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1. INTRODUCTION

According to the KAM theorem, if the irrational frequencies of integrable
quasi-periodic Hamiltonian dynamical systems satisfy the Diophantine condi-
tions (badly approximable by rationals), then the quasi-periodic tori are persis-
tent (stable for small perturbations). On the other hand, in the converse KAM.
theorem, if the irrational frequencies are Liouville numbers (extremely well ap-
proximable numbers by rationals), then any small perturbations of the quasi-
periodic systems contain the destructions of the q.p. tori. Here we consider the
q.p. systems from some different view points; particularly, on their recurrent
properties which are related to predictability or unpredictability of the systems.

In our previous papers [3], [4] we introduced the gaps between the upper and
the lower recurrent dimensions as the index parameters, which measure unpre-
dictability levels of the orbits. In [9], [10] we proved that the gaps of recurrent
dimensions of q.p. orbits given by a rotation map with a single irrational fre-
quency take positive values when this irrational frequency is a weak Liouville
number; sufficiently well approximable number by rationals.

In this paper we consider q.p. systems with multiple irrational frequencies.
For pairs of irrational numbers we have introduced Extended Common Multiples
(ECM) conditions in [4] and we have shown some inequality relations between
the parameters of Diophantine conditions and the ECM conditions. Using this
relations, we have given some various examples of quasi peridic orbits, which
have positive gap values of recurrent dimensions ([6], [7]). Here we investigate
these conditions for a pair of irrational frequencies of q.p. systems and show the
unpredictability of q.p. orbits by estimating gaps of their recurrent dimensions.
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2. SINGLE FREQUENCY Q.P. CASE

In [5] we classify irrational numbers according to badly or well approximable
by rational numbers as follows:

We say that $\tau$ is an $\alpha$-order Roth number if there exists $\alpha\geq 0$ such that, for
every $\beta$ : $\beta>\alpha$ , there exists a constant $c_{\beta}>0$ , which satisfies

$| \tau-\frac{q}{p}|\geq\frac{c_{\beta}}{p^{2+\beta}}$

for all rational numbers $q/p\in \mathbb{Q}.$

Let $\{n_{i}/m_{i}\}$ be a convergents of $\tau.$ $\tau$ is called an $\alpha$-order weak Liouville
number if there exists an infinite subsequence $\{m_{k_{j}}\}\subset\{m_{k}\}$ , which satisfies

$| \tau-\frac{n_{k_{j}}}{m_{k_{j}}}|<\frac{c}{m_{k_{j}}^{2+\alpha}}, \forall j$

for some constants $c,$ $\alpha>0.$

We have also shown that the set of $\alpha$-order Roth numbers is almost equal to
the complement set of $\alpha$-order weak Liouville numbers and so every irrational
number has the parameter; say $d_{0}$ , which specifies the badly or well approximable
levels by rational numbers,

$d_{0}$ $:= \sup${ $\beta$ : $\tau$ is a $\beta$-order weak Liouville number}
$=$ $\inf$ { $\alpha$ : $\tau$ is an $\alpha$-order Roth number}.

Then we say that $\tau$ satisfies a $d_{0^{-}}(D)$ condition. If an irrational number $\tau$ satisfies
$d_{0^{-}}(D)$ condition for $0\leq d_{0}<\infty$ , then $\tau$ is a Roth number with its order $d_{0}+\epsilon$

for every $\epsilon>0$ and also $\tau$ is a weak Liouville number with its order $d_{0}-\epsilon$ for
every $\epsilon>0$ . If an irrational number $\tau$ does not satisfy the Diophantine condition
for a finite value $d_{0}$ , we say that $\tau$ is a Liouville number or $d_{0}=\infty.$

Now we consider the rotation on $\mathbb{T}=\mathbb{R}/\mathbb{Z}$

$f(x)=x+\alpha(mod 1) , x\in \mathbb{T}$

and we define the discrete quasi-periodic orbit $\Sigma_{x}$ , given by the rotation,

