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Abstract

We explain the basic notions pertaining to the scattering processes
in terms of asymptotic fields and of $S$-matri$X$ as a kind of central limit
theorem. These notions can be used for understanding the highly dy-
namical behaviours of strongly interacting hadrons, from the viewpoint
of the duality involving independence, couphng and dependence, which
may have some interesting relations with the monotone and$/or$ free in-
dependences.

1 Introduction; Hadrons and Bacteria as “Un-
sung Heros” behind Nature

In all the physical nature, the hadronic world is characterized by its $ex-$

treme activity and its longest history of existence (of the level as
a whole); we cannot imagine and verify the possibility of historical period
without its activities and existence; for instance, the history of universe with
evolution of stars starts from protons as the most typical hadrons. Similar
situation can be found in the roles played by the bacte$7\dot{\tau}al$ levels in the bio-
logical context, as was emphasized by Stephen Jay Gould in his book, “Full
House–The Spread of Excellence from Plato to Darwin” (Harmony Books,
1996)1. This kind of aspects will be seen to be crucial and indispensable
for our satisfactory understanding of the consistency between repeatable
laws and their histori $cal$ developments without repetitions, as seen
in the cosmological and biological evolutions. At the end, we try to ex-
amine this problem in the realm of quantum fields and hadrons, from the
viewpoint of Micro-Macro duality [1], which will hopefully be useful for
unified understanding of nature according to the longitudinal axis of its his-
torical processes and to the transverse ones of coexisting network structures

lThis interesting book was brought to my attention by Prof. I. Yamato at Tokyo
University of Science, to whom the present author expresses his deep gratitude.
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spanned by various bridges among different hierarchical regimes in nature.
After explaining Micro-Macro duality, we recollect the formulation of scat-
tering amplitudes ( $=$ $S$-matrix functional) in terms of quantum fields, on
the basis of which basic features of hadrons are examined.

While there are no strict boundaries between micro- and macroscopic
levels in nature, it is important to specify such a boundary in a scientific
discussion of a given restricted domain, for the purpose of which the notion
of “sectors” plays a crucial role. The essence of the sector structures found
in various areas in nature can be summarized in the context of Micro-Macro
duality as follows, where a $sector^{i}$ ’ is interpreted as quasi-equivalence class
of factor states [1]:

or, in a little more elaborated form:

A good physical example of the mathematical notion of statistical in-
dependence can be found in the form of asymptotic fields arising in the
scattering theory of relativistic quantum fields through the asymptotic con-
dition, which is nothing but a version of Central Limit Theorem [3] in
the physical context. Once the independent objects are successfully identi-
fied, the cssence of the most important tasks in mathematical and physical
descriptions of natural phenomena can be found in the problem concerning
the gaps between idealized ( $=$ approximate) world of independence
and realistic interacting world of dependence, which are to be filled
up by the scheme of coupling $=$ interactions [3]. In the case of scat-
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tering theory of QFT, the basic scheme can be understood in the following
diagram:

The Precise meaning of the “Central Limit Theorem” can be seen in “Micro-
Macro Duality” in $QFT$ in the following sense:

or,

(Remark: there is another local-net version of independence based on
the so-called nuclearity condition in Algebraic QFT. )

It is the aim of the present article to clarify the precise meaning of the
notions and the diagrams appearing above.

2 What does Einstein’s Formula $\ll E=mc^{2}\gg$ Mean?:
“Unit” of Independence $=$ Free Particles

In Quantum Probability, several versions of independence generalizing
bosonic tensor type have been proposed, developed and classified with in-
teresting results [2]. Here my naive questions are: on which physical ground
do they emerge and what physical meaning do they have? For Gaussian
( $=$bosonic CCR & fermionic CAR) case(s), the following is my partial an-
swer in the context of relativistic QFT [3]: emergence of independence $=$
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a “Central Limit Theorem” via asymptotic condition, $\varphi_{H}(x)x^{0}=t\mp\infty\vec{arrow}$

$\phi^{in/out}(x)$ , from non-independent interacting Heisenberg fields $\varphi_{H}$ to in-
dependent free asymptotic fields $\phi^{as}=\phi^{in/out}fy$ asymptotic states. To
formulate this problem in a clear-cut way, the notion of the “particles”
characterized by the mass-shell condition plays essential roles whose familar
version can be found in Einstein’s famous formula $E=mc^{2}.$

