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ABSTRACT. We survey some recent progress in limit theorems for monotone convolution.
This note is based on the author’s lecture at the RIMS workshop.

1. STATEMENT OF THE PROBLEM

The monotone convolution $\triangleright$ is an associative binary operation on $\mathcal{M}$ , the set of Borel
probability measures on the real line $\mathbb{R}$ . Introduced by Muraki in [21, 22], this operation is
based on his notion of monotonic independence, which is one of the five natural quantum

stochastic independences coming from universal products [27, 23]. (The others are tensor,

free, Boolean, and antimonotonic independences.) We begin by reviewing the construction
of $\triangleright.$

Consider $\mathcal{B}(H)$ the $C^{*}$-algebra of bounded linear operators on a separable Hilbert space
$H$ and a unit vector $\xi\in H$ . Let $\varphi$ be the vector state associated with the vector $\xi$ ; i.e.,
$\varphi(a)=\langle a\xi,$ $\xi\rangle$ for each $a\in \mathcal{B}(H)$ . $Two*$-subalgebras $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ of $\mathcal{B}(H)$ are said to be
monotonically independent (with respect to $\xi$ ) if for every mixed moment $\varphi(a_{1}a_{2}\cdots a_{n})$

$(i.e., a_{j}\in \mathcal{A}_{\eta_{J}}\cdot, i_{j}\in\{1,2\}, and i_{1}\neq i_{2}\neq\cdots\neq i_{n})$ , one hae that

(1.1) $\varphi(a_{1}a_{2}\cdots a_{n})=\varphi(a_{j})\varphi(a_{1}\cdots a_{j-1}a_{j+1}\cdots a_{n})$

whenever $a_{j}\in \mathcal{A}_{2}.$

Remark 1. Note first that the monotonic independence of the algebras $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ does
not necessarily imply the monotonic independence of $\mathcal{A}_{2}$ and $\mathcal{A}_{1}$ . Secondly, monotoni-
cally independent subalgebras are not unital in general. For instance, if $\mathcal{A}_{1}$ contains the
identity operator $I$ on $H$ , then the restriction of the sate $\varphi$ on the algebra $\mathcal{A}_{2}$ has to be
a homomorphism by (1.1), which is often not the case.

By $a$ (noncommutative) mndom variable we mean a possibly unbounded self-adjoint
operator $X$ on the Hilbert space $H$ . Let $E_{X}$ be the spectral measure of $X$ . The distribution
$\mu_{X}$ of $X$ is the Borel probability measure on $\mathbb{R}$ given by the composition $\mu_{X}=\varphi oE_{X}$ . More
generally, the distribution of an essentially self-adjoint operator $X$ means the distribution
of its operator closure X.
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Two random variables $X_{1}$ and $X_{2}$ are said to be monotonically independent if the
algebras $\mathcal{A}_{i}=\{f(X_{i}) : f\in C_{b}(\mathbb{R}), f(0)=0\},$ $i=1,2$ , are monotonically independent,
where $C_{b}(\mathbb{R})$ is the algebra of bounded continuous functions from $\mathbb{R}$ to $\mathbb{C}$ , and the normal
operator $f(X)\in \mathcal{B}(H)$ is obtained via the functional calculus of spectral theory.

Given two measures $\mu,$
$\nu\in \mathcal{M}$ , their monotone convolution is constructed as follows.

Consider the space $H=L^{2}(\mathbb{R}\cross \mathbb{R}, \mu\otimes v)$ and the vector state $\varphi(\cdot)=\langle\cdot 1,1\rangle$ on $\mathcal{B}(H)$ ,
where 1 denotes the constant function $\mathbb{R}^{2}\ni(x, y)\mapsto 1$ . Let Dom(X) be the set of all
functions $\psi\in H$ such that

$\int_{-\infty}^{\infty}x^{2}|\int_{-\infty}^{\infty}\psi(x, t)dv(t)|^{2}d\mu(x)<\infty,$

and let $Dom(Y)$ be the set of all $\psi\in H$ so that the function $y\psi(x, y)$ is in $H$ . For
$\psi_{1}\in$ Dom(X) and $\psi_{2}\in$ Dom $(Y)$ , we introduce the self-adjoint operators $X$ and $Y$ by

$X \psi_{1}(x, y)=x\int_{-\infty}^{\infty}\psi_{1}(x, t)dv(t)$ and $Y\psi_{2}(x, y)=y\psi_{2}(x, y)$ .