$\Sigma_{x}=\{f^{n}(x):n\in \mathbb{N}\}$

for an irrational frequency $\alpha$ , which satisfies $d_{0^{-}}(D)$ condition. We estimate the
recurrent properties of the q.p. orbits, the gap of recurrent dimensions, by using
the Diophantine parameter $d_{0}$ of the irrational frequency $\alpha.$

Definitions of recurrent dimensions:

Define the first $\epsilon$-recurrent time by

$M_{\epsilon}(x)= \min\{m\in \mathbb{N} : |f^{m}(x)-x|<\epsilon\}.$

The upper recurrent dimension is defined by

$\overline{D}_{x}=\lim_{\epsilonarrow}\sup_{0}\frac{\log M_{\epsilon}(x)}{-\log\epsilon}$
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and the lower recurrent dimension is defined by

$\underline{D}_{x}=\lim_{\epsilonarrow}\inf_{0}\frac{\log M_{\epsilon}(x)}{-\log\epsilon}.$

Then we can define the gaps of recurrent dimensions by $G_{x}=\overline{D}_{x}-\underline{D}_{x}.$

If the gap values $G_{x}$ take positive values, we cannot exactly determine or
predict the $\epsilon$-recurrent time of the orbits. Thus we propose the value $G_{x}$ as the
parameter, which measures the unpredictability level of the orbit. We obtained
the following estimate for $G_{x}$ in [9], [10].

Theorem 2.1. Let the irrational frequency $\alpha$ satisfy the $d_{0^{-}}(D)$ condition for
$d_{0}\geq 0.$

Then, for each $x\in \mathbb{T}$ , we have

$\overline{D}_{x}=1, \underline{D}_{x}=\frac{1}{1+d_{0}}.$

Consequently, we can estimate the gap value by

$G_{x}= \frac{d_{0}}{1+d_{0}}.$

Since almost all irrationals (in the Lebesgue measure sense) satisfy $d_{0}=0,$

almost all q.p. orbits given by the rotation are predictable, that is,
$G_{x}=0.$

In the case where the irrational frequency is a weak Liouville number with its
order $d_{0}>0$ , its q.p. orbit is unpredictable with its level given by

$G_{x}= \frac{d_{0}}{1+d_{0}}>0.$

3. MULTIPLE FREQUENCIES CASE

First we prepare some notations to analyze recurrent properties of q.p. orbits
with multiple frequencies. For an irrational number $\tau$ , let $\{a_{j}\}$ be the partial
quotients of its continued fractions and $\{n_{j}/m_{j}\}$ be its convergents. For each pos-
itive integer $l$ we can obtain the unique expansion of $l$ by using the denominators
$\{m_{j}\}$ , considering the lexicographical order:

$l=p_{k}m_{k}+p_{k-1}m_{k-1}+\cdots+p_{u}m_{u}$

where $p_{j}\in \mathbb{N}_{0}$ : $p_{j}\leq a_{j+1},$ $u\leq j\leq k$ and $p_{k},p_{u}\geq 1.$

We define the valuation $(l)_{\tau}$ of a positive integer $l$ by

$(l)_{\tau}= \frac{k-u}{k},$

which shows a relative length of its expansion.
For a pair of irrational numbers $\tau_{1},$ $\tau_{2}$ , let $\{a_{j}\},$ $\{b_{k}\}$ be the partial quotients

of the continued fractions and $\{n_{j}/m_{j}\},$ $\{r_{k}/l_{k}\}$ be the convergents, respectively.
We use some generalized common multiples of $\{m_{j}, l_{k}\}$ , called Extended Common
Multiples (abr. ECM).
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For constants $k,$ $d,$ $s,$ $r\in \mathbb{N}:k\leq d,$ $s\leq r$ , we put

$[M]_{d}^{k}:=\{m\in \mathbb{N}:m=p_{k}m_{k}+\cdots+p_{d}m_{d}, p_{j}\in \mathbb{N}_{0},p_{k}\geq 1, p_{j}\leq a_{j+1}\},$