Owing to such serious and actual consequences as atomic bombs and
nuclear power plants, Einstein’s famous equality $\ll E=mc^{2}\gg$ of en-
ergy & mass has always been regarded as one of the most fundamental
notions of the special theory of relativity. Properly speaking, however, this
is a simple and trivial sort of misunderstanding, because this formula is
meaningful only for asymptotic fields/states as the “on-shell condi-
tion” to extract 1-particle modes $($ !! $)$ from the interacting Heisenberg
fields $\varphi_{H}$ : if it were not for the interactions of Heisenberg fields $\varphi_{H},$

any kind of nuclear reactions as the sources of radioactivity cannot take
place, and hence, the formula $\ll E=mc^{2}\gg$ itself yields no actual events,
good or bad!! Its genuine theoretical meaning is simply the condition to
define independent$=free=$ non-interacting asymptotic fields/states,
$p^{2}=p_{\mu}p^{\mu}=m^{2}$ containing independent $=$ free $=non$-interacting particles.
The resulting asymptotic fields $\phi^{as}$ , provide a vocabulary for describ-
ing state changes taking place in the scattering processes: [asymptotic
in-states $s-\Rightarrow$matrix out-states]. For lack of interactions, however, on-shell
asymptotic fields $\phi^{as}$ by themselves cannot ignite scattering processes, and
hence, we need to introduce off-shell interacting Heisenberg fields $\varphi_{H},$

which violate Einstein’s formula $\ll E=mc^{2}\gg!$

In fact, taking $m$ as “moving mass” $m= \frac{m_{0}}{\sqrt{1-v^{2}/c^{2}}}$ , we have

$E=mc^{2}= \frac{m_{0}}{\sqrt{1-v^{2}/c^{2}}}c^{2}$

$\Rightarrow(m_{0}c)^{2}=(\frac{E}{c})^{2}(1-v^{2}/c^{2})=(\frac{E}{c})^{2}-(\frac{m_{0}}{\sqrt{1-v^{2}/c^{2}}}\vec{v})^{2}$

$=( \frac{E}{c})^{2}-(p\neg)^{2}$

$\Rightarrow p^{2}=p_{\mu}p^{\mu}=(m_{0}c)^{2},$

where $\frac{m_{0}}{\sqrt{1-v^{2}/c^{2}}}\vec{v}=:\vec{p}$ is the relativistic momentum and $p^{\mu}=( \frac{E}{c},p\neg)$ is

the -mementum. The actual meaning of $p^{2}=p_{\mu}p^{\mu}=( \frac{E}{c})^{2}-(p\neg)^{2}=(m_{0}c)^{2}$

can be seen as follows:
i$)$ mass-shell (or, on-shell) condition to characterize a mass hyper-

boloid in $F$-space of 4-momenta $p_{\mu}\in\hat{\mathbb{R}}^{4}$ carried by free 1-particle states with
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rest mass $m_{0}.$

By this condition an orbit family $p^{2}=m^{2}>0$ can be picked up among
the four: $p^{2}=<>0,p_{\mu}=0$ (: vacua), of Poincar\’e group $\mathcal{P}1=\mathbb{R}^{4}\rtimes SL(2, \mathbb{C})$

in the Wigner’s construction of unitary representations induced from “little
groups” $(SU(2), E(2), SU(1,1))$ ;

ii) through “first quantization” $p_{\mu} arrow iW_{\mu}=i\hslash(\frac{1}{c}\frac{\partial}{\partial t},\vec{\nabla})$ , we have

the Klein-Gordon equation $[\hslash^{2}\partial_{\mu}\partial^{\mu}+(m_{0}c)^{2}]\phi(x)=0$ of a free scalar
field $\phi(x)$ with rest mass $m_{0}.$

iii) The existence of positive/negative energy solutions $E=\pm\sqrt{(\vec{p}c)^{2}+(m_{0}c^{2})^{2}}$

of $( \frac{E}{c})^{2}-(\vec{p})^{2}=m_{0}^{2}c^{2}$ leads to the creation & annihilation operators, particle-
antiparticle pairs, time reversal $T$ and $PCT$ invari ance.

Thus, the famous equivalence $E=mc^{2}$ between energy $E$ and mass
$m$ gives only partial information for dynamical descriptions of relativistic
quantum fields, with off-shell apects being neglected in spite of their vital
importance for non-trivial scattering processes, particle decays and produc-
tions, etc., etc.!

2.1 Free$=$ independent vs. interacting $=$ non-independent

It is also remarkable that the free asymptotic fields $\phi$ can be decomposed
into the sum of creation and annihilation operators $a(\vec{p)}.a^{*}(q\neg)$ . Namely, free
quantum field $\phi(x)$ as quantized solution of Klein-Gordon equation $(\square +$

$m^{2})\phi=0$ describes “particle pictures” in terms of creation and annihilation
operators: $\phi(x)\Leftrightarrow$ creation and annihilation operators $a(\overline{p}).a^{*}(q\neg)$ :

$\phi(x)=\int\frac{d^{3}p}{\sqrt{(2\pi)^{3}2\omega_{\vec{p}}}}(a(p^{-})\exp(-ip_{\mu}x^{\mu})+h.c.)$,

$a^{*}(f) :=i \int\emptyset(x)\Re_{f(x)d^{3_{X}}}=\int a^{*}(parrow)\tilde{f}(p\neg)d^{3}p$

$=[a(f)]^{*},$

$[a(f).a^{*}(g)]= \int\overline{\tilde{f}(\overline{p})}\tilde{g}(\vec{p})d^{3}p=\langle\tilde{f},\tilde{g}\rangle,$

$[ \phi(x).\phi(y)]=\int\frac{d^{4}p}{(2\pi)^{3}}\epsilon(p^{0})\delta(p^{2}-m^{2})\exp(-ip(x-y))$

$=:i\Delta(x-y;m^{2})$ ,

with $\omega_{\vec{p}}:=\sqrt{p^{T}+m^{2}}$ in the “natural unit system” with $\hslash=c=1$ (rest
mass $m_{0}$ is denoted by $m$ , henceforth).

