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1 Introduction

We consider irreversible investment problems with regime switching feature under a monopoly
setting. Several parameters describing the economic environment vary according to a regime
switching with general number of states. $A$ firm seeks an optimal timing to invest an irreversible
project while observing the potential profits. We present a systematic procedure to derive
the value function via solving a system of simultaneous ordinary differential equations with
knowledge of linear algebra. It will enable us to investigate a comparative analysis of the
investment problem. The contribution of this paper is a natural extension of Guo and Zhang
(2004) and Jobert and Rogers (2006) to a real option problem with the general number of regime
states. Furthermore, we obtain an analytical expression of an expectation of a payoff at the first
passage time to the stop region by applying the Dirichlet problem and the aforementioned
technique.

In the literature, the value function of a typical real option problem is usually calculated
by first guessing the form and then solving the unknown coefficients as in Dixit and Pyndick
(1994), Guo et al. (2005) for $S=2$ , where $S$ is the number of regimes, and Grenadier and
Wang (2007) for general $S\geq 2$ . For American put options, Guo and Zhang (2004) take similar
approach for $S=2$ . Apparently one of the drawbacks is that there are no clues why such a form
is taken. Jobert and Rogers (2006), Jiang and Pistorius ( $200S$) utilize Wiener-Hopf factorization
to obtain the value function for $S\geq 2$ . They present explicit forms of the value function up
to exponential matrix. Similar problems with the regime switching features are discussed in
Boyarchenko and Levendorski (2008, 2009) who also make use of the Wiener-Hopf factorization
$g$ in a different form. Due to the complicated form, further analysis including comparative
analysis seems difficult without an insightful expression of the value function.

Our approach is simple and straightforward: solve a system of simultaneous ordinary differ-
ential equations with appropriate conditions directly on each interval of the thresholds. Due to
the form, knowledge of linear algebra helps a lot in the derivation. We do not rely on a “guess
functional form” nor the Wiener-Hopf factorization that is more technical. It is found that the
value function is represented by the eigenvalues and the eigenvectors of a coefficient matrix.
With the same technique we can carry out a calculation of the expected and discounted value
of a payoff at the first passage time by applying the Dirichlet problem in the two-dimensional
space. The original value function can be decomposed with these expectations. The smooth
pasting conditions at the boundary between the continuation region and the stop region are
recovered by the optimality conditions of the thresholds. The detailed derivation is provided for
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the case of two regimes. These results will help us to deepen our understanding of the investment

problem.

2 Setup

We work on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on infinite time horizon. Let $J=\{J(t)\}$ be a

continuous-time Markov chain on a finite state space $E=\{1,2, \cdots, S\}.$ $J(t)$ is interpreted

as a regime or a state of the economy at time $t$ . The intensity matrix of the regime switching is

given by $Q$

$Q=(q_{ij})_{i,j\in E}, q_{ii}=-\sum_{j\in E\backslash \{i\}}q_{ij}$
. (2.1)

The process $X=\{X(t)\}$ satisfies

$dX(t) = \mu_{J(t)}X(t)dt+\sigma_{J(t)}X(t)dW_{t}, X(O)=x$ , (2.2)

where $W=\{W_{t}\}$ is a standard Brownian motion, $\mu_{j}$ and $\sigma_{j}>0$ are finite constants for each
$j\in E$ . Denote the filtration generated by $(W, J)$ as $\{\mathcal{F}_{t}\}$ with $\mathcal{F}_{t}=\sigma(W_{S}, J(s), 0\leq s\leq t)$ .

The firm has a chance to start a project to make a product as a monopoly of the product

whose revenue depends on the state variables $(X(t), J(t))$ of the economy. We assume that the

firm has a technology to enter into the project by paying the cost $K_{i}$ when the regime state

is $i$ , and after the investment the firm obtains the instant revenue of $D_{J(t)}X(t)$ at time $t$ from

the project, where $D_{i}K_{i}(i\in E)$ are positive constants. One may interpret that $X(t)$ is the

unit price of the products from the project and $D_{i}$ be the (potential) demand quantity for the

products in the economy.
In this paper a matrix is represented in bold. $O_{n}$ denotes the zero matrix of order $n$ and

$I_{n}$ denotes the identity matrix of order $n$ . An element of a matrix $A$ $=(a_{ij})$ is denoted by

$a_{ij}=\{A\}_{ij}$ . Let us denote vectors, matrices and functions

$e_{i} = (0, \cdots, 0,1,0, \cdots, 0)^{T}\in \mathbb{R}^{S}, 1_{S}=(1, \cdots, 1)^{T}\in \mathbb{R}^{S},$

$D$ $=$ $(D_{1}, \cdots, D_{S})^{T}$ $M=$ diag $[\mu_{1}, \cdots, \mu_{S}],$

$\Lambda(\beta) = (\begin{array}{llll}g_{1}(\beta) q_{12} \cdots q_{1S}q_{21} g_{2}(\beta) \cdots q_{2S}\vdots \vdots \ddots \vdots q_{S1} q_{S2} \cdots g_{S}(\beta)\end{array})$ , (2.3)

$g_{i}( \beta) = \frac{1}{2}\sigma_{i}^{2}\beta^{2}+(\mu_{i}-\frac{1}{2}\sigma_{i}^{2})\beta+q_{ii}-r$. (2.4)

For each $i\in E$ , consider a L\’evy process $L_{t}^{(i)}=( \mu_{i}-\frac{1}{2}\sigma_{i}^{2})t+\sigma_{i}W_{t}$ , which has the L\’evy exponent
$\theta^{(i)}(z)=(\mu_{i}-\frac{1}{2}\sigma_{i}^{2}-r)z+\frac{1}{2}\sigma_{i}^{2}z^{2}=g_{i}(z)-q_{ii}+r$. Then $\ln X(t)=L_{t}^{(J(t))}$ evolves like a diffusion

while the regime does not switch, and the matrix (2.3) is expressed as

$\Lambda(\beta)=$ diag $[\theta^{(k)}(\beta);k\in E]+Q-rI_{S}.$
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For a simple notation it is convenient to introduce a “truncating” operator $H_{n}$ on $S\cross S$

square matrices $(a_{ij})_{1\leq i,j\leq S}$ defined by

$H_{n}((a_{ij})_{1\leq i,j\leq S})=(a_{ij})_{1\leq i,j\leq n}$ . (2.5)

The truncating operator $H_{n}$ reflects our focusing on $n$ regime states in a continuation region
among $S$ regimes as discussed later.

We assume the following properties;

Assumption 1 1. $Q$ has a property that $\forall i\in E,$ $\exists j\in E,$ $j\neq i,$ $(q_{ij}, q_{ji})\neq(0,0)$ .

2. $r> \max\{\max\mu_{i},$ $0\}.$

3. The matrices $H_{n}(rI_{S}-M-Q)$ and $H_{n}(rI_{S}-Q)$ are invertible for all $n\in E.$

The property 1 of the above assumption is to restrict our analysis to non-redundant cases of
regime switching. Each regime has $a$ (non-zero) chance to move to another regime and$/or$ to
be transferred from another regime\dagger . The property 2 guarantees a convergence of total revenue
and other properties. The property 3 is due to a technical reason to make our discussion simple.
Note that the matrices mentioned in the above are expressed with $\Lambda(\beta)$ as

$rI_{S}-M-Q=-A(1) , rI_{S}-Q=-\Lambda(0)$ .