$[L]_{r}^{s}:=\{l\in \mathbb{N}:l=q_{s}l_{s}+\cdots+q_{r}l_{r}, q_{j}\in \mathbb{N}_{0}, q_{s}\geq 1, q_{j}\leq b_{j+1}\}$

and define

$[M]_{d}:= \bigcup_{k=d}^{\infty}[M]_{d}^{k}, [L]_{r}:=\bigcup_{s=r}^{\infty}[L]_{r}^{s}$

for $d,$ $r\in \mathbb{N}.$

For positive integers $m\in[M]_{d},$ $l\in[L]_{r}:p_{d},$ $q_{r}\geq 1$ , define $\zeta_{1},$ $\zeta_{2}:\mathbb{N}arrow \mathbb{N}$ by

$\zeta_{1}(m)=d, \zeta_{2}(l)=r.$

We define the ECM sequence of positive integers $\{T_{j}\}\subset[M]_{1}\cap[L]_{1}$ as follows.
Let

$T_{1}= \min\{m:m\in[M]_{1}\cap[L]_{1}\}, d_{1}=\min\{\zeta_{1}(T_{1}), \zeta_{2}(T_{1})\},$

$T_{2}= \min\{m\in[M]_{d_{1}+1}\cap[L]_{d_{1}+1}\}, d_{2}=\min\{\zeta_{1}(T_{2}), \zeta_{2}(T_{2})\}, \cdots,$

iteratively, let $d_{j}= \min\{\zeta_{1}(T_{j}), \zeta_{2}(T_{j})\}$ and $T_{j+1}= \min\{m\in[M]_{d_{j}+1}\cap[L]_{d_{j}+1}\}.$

For the $ECM(\tau_{1}, \tau_{2})$ sequence $\{T_{j}\}$ , we define the following constants

$\delta_{0}=\lim infjarrow\infty\max\{(T_{j})_{\tau_{1}}, (T_{j})_{\tau_{2}}\},\delta_{1}=\lim_{jarrow}\sup_{\infty}\max\{(T_{j})_{\tau_{1}}, (T_{j})_{\tau_{2}}\}.$

In [4] we obtained the inequality relations between the above constants and the
Diophantine constant $d_{0}$ for a pair of irrational numbers.

We say that $\{\tau_{1}, \tau_{2}\}$ satisfies $d_{0^{-}}(D)$ condition if there exists a constant $d_{0}\geq 2$

such that, for each $d>d_{0}$ , there exists $\gamma_{d}>0$ , which satisfies

(3.1) $|( \tau_{1}m_{1}+\tau_{2}m_{2})-n|\geq\frac{\gamma_{d}}{|m|^{d}}$

for $\forall m=(m_{1}, m_{2})\in \mathbb{Z}^{2},$ $\forall n\in \mathbb{Z}$ and furthermore, for each $d:0<d<d_{0}$ and
each $\gamma>0$ , there exist integers $m_{\gamma}=(m_{\gamma,1}, m_{\gamma,2})\in \mathbb{Z}^{2}$ and $n_{\gamma}\in \mathbb{Z}$ , which satisfy

(3.2) $|(\tau_{1}m_{\gamma,1}+\tau_{2}m_{\gamma,2})-n_{\gamma}|<\underline{\gamma}$

$|m_{\gamma}|^{d}.$

The constant $d_{0}$ specifies the infimum value of $d$ , which satisfies (3.1) and also
the supremum value of $d$ , which satisfies (3.2).

For $\{n_{j}/m_{j}\}$ and $\{r_{j}/l_{j}\}$ , the convergents of $\tau_{1},$ $\tau_{2}$ , respectively, we consider the
case where the sequences $\{(m_{j})^{\frac{1}{j}}\},$ $\{(l_{j})^{\frac{1}{j}}\}$ are bounded. We denote the upper
and the lower L\’evy constants of $\tau_{1},$ $\tau_{2}$ by $\lambda^{*}(\tau_{1}),$ $\lambda^{*}(\tau_{2})$ and by $\lambda_{*}(\tau_{1}),$ $\lambda_{*}(\tau_{2})$ ,
respectively, as follows.