It is customary for most physicists to regard quantum fields $\phi(x)$ with
$a^{*}(\vec{p}),$ $a(\overline{p})$ as sufficient objects for describing wave-particle dualism inherent
in elementary particles. Perpetual creation and annihilation processes of
particles, however, require interactions among elementary particles, which
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is not consistent with the linearity of free field equation. In fact, the contents
of the famous Haag theorem is that Poincar\’e (or even, Galilei) $-$covariant
quantum fields related to free fields by a unitary transformation are only free
fields, which means that it is meaningless to formulate interacting Heisenberg
fields by means of a unitary transformation of free fields (as is common in
perturbative approaches). Note that this is in sharp contrast to qunatum
systems with finite degrees of freedom.

On the other hand, to describe relativistic scattering processes of ele-
mentary particles, we need the following three items: Poincar\’e-covariant
quantum fields/their interactions/free fields. Free fields are necessary be-
cause it provide us with indispensable vocabulary for the description of
scattering processes, where an initial state with incoming free particles is
changed int$0$ a final one with outgoing particles. According to the above
Haag theorem, however, we cannot discuss directly the relation between
interacting Heisenberg and free fields. Instead, the unitary $S$-matrix $ap-$

pears between two free asymptotic fields, $\phi^{in}(x)$ and $\phi^{out}(x)$ in the
form of a basis change $S_{\beta,\alpha}$ $:=\langle\beta,$ $out|\alpha,$ $in\rangle$ between in-state basis $|\alpha,$ $in\rangle$

and out-state basis $|\beta,$ $out\rangle$ :

To treat Heisenberg fields $\varphi_{H}(x)$ , we recapitulate briefly the essence of
Wightman axioms for relativistic quantum fields (in the vacuum representa-
tion $(\mathcal{P}, \mathfrak{H}, U, \Omega))$ in the form of relativistic covariance, local commutativity,
cyclicity or ergodicity of vacuum vector and spectral condition:

a$)$ [Heisenberg fields] $=$ operator-valued distributions $\mathcal{D}(\mathbb{R}^{4})\ni f\mapsto$

$\varphi_{H}^{i}(f)$ with values being (unbounded) closable operators acting on Hilbert
space $\mathfrak{H}$ is defined on the 4-dimensional Minkowski spacetime $(\mathbb{R}^{4}, \eta)$ , where
$\eta$ is the Minkowski metric: $\eta(x, y)$ $:=x\cdot y=x^{0}y^{0}-\vec{x}\cdot\vec{y}$ for $x=(x^{0},\vec{x})$ .

b $)$ [relativistic covariance]: local net $\mathcal{P}$ : $\mathcal{K}\ni \mathcal{O}\mapsto \mathcal{P}(\mathcal{O})$ o$f^{*}$-algebras
$\mathcal{P}(\mathcal{O})$ generated by local fields $\varphi_{H}^{i}(f)=\int\varphi_{H}^{i}(x)f(x)d^{4}x$ with $f\in \mathcal{D}(\mathcal{O})$ and
their polynomials defined on the net $\mathcal{K}$ of double cones $\mathcal{O}$ in the Minkowski
spacetime constitute a non-commutative covariant dynamical system,

$\alpha_{a,\Lambda}(\varphi_{H}^{i}(x))=U(a, \Lambda)\varphi_{H}^{i}(x)U(a, \Lambda)^{-1}$

$=s(\Lambda)_{j}^{i}\varphi_{H}^{i}(\Lambda^{-1}(x-a))$ ,
$\alpha_{a,\Lambda}(\mathcal{P}(\mathcal{O}))=\mathcal{P}(\Lambda \mathcal{O}+a)$ ,

under the action $\alpha,$
$\mathcal{P}_{+}^{\uparrow}\ni(a, \Lambda)\mapsto\alpha_{a,\Lambda}\in Aut(\mathcal{P}(\mathbb{R}^{4}))$, of Poincar\’e group

$\mathcal{P}_{+}^{\uparrow}=\mathbb{R}^{4}\rtimes L_{+}^{\uparrow}$ $(or, its$ universal covering $\mathbb{R}^{4}\rtimes SL(2, \mathbb{C})$ ) defined by the
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semi-direct product of spacetime translation group $\mathbb{R}^{4}$ and (proper) Lorentz
group $L_{+}^{\uparrow};=\{\Lambda=(\Lambda_{\nu}^{\mu});\Lambda x\cdot\Lambda y=x\cdot y, \Lambda_{0}^{0}>0, \det(\Lambda)=+1\}$ (or its
universal covering $SL(2, \mathbb{C}))$ .