3 Value function

The firm seeks the optimal timing of the investment. When the current regime state is $i$ , the
value function $V_{i}$ is defined by

$V_{i}(x) = \max_{\tau}\mathbb{E}[l^{\infty}e^{-ru}D_{J(u)}X(u)du-e^{-r\tau}K_{J(\tau)}|X(0)=x, J(0)=i].$

The following lemma gives useful expressions for the calculation of the value function.

Lemma 1

(1) $\mathbb{E}[e^{-rT}X(T)^{\beta}|\mathcal{F}_{t}]=X(t)^{\beta}e_{J(t)}^{T}\exp(\Lambda(\beta)(T-t))1_{S},$ $\beta\in \mathbb{R},$

(2) $\mathbb{E}[l^{\infty}e^{-ru}D_{J(u)}X(u)du|\mathcal{F}_{t}]=e^{-rt}\alpha_{J(t)}D_{J(t)}X(t)$ ,

where
$\alpha_{i}D_{i}=e_{i}^{T}(rI_{S}-M-Q)^{-1}D.$

$\uparrow Q$ is called to be irreducible if $q_{ij}\neq 0$ for $\forall i,j\in E,$ $i\neq j$ , that is, each regime has a non-zero chance to move
to another regime and to be transferred from another regime. The property 1 is weaker than the irreducibility.
It follows that some reducible matrices satisfy the property 1.
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By Lemma 1, the value function at the regime $i$ is reduced to

$V_{i}(x) = \max_{\tau}E[e^{-r\tau}(\alpha_{J(\tau)}D_{J(\tau)}X(\tau)-K_{J(\tau)})|X(0)=x, J(0)=i].$

As discussed in Jobert and Rogers (2006) and Guo and Zhang (2004), the candidate of the
optimal stopping time $\tau^{*}$ must be in a form of

$\tau^{*}=\min_{j\in E}\tau_{j}, \tau_{j}=\inf\{t>0:X(t)\geq x_{j}, J(t)=j\}$

with some positive $x_{j}(j\in E)$ . We will obtain the explicit form of the value function by assuming
that the order of the thresholds is

$x_{S}\leq x_{S-1}\leq\cdots\leq x_{2}\leq x_{1}$ (3.1)

in what follows. Namely the regime state $S$ is the best and the regime state 1 is the worst for
starting the project. In case that (3.1) is not satisfied, the following procedure must be carried
out after the regime indices are interchanged appropriately.

On the n-th interval $(x_{n+1}, x_{n})$ the regimes 1, $\cdots,$ $n$ (continuation regimes) are in the con-
tinuation region while the regimes $n+1,$ $\cdots,$

$S$ (stop regimes) are in the stop region. Hence,

the state will enter into a stop region either if $X(t)$ moves upward gradually beyond $x_{J(t)}$ by the
Brownian motion without regime switches or if the regime $J(t)$ is suddenly switched to either
of the stop regimes by a regime switch.

The value function will take a different functional form on each interval of the thresholds as

$V_{i}(x)=\{\begin{array}{ll}V_{i}^{(0)}(x) if x\in[x_{1}, \infty) , V_{i}^{(n)}(x) if x\in[x_{n+1}, x_{n}) , (n=1,2, \cdots, S-1) ,V_{i}^{(S)}(x) if x\in(O, xs) . \end{array}$

We will calculate $V_{i}^{(n)}(x)$ for each $i$ on n-th interval by starting from $n=0$ and moving on to
$n=S$ . When $x\in[x_{1}, \infty)$ , the state is in the stop region at any regime and it is optimal for the
firm to start the project immediately since the price $X(t)$ is high enough. Hence we have

$V_{i}^{(0)}(x)=\alpha_{i}D_{i}x-K_{i}, i\in E$ (3.2)

For $x\in[x_{n+1}, x_{n})(n=1,2, \cdots, S-1)$ , the firm will enter into the project if the regime is either
of $n+1,$ $\cdots,$

$S$ , otherwise she should wait. Thus, the value function $V_{i}^{(n)}(1\leq i\leq n)$ satisfies

$\frac{1}{2}x^{2}\sigma_{i}^{2}\frac{d^{2}}{dx^{2}}V_{i}^{(n)}(x)+x\mu_{i}\frac{d}{dx}V_{i}^{(n)}(x)-rV_{i}^{(n)}(x)+\sum_{j\in E\backslash \{i\}}q_{ij}(V_{j}^{(n)}(x)-V_{i}^{(n)}(x))=0$ , (3.3)

and $V_{i}^{(n)}(x)=\alpha_{i}D_{i}x-K_{i}$ for $n+1\leq i\leq S$ . Finally, for $x\in(O, xs),$ $V_{i}^{(S)}$ obeys the same $ODE$

as (3.3) with $n=S$ . The first three terms of (3.3) represents a change of the value function
due to a movement of Brownian motion and the last term represents a change due to a regime
switching. The optimality condition requires that the sum of these changes must be zero.
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In summary, we must solve simultaneous ODEs on an interval $[x_{n+1}, x_{n}),$ $(n=1,2,$ $\cdots,$ $S-$

1 $)$ ,

$\mathcal{A}_{1}V_{1}^{(n)}(x)+\sum_{1\leq j\leq n,j\neq 1}q_{1j}V_{j}^{(n)}(x)=-\sum_{n+1\leq j\leq S}q_{1j}V_{j}^{(n)}(x)$

$\mathcal{A}_{2}V_{2}^{(n)}(x)+\sum_{1\leq j\leq n,j\neq 2}q_{2j}V_{j}^{(n)}(x)=-\sum_{n+1\leq j\leq S}q_{2j}V_{j}^{(n)}(x)$

:

$\mathcal{A}_{n}V_{n}^{(n)}(x)+\sum_{1\leq j\leq n,j\neq n}q_{nj}V_{j}^{(n)}(x)=-\sum_{n+1\leq j\leq S}q_{nj}V_{j}^{(n)}(x)$
,

with the value matching condition and the smooth pasting conditions at $x=x_{n},$ $x_{n+1}$ , where
$\mathcal{A}_{i}$ is a differential operator defined by

$\mathcal{A}_{i}f(x)=\frac{1}{2}x^{2}\sigma_{i}^{2}\frac{d^{2}}{dx^{2}}f(x)+x\mu_{i}\frac{d}{dx}f(x)+(q_{ii}-r)f(x)$ .

