{Id}\}$ (see [7]). It is shown that the Darboux transform of a harmonic sphere congruence \mathcal{C} in [2] is a μ -Darboux transform of \mathcal{C} with $\mu \in (\mathbb{R} \setminus \{0\}) \cup S^1$. Moreover, it is a simple factor dressing of \mathcal{C} ([8]).

When we consider these transforms, there is a theory of minimal surfaces in Euclidean space in the intersection of the theory of constant mean curvature surfaces in \mathbb{R}^3 and that of Willmore surfaces in S^4 (see Table 1). The Gauss map of a minimal surface is a conformal harmonic map and the mean curvature sphere of a minimal surface is a harmonic map. This is an interesting point to consider μ -Darboux transforms and simple factor dressing of a minimal surface.

The definitions and propositions used in this paper are summarized in [7].

2 Minimal surfaces

We recall minimal surfaces in terms of quaternions.

map	Gauss map	conformal Gauss map
CMC	harmonic	
minimal	holomorphic	harmonic
Willmore		harmonic

Table 1: Maps and Gauss maps

2.1 One-forms with values in quaternions

We model \mathbb{R}^4 on \mathbb{H} . We denote by S^2 the two-sphere centered at the origin with radius one. Then

$$\{a\in\operatorname{End}(\mathbb{H})\,|\,a^2=-1\}=\{a\in\operatorname{Im}\mathbb{H}\,|\,|a|=1\}=S^2$$

Hence an element of S^2 is a quaternionic linear complex structure of \mathbb{H} and a square root of -1.

Let M be a Riemann surface with complex structure J. We fix a map $N: M \to S^2$. Then a one-form ω on M with values in \mathbb{H} is decomposed as

$$\omega = \omega_N + \omega_{-N} = \omega^N + \omega^{-N},$$

$$\omega_N := \frac{1}{2}(\omega - N * \omega), \quad \omega^N := \frac{1}{2}(\omega - * \omega N).$$

Let η be another one-form on M with values in \mathbb{H} . Then

$$\omega \wedge \eta = \omega^N \wedge \eta_{-N} + \omega^{-N} \wedge \eta_N.$$

2.2 Minimal surfaces

Let $f: M \to \mathbb{H}$ be a map. Then f is conformal if and only if there exists $N: M \to S^2$ and $R: M \to S^2$ such that $(df)_{-N} = (df)^R = 0$ ([2]). The map N is called the left normal of f and the map R is called the right normal of f. A conformal map f with $(df)_{-N} = (df)^R = 0$ is minimal with respect to the induced metric if and only if $(dN)_N = (dN)^{-N} = 0$ and, equivalently, $(dR)_R = (dR)^{-R} = 0$ ([2]). Hence if f is a minimal surface with $(df)_{-N} = (df)^R = 0$ (df) R = 0, then N and R are conformal maps. In fact, they are holomorphic map with respect to a standard complex structure of $S^2 \cong \mathbb{C}P^1$. For a minimal surface f, there exists locally a map f^* such that $df^* = -* df$. The map f^* is called a conjugate minimal surface of f. We see that $(df^*)_{-N} = (df^*)^R = 0$. For $(p,q) \in \mathbb{H}^2 \setminus \{(0,0)\}, f_{p,q} := fp + f^*q$ and $f^{p,q} := pf + qf^*$ are minimal surfaces.

Definition 1 ([6]). The family of minimal surface $\{f_{p,q}\}_{(p,q)\in\mathbb{H}^2\setminus\{(0,0)\}}$ is called the right associated family of f and the family of minimal surfaces $\{f^{p,q}\}_{(p,q)\in\mathbb{H}^2\setminus\{(0,0)\}}$ is called the left associated family of f.

If f is a minimal surface in \mathbb{R}^3 , then $\{f_{\cos\theta,\sin\theta}\}_{\theta\in\mathbb{R}}$ is the classical associated family. The classical associated family is an isometric deformation of the original minimal surface.

Theorem 1 ([6]). $f_{p,q}(p,q) \in \mathbb{H}^2 \setminus \{(0,0)\}$ is isometric to f if and only if $(p,q) = (n \cos \theta, n \sin \theta)$, $n \in S^3 = \{a \in \mathbb{H} \mid |a| = 1\}.$

3 Holomorphic Gauss maps

We explain transforms of the Gauss map of a minimal surface. These are similar to the transforms of a harmonic map into S^2 .

3.1 The associated family of a harmonic map into S^2

We set $I\phi := \phi i$. We identify \mathbb{H} with \mathbb{C}^2 by the complex structure I. A map $R: M \to S^2$ is harmonic if and only if d(R * dR) = 0. We define a family of connections on $\underline{\mathbb{H}}$ by setting $d_{\mu} := d + (\mu - 1)Q^{(1,0)} + (\mu^{-1} - 1)Q^{(0,1)}$, where $\mu \in \mathbb{C} \setminus \{0\}$ and $Q = -\frac{1}{2}(*dR)_R$.