$\mathcal{P}_{+}^{\uparrow}\ni(a, \Lambda)\mapsto U(a, \Lambda)\in u(\mathfrak{H})$ is a unitary representation of $\mathcal{P}_{+}^{\uparrow}$ on
$\mathfrak{H}$ , and $s(\Lambda)_{j}^{i}$ is a finite-dimensional representation of Lorentz group $L_{+}^{\uparrow}$

associated with each field multiplet $(\varphi_{H}^{i}(x))_{i}.$

c $)$ [local commutaitivity]: absence of propagation of physical effects ex-
ceeding the light velocity due to Einstein causality, implies the local com-
mutativity of Heiscnberg fields $\varphi_{H}^{i}(f)$ :

$[\varphi_{H}^{i}(f_{1}),\dot{\psi}_{H}(f_{2})]=0$ if (supp$f_{1}$ ) $\cross(suppf_{2})$

where $\mathcal{O}_{1}\cross \mathcal{O}_{2}$ means that any pair of points $x\in \mathcal{O}_{1},y\in \mathcal{O}_{2}$ are spacelike
separated: $(x-y)^{2}<0.$

Remark: By this condition, the Fourier transform of a Wightman func-
tion $\omega_{0}(\varphi_{H}^{i_{1}}(x_{1})\cdots\varphi_{H}^{i_{r}}(x_{r}))$ as a correlation function of $\varphi_{H}^{i}$ in the vacuum
state $\omega_{0}(\cdot)=\langle\Omega|(\cdot)\Omega\rangle$ defined in the next d) admits an analytic continuation
into a holomorphic function in the complex energy-momentum space, from
which dispersion relations follow.

d$)$ [vacuum state and spectrum condition]:
d-i) energy-momentum spectrum $Sp(U(\mathbb{R}^{4}))$ of spacetime translations

$\mathbb{R}^{4}$ realized on $\mathfrak{H}$ is within the forward light cone, $Sp(U(\mathbb{R}^{4}))\subset\overline{V+}$ in p-
space $\hat{\mathbb{R}^{4}}$ , and the lowest energy is realized by eigenvalue $0$ of the vacuum
vector $\Omega:U(x)$ $:=U(x, 1)= \int_{p\in\overline{V_{+}}}\exp(ipx)dE(p);U(x)\Omega=\Omega.$

Remark: Similarly to p–analyticity due to local commutativity, $x$-space
analyticity of a Wightman function $\omega_{0}(\varphi_{H}^{i_{1}}(x_{1})\cdots\varphi_{H}^{i_{r}}(x_{r}))$ follows from spec-
trum condition, which provides powerful tools for structural analysis.

d-ii) The equivalence holds among cyclicity $\mathcal{P}(\mathbb{R}^{4})\Omega=\mathfrak{H}$ of $\Omega\Leftrightarrow irre-$

ducibility of $\mathcal{P}(\mathbb{R}^{4})\Leftrightarrow$ uniqueness of vacuum $(: U(x)\Psi=\Psi\Rightarrow\Psi\propto\Omega)$

$\Leftrightarrow$ cluster property:

$|\omega_{0}(A(x)B(y))-\omega_{0}(A)\omega_{0}(B)|arrow 0$ as $(\vec{x}-\vec{y})^{2}arrow\infty.$

where $A(x);=\alpha_{x}(A)=U(x)AU(x)^{*},$ $B(y):=\alpha_{y}(B)$ are the spacetime
translates of local observables $A,$ $B\in \mathcal{P}(\mathcal{O})$ by $x,$ $y\in \mathbb{R}^{4}$ , respectively. This
condition follows from partition of unity due to spectral resolution of space-
time translations $U(x)$ :

$1=| \Omega\rangle\langle\Omega|+\sum_{i}$
( $1$ -particle singularities on mass-shell $p^{2}=m_{i}^{2}$)

$+$ (absolutely continuous $1\succ$spectra)

and is equivalent to the validity of the ergodicity of a unique vacuum vector
$\Omega$ invariant under spacetime translations $U(x)$ in combination with the local
commutativity.
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3 Asymptotic Condition & Yang-Felman Equation

From the above cluster property combined with local commutativity:

$\langle\Omega|A\alpha_{\vec{x}}(B)\Omega\rangle^{\vec{x}}\vec{arrow}\langle\Omega|A\Omega\rangle\langle\Omega|B\Omega\rangle\infty,$

the asymptotic condition $\varphi_{H}(x)x^{0}=t\mp\infty\vec{arrow}\phi^{in/out}(x)$ (as weak conver-
gence) follows. In sharp contrast to this cluster property for interacting
Heisenberg fields as asymptotic factorization valid only in the asymptotic
limit, the asymptotic fields $\phi^{as}$ materialize the kinematical factorization $(=$

independence) of correlations without taking asymptotic limit, which is just
equivalent to the validity of “Wick theorem” :