$\lim_{jarrow}\sup_{\infty}(m_{j})^{\frac{1}{j}}=\lambda^{*}(\tau_{1}) , \lim\inf(m_{j})^{\frac{1}{j}}jarrow\infty=\lambda_{*}(\tau_{1})$

and similarly we define $\lambda^{*}(\tau_{2}),$ $\lambda_{*}(\tau_{2})$ by using the sequence $\{(l_{j})^{\frac{1}{j}}\}.$

We also say that an irrrational number $\tau$ has a L\’evy constant if $\lambda^{*}(\tau)=\lambda_{*}(\tau)$ .
In 1935 Khinchin proved that almost all irrational numbers have the same L\’evy
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constant value and in 1936 L\’evy found the explicit expression for this constant;
$e \frac{\pi^{2}}{121\circ g2}\sim 3.27582.$ . (see [1]). Hereafter we use the following notations.

$E_{1}= \min\{\lambda_{*}(\tau_{1}), \lambda_{*}(\tau_{2})\}, E_{2}=\max\{\lambda^{*}(\tau_{1}), \lambda^{*}(\tau_{2})\}.$

Theorem 3.1. Let $\tau_{1},$ $\tau_{2}$ have the upper and lower L\’evy constants and belong to
a $d_{0^{-}}(D)$ class. Then for the constants $d_{0},$ $\delta_{0}$ we have

$1- \frac{d_{0}-1}{2}\cdot\frac{\log E_{2}}{\log E_{1}}\leq\delta_{0}\leq 1-\frac{d_{0}}{d_{0}+2}\cdot\frac{\log E_{1}}{\log E_{2}}$

Remark 3.2. It is known that almost all pairs satisfy
$d_{0}=2, E_{1}=E_{2}=e \frac{\pi^{2}}{12\log 2},$

which yield $\frac{1}{2}=\delta_{0}\leq\delta_{1}.$

4. RECCURENT PROPERTIES OF Q.P. ORBITS

For an irrational pair $\{\tau_{1}, \tau_{2}\}$ as frequency we consider the following discrete
quasi-periodic orbit in $\mathbb{T}=\mathbb{R}/\mathbb{Z}$ :

$\Sigma=\{\varphi(n):n=0,1,2, \ldots\}, \varphi(n)=\max\{\{n\tau_{1}\}, \{n\tau_{2}\}\}$

where $\{a\}$ denotes the fractional part of $a$ . The first $\epsilon$-recurrent time $M_{\epsilon}$ to $0$ is
defined by

$M_{\epsilon}= \min\{n\in \mathbb{N} : \varphi(n)<\epsilon\}$

and the upper and the lower recurrent dimensions are defined by

$\overline{D}(\Sigma)=\lim_{\epsilonarrow}\sup_{0}\frac{\log M_{\epsilon}}{-\log\epsilon}, \underline{D}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log M_{\epsilon}}{-\log\epsilon}.$

The gap of the recurrent dimensions, which gives the unpredictability level of
orbits, is defined by

$G(\Sigma)=\overline{D}(\Sigma)-\underline{D}(\Sigma)$ .
Since we can show the following estimates by applying the argument in [4]

$\underline{D}(\Sigma)\leq\frac{\log E_{2}}{(1-\delta_{0})\log E_{1}}, \overline{D}(\Sigma)\geq\frac{\log E_{l}}{(1-\delta_{1})\log E_{2}},$

we have
$G( \Sigma)\geq\frac{\log E_{l}}{(1-\delta_{1})\log E_{2}}-\frac{\log E_{2}}{(1-\delta_{0})\log E_{1}}.$

In [8] we investigated an example of the irrational frequencies given by extreme
numbers (see [11]) and show the positivity of the gap values. Here we consider the
case where the irrational frequencies are weak Liouville numbers. We construct a
pair of irrationals $\{\tau_{1}, \tau_{2}\}$ by defining the partial quotients of continued fractions
$\{a_{j}\},$ $\{b_{k}\}$ , iteratively, as follows.