Lemma 1 ([3]). A map $R: M \to S^2$ is harmonic if and only if d_{μ} is flat for any $\mu \in \mathbb{C} \setminus \{0\}$

3.2 The SFD of a holomorphic Gauss map

Let $r_{\lambda}: M \to \operatorname{GL}(2, \mathbb{C})$ be a map such that it is meromorphic on $\mathbb{C}P^1$ with respect to λ with simple pole away from $\{0, \infty\}$ and $r_1 = \operatorname{Id}$. Set $\widehat{d}_{\lambda} := r_{\lambda} \circ d_{\lambda} \circ r_{\lambda}^{-1}$.

Definition 2. A map $\widehat{R}: M \to S^2$ is called a simple factor dressing of R if there exists r_{λ} such that \widehat{d}_{λ} is the associated family of \widehat{R} .

A simple factor dressing is a harmonic map. In fact, it is written as follows.

Theorem 2 ([1]). If \widehat{R} is a simple factor dressing of R, then $\widehat{R} := \widehat{T}^{-1}R\widehat{T}$, where $\widehat{T} := \frac{1}{2}(-R\beta(a-1)\beta^{-1}+\beta b\beta^{-1}), a := \frac{\lambda+\lambda^{-1}}{2}, b := i\frac{\lambda^{-1}-\lambda}{2}$, and $d_{\lambda}\beta = 0$.

We consider the case where R is holomorphic. If f is minimal, then R is holomorphic. The simple factor dressing \hat{R} is harmonic. In fact, we have the following:

Theorem 3 ([6]). Let $f: M \to \mathbb{H}$ be minimal with $(df)^R = 0$. Then a simple factor dressing \widehat{R} is a right normal of $f_{p,q}$ for some $(p,q) \in \mathbb{H}^2 \setminus \{(0,0)\}$.

4 Conformal Gauss maps

We explain transforms of a conformal Gauss map of a minimal surface.

4.1 The SFD of a conformal Gauss map

Let $f: M \to \mathbb{H}$ be a minimal surface with $(df)_{-N} = (df)^R = 0$. It is known that f is Willmore, too. We set the sections e and ψ of \mathbb{H}^2 as

$$e := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \psi := \begin{pmatrix} f \\ 1 \end{pmatrix}.$$

We define a line bundle L by $L := \underline{\psi} \mathbb{H}$. Then L is associated with a Willmore conformal map with mean curvature sphere

$$\mathcal{S}(e \ \psi) := (e \ \psi) \begin{pmatrix} N & 0 \\ 0 & -R \end{pmatrix}.$$

Let $d^{\mathcal{S}}_{\mu}$ be the associated family of d with \mathcal{S} (see [7]). Set $a := \frac{\mu + \mu^{-1}}{2}$, $b := i \frac{\mu^{-1} - \mu}{2}$. Then, we have the following:

Theorem 4 ([6]). If \widehat{S} is a simple factor dressing of a conformal Gauss map S of a minimal surface f, then \widehat{S} is the conformal Gauss map of a minimal surface $\widehat{f} = h^{n\frac{b}{a-1}n^{-1},-1}$, $h := -f_{m\frac{b}{2}m^{-1},m\frac{a-1}{2}m^{-1}}$.

4.2 μ -Darboux transform of a conformal Gauss map

Let $f: M \to \mathbb{H}$ be a minimal with $(df)^R = 0$. Then, the map $g := fR - f^*$ is a superconformal map. A super-conformal map is a conformal map with vanishing Willmore energy.

Definition 3 ([6]). The super-conformal map g is called an associated Willmore surface of f.

The following is a relation between μ -Darboux transform, associated family, and associated Willmore surface.

Theorem 5 ([6]). Every non-constant μ -Darboux transform of a minimal surface f is an associated Willmore surface of an associated minimal surface $f^{p,q}$.

References

- F. E. Burstall, J. F. Dorfmeister, K. Leschke, and A. C. Quintino, *Darboux transforms* and simple factor dressing of constant mean curvature surfaces, Manuscripta Math., DOI: 10.1007/s00229-012-0537-2.
- [2] F. E. Burstall, D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Conformal geometry of surfaces in S⁴ and quaternions, Lecture Notes in Mathematics 1772, Springer-Verlag, Berlin, 2002.
- [3] E. Carberry, K. Leschke, and F. Pedit, Darboux transforms and spectral curves of constant mean curvature surfaces revisited, to appear in Ann. Glob. Anal. Geom., DOI: 10.1007/s10455-012-9347-8.
- [4] N. Ejiri, Willmore surfaces with a duality in $S^{N}(1)$, Proc. London Math. Soc. (3) 57 (1988), no. 2, 383–416.
- [5] K. Leschke, Harmonic map methods for Willmore surfaces, Harmonic maps and differential geometry, Contemp. Math. 542, 203–212, Amer. Math. Soc., Providence, RI, 2011.

- [6] K. Leschke and K. Moriya, Simple factor dressing of minimal surfaces, in preparation.
- [7] K. Moriya, Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry, to appear in RIMS kokyuroku.
- [8] A. Quintino, Constrained Willmore Surfaces. PhD thesis, University of Bath, 2008.

.