$\omega_{0}(\phi^{as}\phi^{as}\cdots\phi^{as})=\sum\omega_{0}(\phi^{as}\phi^{as})\cdots\omega_{0}(\phi^{as}\phi^{as})$ ,

as the expansion of $n$-point functions into the sum of products of 2-point
functions. This is nothing but the “quasi-freeness” of $\omega_{0}$ w.r.t. $\phi^{as}$ consti-
tuting the contents of independence of Gaussian type.

It is also remarkable that $\phi^{as}$ contains creation and annihilation oper-
ators $a(\vec{p}),$ $a^{*}(\vec{q})$ as infinite number of conserved quantities: for any
solution $f(x)$ of the Klein-Gordon equation $(\square +m^{2})f=0$ , we have

$J_{\mu}(f):=i\phi(x)5_{\mu}^{+}f(x)$ ;
$\partial^{\mu}J_{\mu}(f)=i\partial^{\mu}[\phi(X)5_{\mu}^{+}]\ni,$

among which we find $a( \vec{p})=\int dS^{\mu}J_{\mu}(f),$ $a^{*}( \vec{p})=\int dS^{\mu}J_{\mu}(\overline{f})$ for $f(x)$ $:=$

$\exp(-ip_{\mu}x^{\mu})$ .
Thus, the independence embodied by asymptotic fields $\phi^{as}$ is seen

to emerge from interacting Heisenberg fields $\varphi_{H}$ via asymptotic condition
as a kind of central limit theorem. In this context, what corresponds to
“Langevin equation” is the Yang-Feldman equation to connect Heisen-
berg field $\varphi_{H}(x)$ and asymptotic field $\phi^{as}(x)$ :

$\varphi_{H}(x)=\int\triangle_{ret}(x-y;m^{2})J_{H}(y)d^{4}y+\phi^{in}(x)$

$=[\triangle_{ret}*J_{H}+\phi^{in}](x)$

$= \int\triangle_{adv}(x-y;m^{2})J_{H}(y)d^{4}y+\phi^{mt}(x)$

$=[\triangle_{adv}*J_{H}+\phi^{\sigma ut}](x)$ .

where $J_{H}=(\square +m^{2})\varphi_{H}$ : Heisenberg source current, $\triangle_{ret/adv}(x-$

$y;m^{2})$ : retarded/advanced Green’s functions (i.e., principal solutions) of
Klein-Gordon equation defined by

$(\square _{x}+m^{2})\Delta_{ret/adv}(x-y;m^{2})=\delta(x-y)$ ,
$\Delta_{ret/adv}(x-y;m^{2})=0$ for $x_{0}\lessgtr y_{0}.$
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In the Yang-Feldman equation, the asymptotic fields $\phi^{as}(x)$ and the Heisen-
berg source current $J_{H}$ appear, respectively, as residue and quotient in the
division of $\varphi_{H}$ by $\triangle_{ret/adv}$ . More important is that $J_{H}$ gives the residues

at the on-shell pole $\frac{1}{p^{2}-m^{2}}$ to determine matrix elements of scattering

amplitudes.

4 “Central Limit Theorem” as Micro-Macro Du-
ality

Along this line, we can now find the natural meaning of “central limit” in
the universality guaranteed by the Haag-GLZ expansion, which is similar
to the “Fock expansion” in WNA. Now, the mutual relations between the
interacting Heisenberg fields $\varphi_{H}$ (: Micro) and the asymptotic fields $\phi^{as}$ (:
Macro) are just described by “Micro-Macro duality” controlled by the
K-$T$ operator $W$ which is given by

$W^{d}=^{ef}:T(\exp(iJ_{H}\otimes\phi^{in})$ :

$= \sum_{n}\int d^{4}x_{1}\cdots\int d^{4}x_{n}\frac{i^{n}}{n!}T(J_{H}(x_{1})\cdots J_{H}(x_{n}))$

$\otimes:\phi^{in}(x_{1})\cdots\phi^{in}(x_{n})$ :

and is characterized by the pentagonal relation $W_{12}(W^{as})_{23}=(W^{as})_{23}W_{13}W_{12}$

(with $W^{as}$ being K-$T$ operator of CCR $\phi^{as}$ corresponding to a regular oep-
resentation). Rom this, the $S$-matrix $S$ and the Haag-GLZ-Fock expan-
sion [4, 5] are derived:

$S :=(\omega_{0}\otimes id)(W)=:(\omega_{0}\otimes id)(T\exp(iJ_{H}\otimes\phi^{in})$ :
$=:(\omega_{0}\otimes id)(T\exp(iJ_{H}\otimes\phi^{out})$ :