First, for a constant $K>0$ , choose a suitable pair of irrationals $\{\tau_{1}^{(1)}, \tau_{2}^{(1)}\}$

satisfying $a_{j},$ $b_{k}\leq K,$ $\forall j,$ $k$ and find $t_{1}=$ lcm $(m_{j_{1}}, l_{k_{1}})$ , which satisfies
$t_{1}=m’m_{j_{1}}\sim m_{j_{1}}^{1+\alpha_{1}}, t_{1}=l’l_{k_{1}}\sim l_{k_{1}}^{1+\beta_{1}}$

for sufficiently small $\alpha_{1},$
$\beta_{1}$ : $0<\alpha_{1},$ $\beta_{1}<\sqrt{2}-1-\epsilon.$
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Next, put (substitute)
$a_{j_{1}+1}=\lceil m_{j_{1}}^{\alpha 1}\rceil, b_{k_{1}+1}=\lceil l_{k_{1}}^{\beta_{1}}\rceil$

where $\lceil r\rceil$ is the smallest integer not less than $r$ and define a suitable pair of
irrationals $\{\tau_{1}^{(2)}, \tau_{2}^{(2)}\}$ satisfying $a_{j},$ $b_{k}\leq K,$ $\forall j,$ $k$ : $j>j_{1}+1,$ $k>k_{1}+1$ and
find $t_{2}=$ lcm$(m_{j_{2}}, l_{k_{2}})$ , which satisfies

$t_{2}=m’m_{j_{2}}\sim m_{j_{2}}^{1+\alpha 2}, t_{1}=l’l_{k_{2}}\sim l_{k_{2}}^{1+\beta_{2}}$

for sufficiently small $\alpha_{2},$
$\beta_{2}<\sqrt{2}-1-\epsilon.$

Iteratively, for a pair of irrationals $\{\tau_{1}^{(i)}, \tau_{2}^{(i)}\}$ : $a_{j},$ $b_{k}\leq K,$ $\forall j,$ $k$ :
$j>j_{s}+1,$ $k>k_{s}+.1,$ $s=1,$ $\ldots,$ $i-1$ , find $t_{i}=$ lcm$(m_{j_{i}}, l_{k_{i}})$ , which satisfies

$t_{i}=m’m_{j_{i}}\sim m_{j_{i}}^{1+\alpha_{i}}, t_{i}=l’l_{k_{\iota}}\sim l_{k_{i}}^{1+\beta_{1}}$

and put $a_{j_{t}+1}=\lceil m_{j_{i}}^{\alpha:}\rceil,$
$b_{k_{i}+1}=\lceil l_{k_{i}}^{\beta_{1}}\rceil$ for sufficiently small $\alpha_{i},$

$\beta_{i}<\sqrt{2}-1-\epsilon.$

Thus we can obtain the pair of irrational $\{\tau_{1}, \tau_{2}\}$ , by defining the partial quo-
tients of continued fractions $\{a_{j}\},$ $\{b_{k}\}$ . Then $\{\tau_{1}, \tau_{2}\}$ are weak Liouville numbers
with its order $\alpha,$

$\beta\leq\sqrt{2}-1-\epsilon=:c_{0}$ and we can obtain an ECM subse-
quence $\{t_{i}\}\subset ECM(\tau_{1}, \tau_{2})$ satisfying $\max\{(t_{i})_{\mathcal{T}1}, (t_{i})_{72}\}=0,$ $\forall i$ , which yields
that $\delta_{0}=0$ . It follows from Theorem 3.1 that $\delta_{1}\geq\frac{1}{2}$ for almost all pairs of
irrationals, but, since I have not yet shown this estimate in this case, we assume
that $\delta_{1}\geq\frac{1}{2}.$

For constants $E_{1},$ $E_{2}$ , we can estimate
$E_{1} \sim\min\{(m_{j})^{\frac{1}{j}}, (l_{k})^{\frac{1}{k}}\}, E_{2}\sim\max\{(m_{j_{i}})^{\frac{1+\alpha}{j_{i}+1}}, (l_{k_{i}})^{\frac{1+\beta}{k.+1}}\}$

and then we have
$\frac{\log E_{1}}{\log E_{2}}\geq\frac{1}{1+c_{0}}, \frac{\log E_{2}}{\log E_{1}}\leq 1+c_{0}.$

Considering the above all constants, we can estimate the positive gap values:

$G( \Sigma)\geq\frac{2}{1+c_{0}}-(1+c_{0})\geq\frac{2-(\sqrt{2}-\epsilon)^{2}}{1+c_{0}}>0.$
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