It is symbolic to represent them in a form of matrix as

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{n}\end{array})(\begin{array}{l}V_{1}^{(n)}(x)V_{2}^{(n)}(x)|V_{n}^{(n)}(x)\end{array})=-(\begin{array}{llll}q_{1,n+1} q_{1,n+2} \cdots q_{1S}q_{2,n+1} q_{2,n+2} \cdots q_{2S}| | \ddots |q_{n,n+1} q_{n,n+2} \cdots q_{nS}\end{array})(\begin{array}{l}V_{n+2}^{(n)}(x)V_{n+1}^{(n)}(x)|V_{S}^{(n)}(x)\end{array})$ . (3.4)

The functions on the LHS are unknown and to be solved while ones on the RHS $V_{j}^{(n)}(x)=$

$\alpha_{j}D_{j}x-K_{j}(j\in\{n+1, \ldots, S\})$ are known. As for an interval $(0, x_{S})$ a similar system of ODEs
must be solved

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1S}q_{21} \mathcal{A}_{2} \cdots q_{2S}| | \ddots |q_{S1} q_{S2} \cdots \mathcal{A}_{S}\end{array})(\begin{array}{l}V_{2}^{(S)}(x)V_{1}^{(S)}(x)|V_{S}^{(S)}(x)\end{array})=0_{S}.$

A set of ODEs to be solved is dependent of the interval of $x$ . We study the equations (3.4)
on $V_{i}^{(n)}(x)(i=1,2, \cdots, n)$ defined on the interval $(x_{n+1}, x_{n})(n=1,2, \cdots, S)$ by modifying
the RHS and the interval of $x$ appropriately in the case of $n=S$ . Since we know the solution
$V_{i}^{(n)}(x)=\alpha_{i}D_{i}x-K_{i}$ for $i=n+1,$ $\cdots,$

$S$ , the equations of the remaining $V_{i}^{(n)}$ for $1\leq i\leq n$

are reduced to simultaneous second-order linear ODEs. It follows that the solution $V_{i}^{(n)}$ is
decomposed with the general solution $\tilde{V}_{i}^{(n)}$ and the special solution $v_{i}^{(n)}$ for each $i=1,2,$ $\cdots,$ $n.$

The special solution $v_{i}^{(n)}$ is easily found to be a linear function $v_{i}^{(n)}(x)=a_{i}^{(n)}x+b_{i}^{(n)}$ , where
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the coefficients $a^{(n)}=(a_{1}^{(n)}, \cdots, a_{n}^{(n)})^{T},$ $b^{(n)}=(b_{1}^{(n)}, \cdots, b_{n}^{(n)})^{T}$ are given by

$a^{(n)} = H_{n}(rI_{S}-M-Q)^{-1}\ovalbox{\tt\small REJECT}_{\sum_{=n+1}^{j=n+1}q_{nj}\alpha_{j}D_{j}}^{\sum q_{2j}\alpha_{j}D_{j}}j=sn\sum^{S}S+1q_{1j}\alpha_{j}D_{j}]$ , (3.5)

$b^{(n)} = -H_{n}(rI_{S}-Q)^{-1}\ovalbox{\tt\small REJECT}_{\sum_{=n+1^{q_{nj}K_{j}}}^{\sum.q_{1j}K_{j}}}^{j=n+1}j=ns\sum_{S}^{S}+1.q_{2j}K_{j})$ ,

where the inverse matrices are guaranteed to exist by Assumption 1.
Now we tum our eyes to the general solution $\tilde{V}_{i}^{(n)}$ . Let us change the variable $y=\ln x$ and

introduce auxiliary functions $\overline{V}_{i}^{(n)}(y)=\tilde{V}_{i}^{(n)}(e^{y}),$ $\overline{W}_{i}^{(n)}(y)=\frac{d}{dy}\overline{V}_{i}^{(n)}(y)$ . Then the equations for
the general solution part of (3.4) can be rewritten as a system of first-order ODEs,

$\frac{d}{dy}(\overline{\frac{V}{W}}((nn))^{(y)}(y))=\Gamma_{n}(\overline{\frac{V}{W}}((nn))^{(y)}(y))$ , (3.6)

where

$\Gamma_{n}$ $=$ $(\begin{array}{ll}O_{n} I_{n}R_{n} C_{n}\end{array})\in \mathbb{R}^{2n\cross 2n},$ $\Sigma_{n}=\frac{1}{2}$ diag $[\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}]\in \mathbb{R}^{n\cross n},$

$R_{m} = \Sigma_{n}^{-1}H_{n}(rI_{S}-Q))=-2(\begin{array}{llll}\frac{q_{11}-r}{\frac{q_{21}\sigma_{1}^{2}}{\sigma_{2}^{2}}}\cdots \frac{q_{22}^{\frac{q_{12}}{\sigma_{\underline{l}}^{2}}}r}{\sigma_{2}^{2}}\cdots \cdots \frac{}{}\frac{q_{2n}q_{1n}\sigma_{1}^{2}}{\sigma_{2}^{2}}| | \ddots |\frac{q_{nl}}{\sigma_{n}^{2}} \frac{q_{n2}}{\sigma_{n}^{2}} \cdots \frac{q_{nn}-r}{\sigma_{n}^{2}}\end{array})\in \mathbb{R}^{n\cross n},$

$C_{n}$ $=$ $\Sigma_{n}^{-1}H_{n}(\Sigma_{S}-M)=$ diag $[1- \frac{2\mu_{1}}{\sigma_{1}^{2}},$
$\cdots,$ $1- \frac{2\mu_{n}}{\sigma_{n}^{2}}]\in \mathbb{R}^{n\cross n}.$

Thus, the solution is given by

$(\overline{\frac{V}{W}}((nn))^{(y)}(y))=\exp((y-y_{0})\Gamma_{n})(\begin{array}{l}\overline{V}^{(n)}(y_{0})\overline{W}^{(n)}(y_{0})\end{array})$

with some $y0$ from the boundary conditions when the exponential matrix $\exp((y-y_{0})\Gamma_{n})$ is
available. If the coefficient matrix $\Gamma_{n}$ is diagonalizable, it is straightforward to solve and obtain
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an explicit representation of the solution of the system of ODEs (3.6). Otherwise, one can
proceed similarly by making use of the Jordan normal form that is guaranteed to exist for any
square matrix by the theory.

By the knowledge of linear algebra the characteristic function of of $\Gamma_{n}$ is obtained as

$\det(\begin{array}{ll}O_{n}-\beta I_{n} I_{n}R_{n} C_{n}-\beta I_{n}\end{array}) = f_{n}( \beta)\prod_{j=1}^{n}(\frac{1}{2}\sigma_{J}^{2}\prime)^{-1}$

where

$f_{n}(\beta) = \det(\Sigma_{n}(I_{n}\beta^{2}-C_{n}\beta-R_{n}))=detH_{n}(\Lambda(\beta))$. (3.7)

Thus, the eigenvalues are the solutions of $f_{n}(\beta)=0$ . In this paper we make the following
assumption for simple and useful results.

Assumption 2 1. For $n=1,2,$ $\cdots,$ $S-1,$ $\Gamma_{n}$ has $2n$ distinct eigenvalues $\beta_{1}^{(n)},$

$\cdots,$
$\beta_{2n}^{(n)}.$

2. $\Gamma_{S}$ has $2S$ distinct eigenvalues such that $\beta_{1}^{(S)},$

$\cdots,$
$\beta_{S}^{(S)}$ are strictly positive and $\beta_{S+1}^{(S)},$

$\cdots,$
$\beta_{2S}^{(S)}$

are strictly negative.