$=: \exp(\phi^{in}(\square +m^{2})\frac{\delta}{\delta J}):\omega_{0}(T(\exp(iJ\varphi_{H}))r_{J=0}$

$B=S^{-1}$ : $(\omega_{0}\otimes id)(T[B\otimes 1]\exp(iJ_{H}\otimes\phi^{in}))$ :
$=:(\omega_{0}\otimes id)(T[B\otimes 1]\exp(iJ_{H}\otimes\phi^{out}):S^{-1},$

and the $S$-matrix $S$ describing the state changes in the scattering processes
on the vacuum state $\omega_{0}=\langle\Omega|\cdots\Omega\rangle$ is an intenwiner between two free
fields, in-coming $\phi^{in}$and out-going $\phi^{out}$ :

$\phi^{in}(x)S=S\phi^{\sigma ut}(x)$ .

Thus the essence of Micro-Macro duality between $\varphi_{H}$ and $\phi^{as}$ is seen in
that $\phi^{as}$ is derived from $\varphi_{H}$ by the asymptotic condition, and that $\varphi_{H}$ is
reconstructed from $\phi^{as}$ by the Haag-GLZ-Fock expansion:

asymp.cond.
$\phi^{as} arrowarrow \varphi_{H}.$

Haag-GLZ-Fock
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In this way, the Micro-Macro duality aspect involved in the “Central Limit
Theorem” can be formulated in QFT in terms of the $S$-matrix functional
and the Haag-GLZ expansion formula.

Moreover, the relevance of harmonic-analytic duality is evident from the
Lie-algebraic structure of Heisenberg source currents

$J_{H}^{i}(x)=( \square +m^{2})\varphi_{H}^{i}=S^{-1}\frac{\delta}{i\delta\phi_{i}^{in}(x)}S$ ;

$\frac{\delta J_{H}^{i}(x)}{\delta\psi(y)}-\frac{\delta J_{H}^{j}(y)}{\delta\phi^{i}(x)}=i[J_{H}^{i}(x), J_{H}^{j}(y)].$

What is closely related here is the relations among (weak) local commu-
tativity, PCT invariance, $S$-matrix and Borchers classes of mutually local
fields:

From the definition of PCT transformation, $\theta(\varphi_{H}(x))=\gamma\varphi_{H}(-x)^{*}$ (with
$\gamma\in \mathbb{T})$ in combination with the local commutativity of $\varphi_{H}$ , the vacuum $\omega_{0}$

is seen to be invariant under $\theta:\omega_{0}\circ\theta=\omega_{0}$ , which implies the existence
of anti-unitary $\Theta$ to implement $\theta:\theta(\varphi_{H}(x))=\Theta\varphi_{H}(x)\Theta$ and $\Theta\Omega=\Omega.$

Then the irreducibility of $\phi^{as}$ (following from the assumption of asymptotic
completeness) implies

$S=\Theta^{in}\Theta=\Theta\Theta^{out},$

ffom such relations ae $S\phi^{out}(x)S^{-1}=\phi^{in}(x)=\Theta\gamma^{-1}\phi^{out}(-x)^{*}\Theta=\Theta\Theta^{out}\phi^{out}(x)\Theta^{out}\Theta.$

Thus, the quantum fields sharing the same $PCT$ operator $\Theta$ shares the
same $S$-matrix $S=\Theta^{in}\Theta=\Theta\Theta^{out}$ : this explains the “ambiguities” of inter-
polating Heisenberg fields having the same $S$-matrix and is related with
the notion of Borchers classess of mutually local fields sharing the same
PCT operator $\Theta$ . This kind of consideration is relevant to the “inverse prob-
lem” to reconstruct interacting Heisenberg fields $\varphi_{H}$ from the knowledge of
asymptotic fields $\phi^{as}$ and the $S$-matrix $S$ intertwining them.

5 “Micro-Micro Duality” between Resonances and
Regge Poles in Hadronic World of “Dependence
$=$ Coupling”

While the above scheme provides a good description of the scattering pro-
cesses of quantum fields in terms of the asymptotic fields and the $S$-matrix,
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its pertinence highly depends on the validity of the asymptotic condition
to be interpreted as a central limit theorem and on the smallness of the
deviation of the Heisenberg fields from the corresponding asymptotic fields.
If it were not for the notion of $S$-matrix based on the asymptotic fields, the
following considerations on the hadronic world certainly could not have been
formulated. However, the conditions crucial for the above discussions are
evidently violated in the world of strongly interacting hadrons:

1 $)$ almost all hadrons are in highly unstable resonance states, appear-
ing temporarily only in the intermediate states of the scattering processes of
low-lying stable (or almost stable) hadrons. This is just the essential features
of dependence whose sector structure can be understood as follows:

2$)$ It is remarkable that the basic statistical features of the resonance
states can be found in the Cauchy distributions $\propto\frac{1}{(E-E_{i})^{2}+(\Gamma_{i}/2)^{2}}=$

$| \frac{1}{E-E_{i}-i\Gamma_{i}/2}|^{2}$ w.r.t. the energy variable which correspond to the expo-

nential decays of unstable particle states $\propto|\exp(-it(E-E_{i}-i\Gamma_{i}/2))|^{2}\propto$

$\exp(-t\Gamma_{i})$ in time. Because of this instability$=$ dependence caused by
the strong interactions, the controllable stable states can be found only in
hadrons with the lowest masses among those with the same (internal)
quantum numbers such as the proton, neutron, and pions and so on.