In this case we have $\mu_{x}=\mu$ and $\mu_{Y}=v$ . Also, the sum $X+Y$ is densely defined and
symmetric.

By a result of Franz [13], the random variables $X$ and $Y$ are monotonically independent
with respect to 1, and the operator $X+Y$ is essentially self-adjoint. Thus it makes sense
to give the following

Definition 1. The monotone convolution $\mu\triangleright v$ for two measures $\mu,$
$v\in \mathcal{M}$ is defined as

the distribution of $X+Y.$

Note that if $\mu$ and $v$ are compactly supported probability measures, then it is easy to
see that both $X$ and $Y$ are actually bounded operators, and hence the probability measure
$\mu\triangleright v$ is also compactly supported.

Example 1. [21, 22] Denote by $\delta_{c}$ the Dirac point mass at $c\in \mathbb{R}$ , and by $\gamma$ the standard
arcsine law whose density is $\pi^{-1}(2-x^{2})^{-1/2}$ on the interval $(-\sqrt{2}, \sqrt{2})$ . For $\mu\in \mathcal{M}$ , its
dilation $D_{b}\mu$ by a factor $b>0$ is defined by $D_{b}\mu(A)=\mu(b^{-1}A)$ for Borel subsets $A\subset \mathbb{R}.$

Note that if a random variable $X$ has distribution $\mu$ , then the scalar product $bX$ has
distribution $D_{b}\mu.$

(1) For $a\in \mathbb{R}$ , the measure $\mu\triangleright\delta_{a}$ is a translation of $\mu$ , i.e., $d\mu\triangleright\delta_{a}(t)=d\mu(t-a)$ .
(2) Let $S$ be the standard semicircular law with density $\sqrt{4-x^{2}}/2\pi$ on the interval

[-2, 2]. Then we have

$[(\delta_{-1}+\delta_{1})/2]\triangleright S=\gamma\triangleright\gamma=D_{\sqrt{2}}\gamma.$

The definition of the measure $\mu\triangleright v$ does not rely on the particular realization of the
variables $X$ and $Y$ . Precisely, let $X_{1}$ and $Y_{1}$ be two random variables on some Hilbert
space $H_{1}$ such that $X_{1}$ and $Y_{1}$ are monotonically independent with respect to a unit vector
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$\xi\in H_{1}$ , and $\mu_{X_{1}}=\mu,$ $\mu_{Y_{1}}=\nu$ . Discarding an irrelevant subspace if necessary, we assume
further that the vector $\xi$ is cyclic for the algebra generated by $X_{1}$ and $Y_{1}$ ; i.e.,

alg $\{f(X_{1}), f(Y_{1}):f\in C_{b}(\mathbb{R})\}\xi=H_{1}.$

Then it was proved in [13] that there exists a unitary map $U:Harrow H_{1}$ such that $U1=\xi,$

$X_{1}U=UX$ , and $Y_{1}U=UY$ . Moreover, the operator $X_{1}+Y_{1}$ is essentially self-adjoint

and has distribution $\mu\triangleright\nu.$

We say of arbitrary probability measures $\mu_{n}$ and $\mu$ on $\mathbb{R}$ that $\mu_{n}$ converges weakly to
$\mu$ , which we indicate by writing $\mu_{n}\Rightarrow\mu$ , if

$\lim_{narrow\infty}\int_{-\infty}^{\infty}f(t)d\mu_{n}(t)=\int_{-\infty}^{\infty}f(t)d\mu(t)$

for every $f\in C_{b}(\mathbb{R})$ . The limit distributional theory for sums of monotonically indepen-

dent random variables is concerned with the study of the following

Problem 1. Let $k_{n}$ be a sequence of positive integers, and let $\{\mu_{nj} : n\geq 1,1\leq j\leq k_{n}\}$

be an infinitesimal triangular array of probability measures on $\mathbb{R}$ , that is, to each $\epsilon>0$

one has

(1.2) $\lim_{narrow\infty}\max_{1\leq j\leq k_{n}}\mu_{nj}(\{t\in \mathbb{R}:|t|\leq\epsilon\})=1.$

Suppose that the measures

(1.3) $\mu_{n1}\triangleright\mu_{n2}\triangleright\cdots\triangleright\mu_{nk_{n}}, n\geq 1,$

converge weakly to a measure $\nu\in \mathcal{M}$ . It is asked what properties this limit law $\nu$ must

possess, and when does such a convergence take place?