If the eigenvalues become complex numbers or duplicated so that the above assumption is not
satisfied, the following discussion can be accordingly modified by considering the Jordan normal
form as mentioned before. $\ddagger$

By Assumption 2 there exist distinct eigenvalues $\beta_{j}^{(n)}(1\leq j\leq 2n)$ . Since the upper right
block of $\Gamma_{n}$ is $I_{n}$ , the eigenvector for the eigenvalue $\beta_{j}^{(n)}$ must be in the form

$\tilde{u}_{j}^{(n)}=(_{\beta_{j}^{(n)^{j}}u_{j}^{(n)}}u^{(n)})\in \mathbb{R}^{2n},$

with some non-zero vector $u_{j}^{(n)}\in \mathbb{R}^{n}$ satisfying

$H_{n}(A(\beta))u_{j}^{(n)}=0_{n}$ . (3.8)

$(n)$Such a vector $u_{j}$ exists for each $j$ because the determinant of the coefficient matrix on the
LHS of (3.8) is equal to $f_{n}(\beta_{j}^{(n)})=0$ by definition of $\beta_{j}^{(n)}$ . Thus, $\Gamma_{n}$ is diagonalized as

$\Gamma_{n}=(\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})$ diag $[\beta_{1}^{(n)},$
$\cdots,$

$\beta_{2n}^{(n)}](\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})$

where

$U^{(n)}=$ $(u_{1}^{(n)}$ $u_{2}^{(n)}$ . . . $u_{2n}^{(n)})\in \mathbb{R}^{n\cross 2n},$ $B^{(n)}=$ diag $[\beta_{1}^{(n)},$
$\cdots,$

$\beta_{2n}^{(n)}]\in \mathbb{R}^{2n\cross 2n}.$

$\ddagger$ Due to the duplicated eigenvalues, a Jordan normal form appears in the value function in Grenadier and
Wang (2007) in a context of hyperbolic discounting which may be able to be modeled with a regime switching
and our discussion may be applicable to.
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The matrix

$(\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})=(_{\beta_{1}^{(n)}u_{1}^{(n)}}u_{1}^{(n)}$ $\beta_{2}^{(n)}u_{2}^{(n)}u_{2}^{(n)}$

$\ldots$

$\beta_{2n}^{(n)}u_{2n}^{(n))=}u_{2n}^{(n)}(\tilde{u}_{1}^{(n)}$ $\tilde{u}_{2}^{(n)}$ . . . $\tilde{u}_{2n}^{(n)})\in \mathbb{R}^{2n\cross 2n}$

is invertible since the eigenvalues of $\Gamma_{n}$ are distinct so that the corresponding eigenvectors $\tilde{u}_{j}^{(n)}$

are linearly independent.
Then we can solve the system of ODEs (3.6) as

$(\overline{\frac{V}{W}}((nn))^{(y)}(y))=(\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})$ diag $[e^{\beta_{1}^{(n)}y},$
$\cdots,$

$e^{\beta_{2n}^{(n)}y}]A^{(n)},$

with some constant vector $A^{(n)}\in \mathbb{R}^{2n}$ . By adding the special solutions, we have the vector of
the value functions $V^{(n)}(x)=(V_{1}^{(n)}(x), \cdots, V_{n}^{(n)}(x))^{T}$ at each regime on the interval $[x_{n+1}, x_{n})$

given as

$V^{(n)}(x) = U^{(n)}X^{(n)}(x)A^{(n)}+v^{(n)}(x)$ , (3.9)

where

$X^{(n)}(x)$ $=$ diag $[x^{\beta_{1}^{(n)}},$
$\cdots,$

$x^{\beta_{2n}^{(n)}}],$ $v^{(n)}(x)=a^{(n)}x+b^{(n)}.$

Unknown boundaries $x_{S}\leq\cdots\leq x_{1}$ and unknown vectors $A^{(1)},$ $\cdots$ , $A^{(S)}$ will be determined

by the value matching conditions, the smooth pasting conditions and the values at $x=0$ . We
will investigate them by looking at $x_{1}$ first and moving downward to $xs$ as follows.

The value matching conditions at $x=x_{n},$ $V_{i}^{(n)}(x_{n})=V_{i}^{(n-1)}(x_{n})$ for $i=1,$ $\cdots,$ $n$ are
represented by $n$-dimensional vectors as

$U^{(n)}X^{(n)}(x_{n})A^{(n)}+v^{(n)}(x_{n})=(\begin{array}{ll}U^{(n-1)}X^{(n-1)}(x_{n})A^{(n-1)}+ v^{(n-1)}(x_{n})\alpha_{n}D_{n}x_{n}-K_{n} \end{array})$ . (3.10)

Similarly, the smooth pasting conditions $x_{n} \frac{d}{dx}V_{i}^{(n)}(x_{n})=x_{n}\frac{d}{dx}V_{i}^{(n-1)}(x_{n})$ for $i=1,$ $\cdots,$ $n$ re-
quire

$U^{(n)}dX^{(n)}(x_{n})A^{(n)}+a^{(n)}x_{n}=(\begin{array}{ll}U^{(n-l)}dX^{(n-1)}(x_{n})A^{(n-1)}+ a^{(n-1)_{X_{n}}}\alpha_{n}D_{n}x_{n} \end{array})$ , (3.11)

where
$dX^{(n)}(x)=$ diag $[\beta_{1}^{(n)}x^{\beta_{1}^{(n)}},$

$\cdots,$
$\beta_{2n}^{(n)}x^{\beta_{2n}^{(n)}}]=B^{(n)}X^{(n)}(x)$, $a^{(S)}=0_{S}.$

By coupling these conditions (3.10), (3.11) into one vector and making use of a relationship

$(\begin{array}{l}U^{(n)}X^{(n)}(x)U^{(n)}dX^{(n)}(x)\end{array})=(\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})X^{(n)}(x)$ ,
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$A^{(n)}$ is represented with a function of $x_{n}$ and $A^{(n-1)}$ as

$A^{(n)} = X^{(n)}(x_{n}^{-1})(\begin{array}{l}U^{(n)}U^{(n)}B^{(n)}\end{array})$

$\cross[(\begin{array}{ll}U^{(n-1)}X^{(n-1)}(x_{n})A^{(n-1)}+ v^{(n-1)}(x_{n})\alpha_{n}D_{n}x_{n}-K_{n} U^{(n-1)}dX^{(n-1)}(x_{n})A^{(n-1)}+ a^{(n-1)}x_{n}\alpha_{n}D_{n}x_{n} \end{array})-(\begin{array}{l}v^{(n)}(x_{n})a^{(n)}x_{n}\end{array})]$ (3.12)

for $n=2,$ $\cdots$ , $S-1$ , and

$A^{(1)}$
$=$ $X^{(1)}(x_{1}^{-1})(\begin{array}{l}U^{(1)}U^{(1)}B^{(1)}\end{array})(\begin{array}{l}\alpha_{1}D_{1}x_{1}-K_{1}-v^{(1)}(x_{1})\alpha_{1}D_{1}x_{1}-a^{(1)_{X_{1}}}\end{array})$ , (3.13)

$A^{(S)}$
$=$ $X^{(S)}(x_{S^{1}})(\begin{array}{l}U^{(S)}U^{(S)}B^{(S)}\end{array})(\begin{array}{ll}U^{(S-1)}X^{(S-1)}(x_{S})A^{(S-1)}+ v^{(S-1)}(x_{S})\alpha s^{D_{S^{X}S}-K_{S}} U^{(S-1)}dX^{(S-1)}(x_{S})A^{(S-1)}+ a^{(S-1)}x_{S}\alpha_{S}D_{S}x_{S} \end{array})$ . (3.14)

Therefore, we can represent unknown vectors $A^{(1)},$
$\cdots,$

$A^{(S)}$ as functions of $x_{1},$ $\cdots,$ $x_{S}$ recur-
sively.