3$)$ The word ’‘dual’ in the above diagram means the duality inside a
hadronic sector $(\simeq$ Regge trajectory of hadron poles with energy-dependent
angular momenta $\alpha(s)=\alpha_{0}+\cdot\alpha’\mathcal{S})$ between its resonance poles & Regge
poles, the former of which appear in the time-like region of the $S$-matrix
(usually called $s$-channel) and the latter in the spacelike ones called $t-$ or

$u$-channels:
$\backslash$

$/arrowarrow\backslash$

$–$
$/arrowarrow$ $/\backslash ^{/}--$

The former
$/ \backslash / \backslash / \backslash$
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describes particle-like unstable modes ($=pseudo$-independence) whose
lowest level members only such as proton, neutron, pions, etc., can exist
in (meta-)stable ways, and the latter yields the interaction terms between
hadrons reflccting the aspect of dependence.

4$)$ The meaning of duality here should properly be understood in the
following two kinds of contrasts to other contexts: first, the basic common
features found in the mixed moments in all kinds of independences is the
coexistence of all the above three terms of types, s-, t-, $u$-channels. In sharp
contrast to it, these three-type diagrams are here mutually transformed
from one to another without $co$-existing. Perhaps, this can be interpreted
as one of the most essential features of dependence inherent in the hadronic
processes.

Next, in contrast to the usual kinds of dualities valid between objects liv-
ing at different levels, the duality appearing here holds at one and the same
level of strongly interacting hadrons, connecting the aspect of independent
objects and that of dynamical processes as coupling and dependence.
Thus, this duality can be seen as Micro-Micro duality.

5$)$ In relation with the Wigner’s construction of representations of the
Poincar\’e group $\mathcal{P}_{+}^{\uparrow}=\mathcal{H}_{2}(\mathbb{C})\underline{\triangleleft}SL(2, \mathbb{C})$ $(or, \mathbb{R}^{4}\underline{\triangleleft}SO(1,3))$ , we can under-
stood this last duality (which motivated the investigation of dual resonance
and string models) as the interchange between the little group $SU(2)$ (or
$SO$ (3) $)$ at the timelike momentum $p,p^{2}>0$ and that $SU(1,1)$ $(or SL(2, \mathbb{R}))$

at the spacelike momentum $p,p^{2}<0.$

Reformulating this Wigner-Mackey machinery of induction based on lit-
tle groups $H$ of a semi-direct product group $G=N\underline{\triangleleft}L$ , we can see the
close relation of the present hadronic duality with the (spontaneous) sym-
metry breakdown, degenerate vacua unified into the notion of augmented
algebras [1] and with the spacetime emergence [6] as follows: the regular
$C^{*}$-group algebra $C_{r}^{*}(G)$ of $G$ is isomorphic to the crossed product $C_{0}(\hat{N})\rtimes L$

of $C_{0}(\hat{N})$ ( $=C^{*}$-group algebra of abelian group $N$) by the action of $L$ on
$N$ , which is also related with the covariant representations of the dynamical
system $C_{0}(\hat{N})\backslash L$ . For each character $\chi\in\hat{N}$ of $N$ , we can consider the
little group $H_{\chi}$ of a pure state $\delta_{\chi}$ of $C_{0}(\hat{N})$ as the isotropy subgroup of
the latter, which can be viewed as the group of the remaining unbroken
symmetry in the pure state $\delta_{\chi}.$

In the case of the Poincar\’e group $\mathcal{P}_{+}^{\uparrow}=G$ , the existence of the well-
known four types of the orbits $p^{2}>0,$ $=0,$ $<0,p_{\mu}\equiv 0$ having little groups
$SU(2),$ $E(2),$ $SU(1,1)$ and $SL(2, \mathbb{C})$ , respectively, can be interpreted as a
kind of phase transitions taking place in the process of space-time emer-
gence, whose different phases can be mutually connected through the an-
alytic continuation of the dynamical system $C_{0}(\hat{N})\wedge L$ :
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$E(2)$ at $p^{2}=0$

: parabolic
$SU(2)atp^{2}>0$ $SU(1,1)atp^{2}<0$

: elliptic : hyperbolic
$SL(2, \mathbb{C})$ at $p\equiv 0$

It would be useful and interesting to review the hadronic dual-resonance
aspects encoded in the string model, from the viewpoint of quantum prob-
ability $\mathcal{B}$ its complex analysis, in close relationship with the indepen-
dence, coupling and dependence.