The motivation behind Problem 1 comes from the most general setting for limit theo-

rems of sums of independent infinitesimal (commuting) random variables. The condition
(1.2) of infinitesimality is introduced to exclude the possibility that in each row one single
measure $\mu_{nj}$ plays the dominating role. Denote by $\mu*\nu$ the classical convolution for mea-
sures $\mu,$

$\nu\in \mathcal{M}$ ; or, in probabilistic terms, $\mu*\nu$ stands for the distribution of $X+Y$ , where
$X$ and $Y$ are two independent real-valued random variables with distributions $\mu$ and $v,$

respectively. If one replaces the monotone convolution $\triangleright$ by the classical convolution $*$

in (1.3), then the same questions asked in Problem 1 have been answered completely by

the work of L\’evy, Khintchine, Kolmogorov, and others. It turns out that in the classical
case if for a suitable choice of constants $a_{n}\in \mathbb{R}$ the measures $\delta_{a_{n}}*\mu_{n1}*\mu_{n2}*\cdots*\mu_{nk_{n}}$

converge weakly to a law $\nu$ , then the law $\nu$ has to be $*$ -infinitely divisible, i.e., to each
$k\geq 1$ there exists a measure $\nu_{k}\in \mathcal{M}$ such that
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Conversely, any infinitely divisible law can be realized as the weak limit for an infinitesi-
mal array of probability measures. Necessary and sufficient conditions for the convergence
of $\delta_{a_{n}}*\mu_{n1}*\mu_{n2}*\cdots*\mu_{nk_{n}}$ to a specific infinitely divisible law are also known; in partic-
ular, when the limit is the Gaussian distribution (resp., the point mass) these conditions
imply the central limit theorem (resp., the weak law of large numbers). We refer to the
monograph of Gnedenko and Kolmogorov [15] for the details.

In the context of Voiculescu’s free probability, the analogous free $co$nvolutions

$\delta_{a_{n}}$ ffl $\mu_{n1}$ ffl $\mu_{n2}$ ffl $\cdots$ ffl $\mu_{nk_{n}}$

have been also the subject of several investigations. In a striking contribution [4] Bercovici
and Pata proved, in case $a_{n}=0$ and $\mu_{n1}=\mu_{n2}=\cdots=\mu_{nk_{n}}$ , that the measures $\delta_{a_{n}}$ ffl
$\mu_{n1}ffl\mu_{n2}$ ffl $\cdots ffl\mu_{nk_{n}}$ have a weak limit if and only if the measures $\delta_{a_{n}}*\mu_{n1}*\mu_{n2}*\cdots*\mu_{nk_{n}}$

do. This convergence result is referred as the Bercovici-Pata Bijection, for it establishes
a one to one correspondence between the free and classical limit laws for an infinitesimal
array of measures with identical rows. Moreover, the free limit laws are infinitely divisible
[5] and are related to the classical limit laws through a quite explicit formula [6]. In
particular, the bijection shows that the free and classical domains of partial attraction for
infinitely divisible laws coincide, as well as the free and classical domains of attraction for
stable laws. The Bercovici-Pata bijection was extended to arbitrary arrays and centering
constants $a_{n}$ by Chistyakov and G\"otze in [11] (see also [7] for a different approach).

Clearly, a monotonic analogue of these convergence results will provide a full solution
to Problem 1. To the author’s best knowledge, the literature lacks a general treatment of
limit theorems for monotone convolution; results like the Bercovici-Pata bijection or the
characterization of infinitely divisible laws as weak limits of infinitesimal arrays are not
available at this point. Nevertheless, in what follows we shall survey some results proved
for certain arrays with identical rows.

2. RESULTS FOR IDENTICAL SUMMANDS

In this section we are concemed with the study of limit laws for the measures

(2.1)

where $\mu\in \mathcal{M}$ and $B_{n}$ is a positive sequence. This pattern of convergence corresponds
to the limit theorems for sums of monotonically independent and identically distributed
random variables. Thus, we are dealing with a triangular array $\{\mu_{nj}\}_{n,j}$ of the form:
$k_{n}=n$ and $\mu_{nj}=D_{1/B_{n}}\mu$ for $j=1,$ $\cdots,$ $n$ . If $B_{n}arrow\infty$ , then the array is infinitesi-
mal. Moreover, the following result shows that the infinitesimality of $\{\mu_{nj}\}_{n,j}$ is always
guaranteed whenever there is a nonzero weak hmit for the sequence $\mu_{n}.$
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Proposition 1. [28] Let $\nu$ be a measure in $\mathcal{M}$ with $\nu\neq\delta_{0}$ , and let $\mu_{n}$ be defined as in
(2.1). If the weak convergence $\mu_{n}\Rightarrow\nu$ holds for some constants $B_{n}>0$ , then we must