Furthermore, on $(0, x_{S}], we want to$ impose another condition $\lim_{xarrow 0}V_{i}^{(S)}(x)=0$ for all $i$

in order to make the value function finite. It implies that the coefficient of $A^{(S)}$ corresponding
to negative eigenvalues $\beta_{S+1}^{(S)},$

$\cdots,$
$\beta_{2S}^{(S)}$ must be zero,

$(0_{S} I_{S})A^{(S)}=0_{S}$ . (3.15)

This is a set of $S$ equations that $S$ unknown constants $x_{1},$ $\cdots,$ $x_{S}$ must satisfy. Apparently
(3.15) is a system of complicated algebraic equations, hence they must be solved numerically.
In case that the numerical solution doesn’t satisfy the order condition (3.1), the indices of the
regimes must be interchanged.

Then, by noting that $v^{(S)}(x)=0$ , the value function on $(0, x_{S})$ can be expressed with terms
with positive eigenvalues as

$V^{(S)}(x) = U_{S}X_{S}(x)A_{S}$ , (3.16)

where

$U_{S}=(u_{1}^{(S)}\cdots u_{S}^{(S)}) , X_{S}(x)=diag[x^{\beta_{1}^{(S)}}, \cdots, x^{\beta_{S}^{(S)}}], A_{S}=(I_{S} 0_{S})A^{(S)}.$

As a summary, we obtain the main result.

Proposition 1 Suppose that Assumption 1 and 2 hold, and $x_{1},$ $\cdots,$ $x_{S}$ satisfy (3.1) and (3.15).
Then the value function is given by (3.9) and (3.16).
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4 First passage time

With the same technique we can carry out a calculation of the expected and discounted value

of a payoff at the first passage time by applying the Dirichlet problem in the $tWf^{f}dimensiona1$

space.
Once the optimal stopping time $\tau^{*}$ is determined and the thresholds $xs\leq\cdots\leq x_{1}$ are fixed,

the value function can be decomposed by functions related to the regime at the first passage
time as

$V_{i}(x) = \max \mathbb{E}[e^{-r\tau}(\alpha_{J(\tau)}D_{J(\tau)}X(\tau)-K_{J(\tau)})|X(0)=x, J(0)=i]$
$\tau$

$= \sum_{k\in E}E[1_{\{\tau=\tau_{k}\}}e^{-r\tau}. (\alpha_{J(\tau)}D_{J(\tau)}X_{\tau}*-K_{J(\tau)})|X(0)=x, J(0)=i]$

$=$
$\sum_{k\in E}[\alpha_{k}D_{k}F_{i}^{k}(x)-K_{k}G_{i}^{k}(x)]$ , (4.1)

where $\tau^{*}=\min_{k\in E}\tau_{k},$ $\tau_{k}=\inf\{t>0:X(t)\geq x_{k}, J(t)=k\}$ and

$F_{i}^{k}(x)$ $=$ $\mathbb{E}[e^{-r\tau^{*}}M_{F}^{k}(X_{\tau}\cdot, J(\tau^{*}))|X(O)=x,$ $J(O)=i],$ $M_{F}^{k}(x,j)=x\delta_{jk}$ , (4.2)

$G_{i}^{k}(x)$ $=$ $E[e^{-r\tau^{*}}M_{G}^{k}(X_{\tau}*, J(\tau^{*}))|X(O)=x,$ $J(O)=i],$ $M_{G}^{k}(x,j)=\delta_{jk}$ . (4.3)

$F_{i}^{k}(x)$ is the discounted expected value of the payoff of $X_{\tau}*1_{\{J(\tau)=k\}}$ after starting from $(X$ (0) $, J(0))=$

$(x, i)$ . Similarly, $G_{i}^{k}(x)$ is one of the payoff of $1_{\{J(\tau^{*})=k\}}.$

The purpose of this section is to obtain the explicit form of these decomposing functions
$F_{i}^{k},$ $G_{i}^{k}$ . Our plan and idea are as follows. The functions defined by the expectation in (4.2)

and (4.3) are applicable to the Dirichlet problem thanks to the functional form in the definition.
However, the domain must be set appropriately in the two-dimensional space. Then we obtain
a set of ODEs which can be solved with the same technique as in the previous section. Finally,
we verify the decomposition (4.1) and the smooth pasting conditions at the boundary, which
are not imposed in the Dirichlet problem.

Since the stopping time $\tau^{*}$ has the regime-dependent thresholds, we need to rename them
on each relevant interval as

$F_{i}^{k}(x)$ $=$ $\{$

$F_{i}^{(k,0)}(x)$ , $x\in[x_{1}, \infty)$

$G_{i}^{k}(x)$ $=$ $\{\begin{array}{l}G_{i}^{(k,0)}(x) , x\in[x_{1}, \infty)G_{i}^{(k,n)}(x) , x\in[x_{n+1}, x_{n}) , 1\leq n\leq S-1\end{array}$

$F_{i}^{(k,n)}(x)$ , $x\in[x_{n+1}, x_{n})$ , $1\leq n\leq S-1$

$F_{i}^{(k,S)}(x)$ , $x\in(0, xs)$

$G_{i}^{(k,S)}(x)$ , $x\in(0, xs)$

On the n-th interval, the regimes $i>n$ are in the stop region so that

$F_{i}^{(k,n)}(x)=\delta_{ik}x\equiv M_{F}^{k}(x, i)$ , $G_{i}^{(k,n)}(x)=\delta_{ik}\equiv M_{G}^{k}(x, i)$ , $(i>n)$ . (4.4)

In order to obtain the explicit expression of the functions $F_{i}^{(k,n)}$ and $G_{i}^{(k,n)}$ , we apply the
following Dirichlet problem.
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Lemma 2 Consider an open set $C\subset \mathbb{R}^{d}$ and $\mathcal{D}=\mathbb{R}^{d}\backslash C$ . Define the first passage time
$\tau_{\mathcal{D}}=\inf\{t : Y_{t}\in \mathcal{D}\}$ of a Markov process $Y$ on $\mathbb{R}^{d}$ with $Y_{0}=x\in C$ , and define $F(x)=$
$\mathbb{E}[e^{-r\tau_{\mathcal{D}}}M(Y_{\tau_{\mathcal{D}}})]$ for a given continuous function $M$ : $\partial Carrow \mathbb{R}$ . Then $F$ solves the Dirichlet
problem

$\mathbb{A}_{Y}F=rF$ in $C,$ $F|_{\partial C}=M$

where $\mathbb{A}_{Y}$ is the infinitesimal opemtor $\mathbb{A}_{Y}F(x)=\lim_{t\downarrow 0}\frac{\mathbb{E}[F(Y_{t})|Y_{0}=x]-F(x)}{t}.$

Proof. See, for example, Peskir and Shiraev (2006).
For a regime switching diffusion $dX(t)=\mu_{J(t)}X(t)dt+\sigma_{J(t)}X(t)dW_{t}$, it is known that

$\mathbb{A}_{X}F_{i}(x) = \frac{1}{2}\sigma_{i}^{2}x^{2}\frac{d^{2}F_{i}}{dx^{2}}(x)+\mu_{i}x\frac{dF_{i}}{dx}(x)+\sum_{j=1,j\neq i}^{s}q_{ij}(F_{j}(x)-F_{i}(x))$ .