6 $)$ In view \‘of the dominant contributions to the $S$-matrix coming
from the low-lying hadrons with lightest masses, it would be interesting to
examine the relevance of monotone independence to this context of
factorization of dominant components w.r. $t$ . the (inverse of) energy
variable $s$ $(or 1/s)$ as “time parameter” in the quantum probability theory
of monotone independence [7]. Along this line and also taking account of a
kind of duality relation between monotone and free independences (as was
informed to me by Dr.Saigo and Mr.Hasebe), we may be attracted by the
possible relations of monotone $and/or$ free independences with the
energy-level statistics of nuclei (among dominant figures of low-lying
hadrons) formulated by random matrices which are closely related with
the quantum chaos and also with the free probability with Wigner’s
semi-circle law as its CLT. In this special situation, the mutual relation
between the shell model and the liquid one of nuclei could possibly be
understood as a kind of duality, similarly to that between resonance and
Regge poles of hadrons.

Acknowledgments

I would like to express my sincere thanks to Prof. N. Muraki for his kind in-
vitation to this interesting workshop at RIMS on quantum probability with
such an inspiring title as “Mathematics of Independence and Dependence” :
without this title, it would have been impossible for me to consider the
problem discussed here from the present viewpoint. $I$ am also very grate-
ful to Dr.Saigo and Mr.Hasebe for instructive discussions on the relevance
of quantum probabilistic notions of independence to the hadronic and/or
nuclear physics from a renewed viewpoint.

References

[1] Ojima, I., A unified scheme for generalized sectors based on selection
criteria-Order parameters of symmetries and of thermal situations and

160



physical meanings of classifying categorical adjunctions-, Open Sys. Info.
Dyn. 10, 235-279 (2003); Micro-macro duality in quantum physics, 143-
161, Proc. Intern. Conf. “Stochastic Analysis: Classical and Quantum”,
World Sci., 2005; Ojima, I. and Takeori, M., How to observe and recover
quantum fields from observational data? -Takesaki duality as a Micro-
macro duality-, Open Sys. Info. Dyn. 14, 307-318 (2007); Ojima, I.
and Harada, R., A unified scheme of measurement and amplification
processes based on Micro-Macro Duality–Stern-Gerlach experiment as
a typical example-, Open Sys. Info. Dyn. 16, 55-74 (2009).

[2] Muraki, N., Five independences as quasi-universal products, Inf. Dim.
Anal. Quantum Probab. Rel. Topics 5, 113-134 (2002); Barndorff-
Nielsen, O.E., Franz, U., Gohm, R.. K\"ummerer, B. and Thorbj $\emptyset$rnsen, S.,
Quantum Independent Increment Processes II, Lecture Notes in Math.,
Vol. 1866, Springer-Verlag, 2006.

[3] Ojima, I., Roles of asymptotic conditions and $S$-matrix as Micro-Macro
Duality in QFT, Quantum Probability and WNA 26, 277-290 (2010).

[4] Haag, R., On quantum field theories, Kgl. Danske Videnskab. Selskab.
Mat.-fys. Medd., 29, no.12 (1955); Glaser, V., Lehmann, H. and Zim-
mermann, W., Field operators and retarded functions, Nuovo Cim., 6,
1122 (1957); Kugo, T. and Ojima, I., Suppl. Prog. Theor. Phys. no.66
(1979), Appendix.

[5] Obata, N:, “White Noise Calculus and Fock Space”, Lect. Notes in Math.
Vol. 1577, Springer-Verlag, 1994.

[6] Ojima, I., Space(-Time) Emergence as Symmetry Breaking Effect, Quan-
tum Bio-Informatics IV, 279 - 289 (2011) (arXiv:math-ph/1102.0838
(2011)); MicrxMacro Duality and Space-Time Emergence, Proc. In-
tern. Conf. “Advances in Quantum Theory”, 197 – 206 (2011); New
Interpretation of Equivalence Principle in General Relativity from the
viewpoint of Micro-Macro duality, Invited talks at International Confer-
ence, “Foundations of Probability and Physics 6”, Linnaeus University,
Sweden and at the 43th Symposium on Mathematical Physics, Nicolaus
Copernicus University, Poland, June 2011.

[7] Muraki,N., Monotonic independence, monotonic central limit theorem
and monotonic law of small numbers, Inf. Dim. Anal. Quantum Probab.
Rel. Topics 4 (2001) 39-58; Monotonic convolution and monotonic L\’evy-
Hin\v{c}in formula, preprint, 2000; Hasebe, T., On monotone convolution
and monotone infinite divisibility, Master thesis (2009) and Inf. Dim.
Anal. Quantum Probab. Rel. Topics 13, 111-131 (2010).

161