have $\lim_{narrow\infty}B_{n}=\infty.$

In the sequel the symbol $\mu^{\triangleright n}$ denotes the n-th monotone convolution power $\mu\triangleright\mu\triangleright\cdots\triangleright\mu$

of a measure $\mu\in \mathcal{M}$ , and the $n$-fold classical convolution $\mu^{*n}$ is defined analogously. Note

that we have $D_{b}(\mu\triangleright\nu)=D_{b}\mu\triangleright D_{b}\nu$ for any $\mu,$
$\nu\in \mathcal{M}$ . Thus, (2.1) becomes $D_{1/B_{n}}\mu^{\triangleright n}.$

2.1. Central limit theorem. The earliest limit theorem for (2.1) was an analogue of
the central limit theorem (CLT) proved by Muraki [22], where the support of the measure
$\mu$ was assumed to be bounded and the limit law was the standard arcsine law $\gamma$ . The
result below shows that the monotonic CLT actually holds under the same conditions as
the classical CLT. Recall that the centered measure $\mu*\delta_{a}=\mu\triangleright\delta_{a}$ means a shift of $\mu$ by

the amount of $a$ , and that a probability measure $\mu$ is said to be nondegenemte if $\mu\neq\delta_{a}$

for $a\in \mathbb{R}.$

Theorem 1. [29] (Monotone CLT) Let $\mu$ be any nondegenerate probability measure on
$\mathbb{R}$, and let $a\in \mathbb{R}$ and $b>0$ . Then the following statements are equivalent:

(1) the weak convergence $D_{1/b\sqrt{n}}(\mu\triangleright\delta_{-a})^{\triangleright n}\Rightarrow\gamma$ holds;
(2) the measure $\mu$ has finite variance.

If (1) and (2) are satisfied, then the constants $a$ and $b$ can be chosen as $a$ to be the mean

of the measure $\mu$ and $b$ to be the standard deviation of $\mu.$

In particular, denoting by $\mathcal{N}$ the standard Gaussian law, for a nondegenerate measure $\mu$

with finite mean $a$ and standard deviation $b$ Theorem 1 shows that the weak convergences

$D_{1/b\sqrt{n}}(\mu\triangleright\delta_{-a})^{\triangleright n}\Rightarrow\gamma$ and $D_{1/b\sqrt{n}}(\mu*\delta_{-a})^{*n}\Rightarrow \mathcal{N}$

are equivalent.
Note that one has the obvious identity

$D_{1/b\sqrt{n}}(\mu*\delta_{-a})^{*n}=\delta_{-a\sqrt{n}/b}*D_{1/b\sqrt{n}}\mu^{*n}=D_{1/b\sqrt{n}}\mu^{*n}*\delta_{-a\sqrt{n}/b},$

because $\mu*\delta_{-a}=\delta_{-a}*\mu$ . In monotone probability theory, however, we have in general
$\mu\triangleright\delta_{c}\neq\delta_{c}\triangleright\mu$ (see [22, 13]), and hence it is not always possible to write $D_{1/b\sqrt{n}}(\mu\triangleright\delta_{-a})^{\triangleright n}$

as $\delta_{-a\sqrt{n}/b}\triangleright D_{1/b\sqrt{n}}\mu^{\triangleright n}$ or $D_{1/b\sqrt{n}}\mu^{\triangleright n}\triangleright\delta_{-a\sqrt{n}/b}$ . This phenomenon reflects the facts that
the monotonic independence does not behave well with respect to the centering process
of measures and that it is a notion depending on the order of subalgebras, as indicated in
Remark 1. From this perspective, the theory of stable laws in classical probability does
not seem to have a good analogue in monotone probability. Theorem 1 can be generalized
further to include measures without finite variance, see Theorem 3 below.
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2.2. Strictly stable laws. Let $\mu,$
$v\in \mathcal{M}$ . We say that $\mu$ is of the same strict type

as $v$ if $\mu=D_{b}v$ for some constant $b>0$ (and we write $\mu\sim v$). The relation $\sim$ is
an equivalence relation for measures in $\mathcal{M}$ , and hence the set $\mathcal{M}$ partitions into disjoint
classes of measures belonging to the same strict type. The degenerate measures constitute
three strict types: those at negative points, those at positive points, and the single delta
measure at $0.$

The self-reproducing property of the arcsine law $\gamma$ described in Example 1 suggests our
next definition.