The continuation region of our problem and the relevant sets are given by

$\mathcal{B} = (0, x_{1})\cross(0, S+1)\subset \mathbb{R}_{++}^{2}, C=\mathcal{B}\backslash \bigcup_{i=1}^{s}\{(x, i)\in \mathbb{R}_{++}^{2}|x_{i}\leqx<x_{1}\},$

$\mathcal{D} = \mathbb{R}_{++}^{2}\backslash \mathcal{C}, \partial C=\partial \mathcal{B}\cup[\bigcup_{i=1}^{S}\{(x, i)\in \mathbb{R}_{++}^{2}|x_{i}\leq x<x_{1}\}].$

When we fix $k$ and consider $F_{i}^{k}(i\in E)$ , the continuous function $M$ on the boundary is defined
with $M_{F}^{k}(x, i)$ $(or M_{G}^{k}(x, i))$

$M=\{\begin{array}{ll}M_{F}^{k}(x, i) , y=i\in E, x_{i}\leq x<x_{1},([y]+1-y)M_{F}^{k}(x_{1}, [y]) +(y-[y])M_{F}^{k}(x_{1}, [y]+1) , [y]\in E, x=x_{1},0, otherwise.\end{array}$

The function $M$ when considering $G_{i}^{k}(i\in E)$ can be constructed similarly by replacing $M_{F}^{k}(x, i)$

with $M_{G}^{k}(x, i)$ in the above definition. Note that the domain is expanded to a dense subset in
$\mathbb{R}^{2}$ , though our interest is in a subset in $\mathbb{R}\cross \mathbb{Z}$, in order to apply the Dirichlet problem directly.
The regimes take values in $\mathbb{Z}$ only so that we don’t need to pay attention to the function values
in the non-integer area in the regimes. Thus, the interpolated values of $M$ at $(x_{1}, y)(y\not\in E)$ are
sufficient to make $M$ continuous on the boundary $\partial C.$

Then by Dirichlet problem, each of $F_{i}^{k}$ and $G_{i}^{k}$ satisfies a set of certain ODEs. We must
solve simultaneous ODEs on each interval such as

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{n}\end{array})(\begin{array}{l}F_{2}^{(k,n)}(x)F_{1}^{(k,n)}(x)|F_{n}^{(k,n)}(x)\end{array})=-(\begin{array}{llll}q_{1,n+1} q_{1,n+2} \cdots q_{1S}q_{2,n+1} q_{2,n+2} \cdots q_{2S}| | \ddots |q_{n,n+1} q_{n,n+2} \cdots q_{nS}\end{array})(\begin{array}{l}F_{n+2}^{(k,n)}(x)F_{n+1}^{(k,n)}(x)|F_{S}^{(k,n)}(x)\end{array})$ (4.5)

on $x\in[x_{n+1}, x_{n}),$ $(n=1,2, \cdots, S-1)$ for each $k=1,2$ , where

$\mathcal{A}_{i}f(x)=\frac{1}{2}x^{2}\sigma_{i}^{2}\frac{d^{2}}{dx^{2}}f(x)+x\mu_{i}\frac{d}{dx}f(x)+(q_{ii}-r)f(x)$ .
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The value matching conditions are imposed at $x_{j}$ in both $C$ and $\partial C$ . The smooth pasting con-
ditions, however, are imposed at $x_{j}$ in $C$ only since a smooth pasting condition at the boundary

is meaningless in the Dirichlet problem.
When $n\leq k-1,$ $F_{k}^{(k,n)}(x)=x$ but other $F_{i}^{(k,n)}$ on the RHS of (4.5) are zero by (4.4). On

the other hand, when $n\geq k$ , all of $F_{i}^{(k,n)}$ on the RHS of (4.5) are zero. Hence, when $n\leq k-1,$

(4.5) becomes

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{m}\end{array})(\begin{array}{l}F_{1}^{(k,n)}(x)F_{2}^{(k,n)}(x)|F_{n}^{(k,n)}(x)\end{array})=-x(\begin{array}{l}q_{1k}q_{2k}|q_{nk}\end{array}),$

and when $n\geq k,$ $(4.5)$ is reduced to

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{n}\end{array})(\begin{array}{l}F_{2}^{(k,n)}(x)F_{1}^{(k,n)}(x)|F_{n}^{(k,n)}(x)\end{array})=0_{n}.$

In summary, (4.5) is equivalent to

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{m}\end{array})(\begin{array}{l}F_{1}^{(k,n)}(x)F_{2}^{(k,n)}(x)|F_{n}^{(k,n)}(x)\end{array})=-x1_{\{n<k\}}(\begin{array}{l}q_{1k}q_{2k}|q_{nk}\end{array}).$

Similarly we have equations for $G_{i}^{k},$

$(\begin{array}{llll}\mathcal{A}_{1} q_{12} \cdots q_{1n}q_{21} \mathcal{A}_{2} \cdots q_{2n}| | \ddots |q_{n1} q_{n2} \cdots \mathcal{A}_{m}\end{array})(\begin{array}{l}G_{1}^{(k,n)}(x)G_{2}^{(k,n)}(x)|G_{n}^{(k,n)}(x)\end{array})=-1_{\{n<k\}}(\begin{array}{l}q_{1k}q_{2k}|q_{nk}\end{array}).$

For the following calculation, it is worth of noting that a special solution appears only when
$n\leq k-1$ , especially $(k, n, i)=(2,1,1)$ if $S=2.$

We can obtain explicit representations for the case of $S=2$ by applying the same technique

as discussed in the previous section.
Let us change notations as $-q_{11}=q_{12}=q_{1}\geq 0,$ $-q_{22}=q_{21}=q_{2}\geq 0$ and define the

following quantities,

$p_{1}= \frac{q_{1}}{r-\mu_{1}+q_{1}},$ $p_{2}= \frac{q_{1}}{r+q_{1}},$
$l_{1}=-g_{2}(\beta_{1}^{(2)})/q_{2},$ $l_{2}=-g_{2}(\beta_{2}^{(2)})/q_{2},$

$d_{1}=q_{2}[-(-\beta_{2}^{(1)}+\beta_{1}^{(2)})l_{1}-(\beta_{2}^{(1)}-\beta_{2}^{(2)})l_{2}],$ $d_{2}=q_{2}[-(\beta_{1}^{(1)}-\beta_{1}^{(2)})l_{1}+(\beta_{1}^{(1)}-\beta_{2}^{(2)})l_{2}]$

The following proposition shows the results in case of $q_{1}q_{2}\neq 0$ . One can obtain the results in

case of $q_{1}q_{2}=0.$
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Proposition 2 Suppose that $q_{1}q_{2}\neq 0$ . Then $F_{i}^{(k,n)},$ $G_{i}^{(k,n)}$ are given as follows.