Definition 2. [28] $A$ law $v\in \mathcal{M}\backslash \{\delta_{0}\}$ is said to be $\triangleright$ -strictly stable if $\mu_{1}\triangleright\mu_{2}\sim v$

whenever $\mu_{1}\sim v\sim\mu_{2}$ . In other words, $v$ is $\triangleright$-strictly stable if and only if for arbitrary
positive $a$ and $b$ there exists $c>0$ such that $D_{a}v\triangleright D_{b}v=D_{C}v.$

The analogous $*$-strict stability was introduced and studied thoroughly by L\’evy in his
1925 monograph [20]. He made the first fundamental step toward understanding the
role of strictly stable laws in limit theorems. Precisely, L\’evy proved that the limit law
for $D_{1/B_{n}}\mu^{*n}$ must be $*$-strictly stable, and conversely, any $*$ -strictly stable law can be
realized as a limit law in this way. These limit theorems motivate the concept below.

Definition 3. [28] Let $v$ be a measure in $\mathcal{M}\backslash \{\delta_{0}\}$ . We say that a measure $\mu\in \mathcal{M}$

is strictly attracted to the law $v$ if there exist constants $B_{n}>0$ such that the weak
convergence $D_{1/B_{n}}\mu^{\triangleright n}\Rightarrow v$ holds. The set of all probability measures that are strictly
attracted to $v$ is called the strict domain of attmction of $\nu$ and is denoted by $\mathcal{D}_{\triangleright}[v].$

The strict domain of attraction $\mathcal{D}_{*}[v]$ relative to the convolution $*$ is defined analogously.
Of course, Definition 3 could be extended to accommodate the case of $\delta_{0}$ . Indeed, we will
do so when we treat the weak law of large numbers in Subsection 2.3. Here we shall require
the limit to be different from $\delta_{0}$ , and we have the following L\’evy type characterization for
$\triangleright$-strictly stable laws.

Theorem 2. [28] Given $v\in \mathcal{M}$ with $\nu\neq\delta_{0}$ , the following statements are equivalent:

(1) for each positive integer $k$ , the measure $v^{\triangleright k}$ is of the sam $e$ strict type as $\nu$ ;
(2) there exist $\mu\in \mathcal{M}$ and constants $B_{n}>0$ such that $D_{1/B_{n}}\mu^{\triangleright n}\Rightarrow v$ ;
(3) the measure $\nu is\triangleright$ -strictly stable.

Moreover, if these equivalent conditions are satisfied, then associated with $\nu$ there exists
a unique number $\alpha\in(0,2]$ such that

$v^{\triangleright k}=D_{k^{1/\alpha}}v, k\geq 1,$

(2.2) $D_{a}\nu\triangleright D_{b}v=D_{(a^{\alpha}+b^{\alpha})^{1/\alpha}}v, a, b>0.$

Thus, just like in the classical case, $\triangleright$-strictly stable laws, and only these, can appear
as the limit distributions for $D_{1/B_{n}}\mu^{\triangleright n}$ . We shall call the number $\alpha$ the stability index
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for the strictly stable law. The strict type of the arcsine law $\gamma$ is the only strict type of
$\triangleright$-strictly stable laws with index $\alpha=2$ . Similarly, in the usual probability, any $*$ -strictly

stable law of index 2 is of the same strict type as the Gaussian law $\mathcal{N}.$

Remark. All possible norming constants $B_{n}$ in Theorem 2 (2) are also characterized in
[28]. The sequence $B_{n}$ , as a function on $\mathbb{N}$ , extends to a regularly varying function $B(x)$

on $(0, \infty)$ with index $1/\alpha$ $( i.e., \lim_{xarrow\infty}B(x)^{-1}B(cx)=c^{1/\alpha}$ for every constant $c>0$). By
Karamata’s theory of regular variation [9], one obtains an integral representation:

$B(x)=x^{1/\alpha}c(x) \exp(\int^{x}t^{-1}\epsilon(t)dt) , x\geq 1,$

where $c(x)$ and $\epsilon(x)$ are measurable and $c(x)arrow c\in(0, +\infty),$ $\epsilon(x)arrow 0$ as $xarrow\infty$ . It is
worth mentioning that this result also has a classical counterpart, namely, if the measures
$D_{1/B_{n}}\mu^{*n}$ converge weakly to $a*$-strictly stable law $\nu$ , then the sequence $B_{n}$ extends to a
regularly varying function on $(0, \infty)$ (see [10]).

One of the fundamental problems in the study of strictly stable laws should be the
determination of their strict domains of attraction. Here we present a complete solution
for the arcsine law $\gamma$ , which corresponds to the most general form of CLT for identical
summands. The strict domain of attraction $\mathcal{D}_{\triangleright}[\gamma]$ is characterized completely in [29], and
surprisingly, the set $\mathcal{D}_{\triangleright}[\gamma]$ coincides with the classical strict domain of attraction for the
Gaussian law $\mathcal{N}$ . To explain this result in detail, we first recall that $f$ : $(0, \infty)arrow(0, \infty)$

is a slowly varying function if $\lim_{xarrow\infty}f(x)^{-1}f(cx)=1$ for every $c>0.$

Theorem 3. [29] (General Monotone CLT) $A$ measure $\mu\in \mathcal{M}$ is in $\mathcal{D}_{\triangleright}[\gamma]$ if and only if
$\mu$ belongs to $\mathcal{D}_{*}[\mathcal{N}]$ if and only if $\mu$ has mean zero and its truncated variance

$H_{\mu}(x)= \int_{-x}^{x}t^{2}d\mu(t) , x>0,$

is slowly varying.

This result implies immediately that $D_{1/B_{n}}\mu^{\triangleright n}\Rightarrow\gamma$ for some constants $B_{n}>0$ if and
only if $D_{1/C_{n}}\mu^{*n}\Rightarrow \mathcal{N}$ for some $C_{n}>0$ . We remark here that we can actually choose
the same constants for both weak convergences; precisely, we can take $B_{n}=C_{n}$ to be the
classical cutoff constants $\inf\{y>0:nH_{\mu}(y)\leq y^{2}\}$ (see [12], Section IX.8).

Finally, the Bercovici-Pata bijection gives us the following result.

Corollary 1. One has that $\mathcal{D}_{\triangleright}[\gamma]=\mathcal{D}_{*}[\mathcal{N}]=\mathcal{D}ffl[S].$

Here $\mathcal{S}$ is the standard semicircle law, and the symbol $\mathcal{D}ffl[S]$ means its free strict
domain of attraction.

2.3. Weak law of large numbers. We now address the issue of convergence to the point
masses, that is, the law of large numbers. Let $\mu$ be a probability measure on $\mathbb{R}$ , and let
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$\{b_{n}\}_{n=1}^{\infty}$ be a sequence of positive numbers such that $b_{1}\leq b_{2}\leq\cdots$ and $\lim_{narrow\infty}b_{n}=\infty.$

The classical counterpart of the following theorem was found by Kolmogorov for the
special case $b_{n}=n$ and by Feller for arbitrary sequence $\{b_{n}\}_{n=1}^{\infty}$ (see [15, 12]).

Theorem 4. [28] (WLLN) Let $a\in \mathbb{R}$ . We shall have

$D_{1/b_{n}}\mu^{\triangleright n}\Rightarrow\delta_{a}$

if and only if

(2.3) $\lim_{narrow\infty}\int_{-\infty}^{\infty}\frac{nb_{n}t}{b_{n}^{2}+t^{2}}d\mu(t)=a$ and $\lim_{narrow\infty}\int_{-\infty}^{\infty}\frac{nt^{2}}{b_{n}^{2}+t^{2}}d\mu(t)=0.$

When a measure $\mu\in \mathcal{M}$ has finite mean $a$ , Theorem 4 shows that the monotone
convolutions $D_{1/n}\mu^{\triangleright n}$ converge weakly to $\delta_{a}$ , which justifies the name law of large numbers.
Apparently, Theorem 4 can also be applied to certain measures without expectation, and
the condition (2.3) shows us how to select the norming constants in order to obtain the
weak convergence. For instance, if $\mu$ is purely atomic with $\mu(\{2^{k}\})=2^{-k}$ for $k\geq 1$ (The
St. Petersburg Game), then (2.3) implies that

$D_{1/(n{\rm Log} n)}\mu^{\triangleright n}\Rightarrow\delta_{1},$

where ${\rm Log} n$ is the logarithm of $n$ to the base 2. In other words, a law of large numbers
still exists, but, with a different normalization.

Theorem 4 gives a complete description of the strict domain of attraction for a degener-
ate limit type. Here is another surprise. By the Bercovici-Pata bijection, the convergence
condition (2.3) is equivalent to the weak convergence

or

$\frac{D_{1/b_{n}}\mu fflD_{1/b_{n}}\mu ffl\cdots fflD_{1/b_{n}}\mu}{ntimes}\Rightarrow\delta_{a}.$

In particular, we obtain the following

Corollary 2. $A$ degenemte measure has the same classical, free, and monotonic strict
domains of attraction.