$F_{1}^{(1,0)}(x)$

$F_{1}^{(1,2)}(x)$

$F_{2}^{(1,0)}(x)$

$F_{2}^{(1,2)}(x)$

$F_{1}^{(2,0)}(x)$

$F_{1}^{(2,2)}(x)$

$F_{2}^{(2,0)}(x)$

$=$ $x,$ $F_{1}^{(1,1)}(x)=x_{1} \frac{d_{1}(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}+d_{2}(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}}{d_{1}(^{x}x_{2}\lrcorner)^{\beta_{1}^{(1)}}+d_{2}(_{x_{2}}^{x}-\perp)^{\beta_{2}^{(1)}}},$

$=$
$x_{1} \frac{\beta_{1}^{(1)}-\beta_{2}^{(1)}}{d_{1}(\begin{array}{l}\lrcorner xx_{2}\end{array})+d_{2}(\begin{array}{l}\lrcorner xx_{2}\end{array})}[g_{2}(\beta_{1}^{(2)})(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}-g_{2}(\beta_{2}^{(2)})(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}],$

$=$ $0,$ $F_{2}^{(1,1)}(x)=0,$

$=$
$x_{1} \frac{\beta_{1}^{(1)}-\beta_{2}^{(1)}}{d_{1}(\begin{array}{l}\lrcorner xx2\end{array})+d_{2}(\begin{array}{l}\lrcorner xx_{2}\end{array})}[-q_{2}(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}+q_{2}(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}],$

$=$ $0,$ $F_{1}^{(2,1)}(x)=B_{1}( \frac{x}{x_{1}})^{\beta_{1}^{(1)}}+B_{2}(\frac{x}{x_{1}})^{\beta_{2}^{(1)}}+p_{1^{X}},$

$=$ $g_{2}( \beta_{1}^{(2)})B_{3}(\frac{x}{x_{2}})^{\beta_{1}^{(2)}}+g_{2}(\beta_{2}^{(2)})B_{4}(\frac{x}{x_{2}})^{\beta_{2}^{(2)}}$

$=$ $x,$ $F_{2}^{(2,1)}(x)=x,$ $F_{2}^{(2,2)}(x)=-q_{2}B_{3}( \frac{x}{x_{2}})^{\beta_{1}^{(2)}}-q_{2}B_{4}(\frac{x}{x_{2}})^{\beta_{2}^{(2)}}$

and

$G_{1}^{(1,0)}(x)$

$G_{1}^{(1,2)}(x)$

$G_{2}^{(1,0)}(x)$

$G_{2}^{(1,2)}(x)$

$G_{1}^{(2,0)}(x)$

$G_{1}^{(2,2)}(x)$

$G_{2}^{(2,0)}(x)$

$=$ 1, $G_{1}^{(1,1)}(x)= \frac{d_{1}(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}+d_{2}(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}}{d_{1}(_{x}x_{2}\lrcorner)^{\beta_{1}^{(1)}}+d_{2}(_{x}x_{2}\lrcorner)^{\beta_{2}^{(1)}}},$

$=$
$\frac{\beta_{1}^{(1)}-\beta_{2}^{(1)}}{d_{1}(\begin{array}{l}\lrcorner xx_{2}\end{array})+d_{2}(\begin{array}{l}\lrcorner xx_{2}\end{array})}[g_{2}(\beta_{1}^{(2)})(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}-g_{2}(\beta_{2}^{(2)})(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}],$

$=$ $0,$ $G_{2}^{(1,1)}(x)=0,$

$=$
$\frac{\beta_{1}^{(1)}-\beta_{2}^{(1)}}{d_{1}(\begin{array}{l}\lrcorner xx_{2}\end{array})+d_{2}(\begin{array}{l}\lrcorner xx_{2}\end{array})}[-q_{2}(\frac{x}{x_{2}})^{\beta_{1}^{(1)}}+q_{2}(\frac{x}{x_{2}})^{\beta_{2}^{(1)}}],$

$=$ $0,$ $G_{1}^{(2,1)}(x)=b_{1}( \frac{x}{x_{1}})^{\beta_{1}^{(1)}}+b_{2}(\frac{x}{x_{1}})^{\beta_{2}^{(1)}}+p_{2},$

$=$ $g_{2}( \beta_{1}^{(2)})b_{3}(\frac{x}{x_{2}})^{\beta_{1}^{(2)}}+g_{2}(\beta_{2}^{(2)})b_{4}(\frac{x}{x_{2}})^{\beta_{2}^{(2)}}$

$=$ 1, $G_{2}^{(2,1)}(x)=1,$ $G_{2}^{(2,2)}(x)=-q_{2}b_{3}( \frac{x}{x_{2}})^{\beta_{1}^{(2)}}-q_{2}b_{4}(\frac{x}{x_{2}})^{\beta_{2}^{(2)}}$
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where

$B_{1}$ $=$
$-p_{1}x_{1} \frac{d_{1}\lambda^{-\beta i^{1)}}}{d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}}+q_{2}x_{2}\frac{l_{1}l_{2}(\beta_{1}^{(2)}-\beta_{2}^{(2)})-p_{1}(l_{1}(\beta_{1}^{(2)}-1)-l_{2}(\beta_{2}^{(2)}-1))}{d_{1}\lambda^{\beta_{2}^{(1)}}+d_{2}\lambda^{\beta_{1}^{(1)}}},$

$-p_{1}x_{1}(\beta_{1}^{(1)}-\beta_{2}^{(1)})+l_{2}x_{2}((\beta_{2}^{(1)}-\beta_{2}^{(2)})\lambda^{-\beta_{1-}^{(1)}}(\beta_{1}^{(1)}-\beta_{2}^{(2)})\lambda^{-\beta_{2}^{(1)}})$

$B_{3}$ $=$

$d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}$

$-p_{1}x_{1} \frac{(\beta_{2}^{(1)}-1)\lambda^{-\beta_{1}^{(1)}}-(\beta_{1}^{(1)}-1)\lambda^{-\beta_{2}^{(1)}}}{d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}}$

$B_{2}$ $=$ $-p_{1}x_{1}-B_{1},$ $B_{4}=- \frac{x_{2}}{q_{2}}-B_{3},$

$b_{1}$ $=$
$-p_{2} \frac{d_{1}\lambda^{-\beta_{1}^{(1)}}}{d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}}+q_{2}\frac{l_{1}l_{2}(\beta_{1}^{(2)}-\beta_{2}^{(2)})-p_{2}(l_{1}\beta_{1}^{(2)}-l_{2}\beta_{2}^{(2)})}{d_{1}\lambda^{\beta_{2}^{(1\rangle}}+d_{2}\lambda^{\beta_{1}^{(1)}}}$

$b_{3}$ $=$
$\frac{-p_{2}(\beta_{1}^{(1)}-\beta_{2}^{(1)})+l_{2}((\beta_{2}^{(1)}-\beta_{2}^{(2)})\lambda^{-\beta_{1-}^{(1\rangle}}(\beta_{1}^{(1)}-\beta_{2}^{(2)})\lambda^{-\beta_{2}^{(1)}})}{d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}}-p_{2}\frac{\beta_{2}^{(1)}\lambda^{-\beta_{1}^{(1)}}-\beta_{1}^{(1)}\lambda^{-\beta_{2}^{(1)}}}{d_{1}\lambda^{-\beta_{1}^{(1)}}+d_{2}\lambda^{-\beta_{2}^{(1)}}}$

$b_{2}$ $=$ $-p_{2}-b_{1},$ $b_{4}=- \frac{1}{q_{2}}-b_{3}.$

Note that Proposition 2 is valid for any $x_{2}\leq x_{1}$ . We don’t impose “smooth pasting condi-
tions” of $F_{i}^{k},$ $G_{i}^{k}$ at the boundary of the continuation region when solving the Dirichlet problem
since “smooth pasting conditions at the boundary” are meaningless in the problem. It follows
that, for arbitrary given $x_{1},$ $x_{2}$ , a function constructed with these obtained $F_{i}^{k},$ $G_{i}^{k}$

$W_{i}^{(n)}(x)= \sum_{k\in E}(\alpha_{k}D_{k}F_{i}^{(k,n)}(x)-K_{k}G_{i}^{(k,n)}(x))$

does not necessary satisfy the smooth pasting condition $\frac{d}{dx}W_{n}^{(n)}(x)=\alpha_{n}D_{n}$ at the boundary $x_{n}$

of the continuation region. The optimality condition involved in $\lambda=x_{1}/x_{2}$ plays an important
role in veryifying (4.1) and the smooth pasting conditions at the boundaries.