3. PROOFS AND OPEN QUESTIONS

Results in the preceding section support the existence of the Bercovici-Pata type con-
vergence result between $\triangleright and*$ . Therefore, it is natural to ask:

Problem 2. Let $\alpha\in(0,2)$ , and let $v_{\triangleright}$ and $v_{*}$ be two nondegenerate strictly stable
laws of index $\alpha$ relative to the convolutions $\triangleright$ and $*$ , respectively. Do we always have
$\mathcal{D}_{\triangleright}[\nu_{\triangleright}]=\mathcal{D}_{*}[v_{*}]$ ?
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This question remains unsolved. Some necessary conditions for a measure $\mu$ to belong
to a strict domain of attraction were obtained in [28].

Theorem 5. [28] Let $\nu$ be a nondegenemte $\triangleright$ -strictly stable law of index $\alpha\in(0,2)$ . If a
measure $\mu\in \mathcal{M}$ is strictly attmcted to the law $\nu$ , then the integml

(3.1) $\int_{-\infty}^{\infty}|t|^{p}d\mu(t)\{\begin{array}{l}<\infty if 0\leq p<\alpha;=\infty if p>\alpha.\end{array}$

Since every $\triangleright$strictly stable law belongs to its own strict domain of attraction, a $\triangleright-$

strictly stable law of index $\alpha>1$ has finite mean, and among all $\triangleright$-strictly stable laws
only the arcsine law $(\alpha=2)$ has finite variance. For $0<\alpha\leq 1$ , the nondegenerate
$\triangleright$-strictly stable laws have neither mean nor variance. No sufficient conditions are known
for strict attraction to $a\triangleright$-strictly stable law. (The paper [17] shows a weak convergence
to the Cauchy law for the monotone convolutions $D_{1/n}\mu^{\triangleright n}.$ ) Finally, it is well known
that a nondegenerate $*$-strictly stable law of index $\alpha\in(0,2)$ also satisfies the moment
condition (3.1) (see [12, Chapter VIII]).

Most proofs of hmit theorems for monotone convolution in the literature are of combi-
natorial nature [22, 26, 18]. This is because the computation of monotone convolution of
measures involves the composition of analytic functions in the complex upper half-plane
$\mathbb{C}^{+}=\{z\in \mathbb{C} : \Im z>0\}$ . Precisely, the Cauchy tmnsform of a measure $\mu\in \mathcal{M}$ is defined
as

$G_{\mu}(z)= \int_{-\infty}^{\infty}\frac{1}{z-t}d\mu(t) , z\in \mathbb{C}^{+},$

so that the reciprocal Cauchy transform $F_{\mu}=1/G_{\mu}$ is an analytic self-map of $\mathbb{C}^{+}$ . Since
the imaginary part $of-G_{\mu}$ is the Poisson integral of the measure $\mu$ up to a scalar multiple,
the measure $\mu$ is completely determined by its Cauchy transform $G_{\mu}$ (and hence by the
function $F_{\mu}$ ). Given two measures $\mu,$

$\nu\in \mathcal{M}$ , we have that

(3.2) $F_{\mu\triangleright\nu}(z)=F_{\mu}(F_{\nu}(z))$ , $z\in \mathbb{C}^{+}.$

(See [21, 3, 13] for the proof.)

Weak convergence of probability measures is equivalent to the pointwise convergence
for their $F$-functions (e.g., see [14]). Thus, understanding the distributional behavior of
the measures $\mu_{1}\triangleright\mu_{2}\triangleright\cdots\triangleright\mu_{n}$ amounts to the understanding of the limiting behavior of
the compositions $F_{\mu_{1}}\circ F_{\mu_{2}}o\cdots oF_{\mu_{n}}$ . In the case of identical summands, this is reduced
to the study of iterations $\{F_{\mathring{\mu}^{n}}\}_{n=1}^{\infty}$ on $\mathbb{C}^{+}.$

When the measure $\mu$ has a bounded support (meaning that it can be realized as a
distribution of a bounded random variable), the Cauchy transform $G_{\mu}$ has a power series
expansion at $\infty$ :

$G_{\mu}(z)=1/z+m_{1}/z^{2}+m_{2}/z^{3}+\cdots,$
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where $m_{n}$ means the n-th moment of $\mu$ . Then (3.2) becomes merely a composition of
power series, and the combinatorial approach to limit theorems seems natural in this
case. Indeed, methods based on the monotonic independence (1.1) and the combinatorics
of non-crossing partitions had been developed and used to prove the monotone CLT and
the Poisson type limit theorem [22, 26, 18]. This approach has the advantage that it can
treat limit theorems for operator-valued random variables, as shown in [25].

However, the combinatorial approach is not suitable for general measures. In fact,
the proofs of the results in Section 2 do not make use of the combinatorics of monotone
convolution at all. They are based on the free harmonic analysis tools developed in
[6]. $A$ key ingredient is the adoption of the Bernstein blocking technique from classical
probability (see the book [10] for a full account of this technique).

Finally, we return to the class of infinitely divisible laws. Carrying the analogy with $*-$

infinite divisibility, a measure $v\in \mathcal{M}$ is said to be $\triangleright$ -infinitely divisible if for each positive
integer $k$ , there exists a measure $v_{k}\in \mathcal{M}$ such that $v=v_{k}^{\triangleright k}$ . Thus, Theorem 2 (1) shows
that every $\triangleright$-strictly stable law is $\triangleright$-infinitely divisible. In addition, given a $\triangleright$-strictly
stable law $v$ of index $\alpha$ , let us introduce the measures

$\nu_{t}=D_{t^{1/\alpha}}v, t>0,$

and $\nu_{0}=\delta_{0}$ . Then, by (2.2), we have $v_{s}\triangleright v_{t}=v_{s+t}$ for $s,$ $t\geq 0$ ; and hence the family
$\{v_{t}\}_{t\geq 0}$ forms a convolution semigroup. Also, note that the map $t\mapsto v_{t}$ is weakly continu-
ous. Consequently, the family $\{F_{\nu_{t}}\}_{t\geq 0}$ of the corresponding reciprocal Cauchy transforms
forms a composition semigroup of analytic maps from $\mathbb{C}^{+}$ into itself (cf. [8]).

In general, every infinitely divisible measure embeds into a unique weakly continuous
convolution semigroup (see [21, 22] and [2]). Thus, by taking Theorem 2 (1) as the
definition of $\triangleright$-strict stability and using the theory of composition semigroups, it is proved
in [16] that for $a\triangleright$-strictly stable law $v$ of index $\alpha\in(0,2]$ , one has

$F_{\nu}(z)=(z^{\alpha}+w)^{1/\alpha},$ $z\in \mathbb{C}^{+}.$

Here the power $z^{p}=\exp(p\log z)$ is defined in $\mathbb{C}\backslash [0, \infty)$ , where the range of the argument
of $z$ is chosen to be $0<\arg z<2\pi$ . The complex number $w$ satisfies the conditions: (i)
$0\leq\arg w\leq\alpha\pi$ if $\alpha\in(0,1]; (ii)$ $(\alpha-1)\pi\leq\arg w\leq\pi$ if $\alpha\in(1,2].$

Unlike in the usual probability theory, we know every little about the connections of
$\triangleright$-infinitely divisible measures with limit theorems of monotone convolution. To illustrate,
recall the result of L\’evy that the weak limit for $\mu_{n}=D_{1/B_{n}}\mu^{*n}$ must $be*$-strictly stable.
It could happen that the measures $\mu_{n}$ do not converge for any choice of the constants
$B_{n}$ , but that for some subsequence $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ a weak convergence holds.
From the general theory described in Section 1, we only kn$ow$ that this limit distribution
is necessarily $*$ -infinitely divisible. In this regard, Khintchine [19] proved a rather deep
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converse proposition, which says that every $*$-infinitely divisible law can appear as the

weak limit for $\mu_{n_{k}}.$

We shall say that a law $\mu\in \mathcal{M}$ belongs to the $\triangleright$ -strict domain of partial attmction

of $v\in \mathcal{M}$ if there exists a subsequence $n(k),$ $k\geq 1$ , such that the weak convergence
$D_{1/B_{n(k)}}\mu^{\triangleright n(k)}\Rightarrow\nu(karrow\infty)$ holds for suitably chosen constants $B_{n}>0$ . We pose the

following open question, which may serve as a starting point for the further investigation
of $\triangleright$strict domains of partial attraction.

Problem 3. Does every $\triangleright$-infinitely divisible law have $a$ (non-empty) $\triangleright$-strict domain of
partial attraction?

Note that every ffl-infinitely divisible law does have a non-empty ffl-strict domain of

partial attraction, see [24].
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