Lemma 3 Suppose that $q_{2}\neq 0$ and

$r> \max(\mu_{1}, \mu_{2},0)$ , $(r-\mu_{1}+q_{1})(r-\mu_{2}+q_{2})-q_{1}q_{2}\neq 0,$ $(r+q_{1})(r+q_{2})-q_{1}q_{2}\neq 0$. (4.6)

Then,
(1) Assumption 1 and 2 hold.
(2) There exist threshholds $0<x_{2}\leq x_{1}$ if and only if there exists unique solution $\lambda$ satisfying
$0<\lambda\leq 1$ and

$\frac{-d_{11}\lambda^{\beta_{1}^{(1)}}+k_{K}d_{21}}{c_{11}\lambda^{\beta_{1}^{(1)}-1}-k_{K}k_{\alpha}c_{21}}=\frac{-d_{12}\lambda^{\beta_{2}^{(1)}}+k_{K}d_{22}}{c_{12}\lambda^{\beta_{2}^{(1)}-1}-k_{K}k_{\alpha}c_{22}}>0$, (4.7)
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where

$(\begin{array}{l}c_{11}c_{12}\end{array}) = (1-k_{K}p_{1}k_{\alpha})(_{\beta_{1}^{(1)}-1}^{1-\beta_{2}^{(1)}}) , (\begin{array}{l}d_{11}d_{12}\end{array})=(1-k_{K}p_{2})(\begin{array}{l}\beta_{2}^{(1)}-\beta_{1}^{(1)}\end{array}),$

$(\begin{array}{l}c_{21}c_{22}\end{array}) = -(\begin{array}{ll}\beta_{2}^{(1)} -1-\beta_{1}^{(1)} 1\end{array})[ \frac{1}{\beta_{1}^{(2)}-\beta_{2}^{(2)}}(\begin{array}{ll}l_{1} l_{2}l_{1}\beta_{1}^{(2)} l_{2}\beta_{2}^{(2)}\end{array})(_{\beta_{1}^{(2)}-1}^{1-\beta_{2}^{(2)}})-p_{1} (\begin{array}{l}11\end{array})],$

$(\begin{array}{l}d_{21}d_{22}\end{array}) = -(\begin{array}{ll}\beta_{2}^{(1)} -1-\beta_{1}^{(1)} 1\end{array})[ \frac{1}{\beta_{1}^{(2)}-\beta_{2}^{(2)}}(_{l_{1}\beta i^{2)}}l_{1} l_{2}\beta_{2}^{(2))}l_{2}(\begin{array}{l}\beta_{2}^{(2)}-\beta_{1}^{(2)}\end{array})+p_{2}(\begin{array}{l}10\end{array})].$

When the above condition (4. 7) is satisfied, the solution $(x_{1}, x_{2})$ is given by

$(\begin{array}{l}x_{1}x_{2}\end{array})=\frac{1}{\tilde{\alpha}_{1}\lambda}\frac{-d_{11}\lambda^{\beta_{1}^{(1)}}+k_{K}d_{21}}{c_{11}\lambda^{\beta_{1}^{(1)}-1}-k_{K}k_{\alpha}c_{21}}(\begin{array}{l}1\lambda\end{array})$ . (4.8)

The following lemma shows that $\lambda$ is given by a solution of equations.

Lemma 4 $\lambda$ must satisfy the following vector equation,

$\frac{(1-\beta_{2}^{(1)})(\alpha_{1}D_{1}-p_{1}\alpha_{2}D_{2})x_{1}+\beta_{2}^{(1)}(K_{1}-p_{2}K_{2})}{\beta_{1}^{(1)}-\beta_{2}^{(1)}}\lambda^{\beta_{1}^{(1)}}(\begin{array}{l}1\beta_{1}^{(1)}\end{array})$

$- \frac{(1-\beta_{1}^{(1)})(\alpha_{1}D_{1}-p_{1}\alpha_{2}D_{2})x_{1}+\beta_{1}^{(1)}(K_{1}-p_{2}K_{2})}{\beta_{1}^{(1)}-\beta_{2}^{(1)}}\lambda^{\beta_{2}^{(1)}}(\begin{array}{l}1\beta_{2}^{(1)}\end{array})$

$= l_{1} \frac{(1-\beta_{2}^{(2)})\alpha_{2}D_{2}x_{2}+\beta_{2}^{(2)}K_{2}}{\beta_{1}^{(2)}-\beta_{2}^{(2)}}(\begin{array}{l}1\beta_{1}^{(2)}\end{array})-l_{2}\frac{(1-\beta_{1}^{(2)})\alpha_{2}D_{2}x_{2}+\beta_{1}^{(2)}K_{2}}{\beta_{1}^{(2)}-\beta_{2}^{(2)}}(\begin{array}{l}l\beta_{2}^{(2)}\end{array})$

$-p_{1}\alpha_{2}D_{2}x_{2}(\begin{array}{l}11\end{array})+p_{2}K_{2}(\begin{array}{l}10\end{array}).$

By making use of Lemma 3 and 4, we take the optimality condition into consideration so
that we obtain the following result which is seemingly trivial but non-trivial.

Proposition 3 Suppose that $q_{1}q_{2}\neq 0$ and $x_{1},$ $x_{2}$ are given by $(4\cdot 8)$ . Then it holds that

$V_{i}^{(n)}(x)=W_{i}^{(n)}(x) , n=0,1,2, i=1,2,$

where $V_{i}^{(n)}$ are given in Proposition 1.

5 Concluding remarks

Our technique with linear algebra provides an insight of the functional form of the value function
and it would help us in analysis of the value function more explicitly under many regime states.
Especially, the results on the first passage time are remarkable for futher research. Numerical
calculation is relatively easy due to the expression with eigenvalues and eigenvectors.
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As remarks on parameters, we made explicit assumptions on $r,$ $M,$ $\Sigma$ and $Q$ in order to

obtain appropriate eigenvalues $\beta_{i}^{(n)}$ and convergence of income flow multiplier $\alpha_{i}$ . However,

conditions on $D$ and $K$ are implicitly involved in calculation of thresholds $x_{n}$ satisfying the

order of $x_{S}\leq x_{S-1}\leq\cdots\leq x_{2}\leq x_{1}$ . Our assumptions assure the distinct eigenvalues though

they can be relaxed. The cases of duplicate eigenvalues and an entry-exit problem are left for

future research.
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