
WEAK AND STRONG CONVERGENCE THEOREMS FOR
UNIFORMLY ASYMPTOTICALLY REGULAR

NONEXPANSIVE SEMIGROUPS

山梨大学 厚芝幸子 (SACHIKO ATSUSHIBA)

1. INTRODUCTION

Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert$ $\Vert$ and let $C$

be a nonempty closed convex subset of $H$ . Then, a mapping $T$ : $Carrow C$ is called
nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$. We denote by $F(T)$ the set of
fixed points of $T$ . We know iteration procedures for finding a fixed point of a mapping
$T$ : Let $x$ be an element of $C$ and for each $t$ with $0’<t<1$ , let $x_{t}$ be a unique element
of $C$ satisfying $x_{t}=tx+(1-t)Tx_{t}$ . In 1967, Browder [7] proved the following strong
convergence theorem.

Theorem 1.1. Let $H$ be a Hilbert space, let $C$ be a nonempty bounded closed convex
$\mathcal{S}$ ubset of $H$ and let $T$ be a nonexpansive mapping of $C$ into itself. Let $x$ be an element
of $C$ and for each $t$ with $0<t<1$ , let $x_{t}$ be a unique element of $C$ satisfying

$x_{t}=tx+(1-t)Tx_{t}.$

Then, $\{x_{t}\}$ converges strongly to the elemgent of $F(T)$ nearest to $x$ as $t\downarrow 0.$

Reich [13] and Takahashi and Ueda [24] extended Browder’s result to those of a Ba-
nach space. Using the idea of Shimizu and Takahashi [14, 15] and the notion of sequence
of means, Shioji and Takahashi [16] proved the strong convergence of Browder’s type
sequences for nonexpansive semigroups (see also [17, 18, 19]). Recently, Domingues
Benavides, Acedo and Xu [9] proved Browder’s type strong convergence theorems for
uniformly asymptotically regular one-parameter nonexpansive semigroups. Acedo and
Suzuki [1] generalized Domingues Benavides, Acedo and Xu’s results concerning the
conditions of the sequences in real numbers.
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On the other hand, Xu and Ori [25] studied the following implicit iterative process
for finite nonexpansive mappings $T_{1},$ $T_{2},$

$\ldots,$
$T_{r}$ in a Hilbert space: $x_{0}=x\in C$ and

$x_{n}=\alpha_{n}+x_{n-1}+(1-\alpha_{n})T_{n}x_{n}$ (1)

for every $n=1,2,$ $\ldots$ , where $\alpha_{n}$ is a sequence in $(0,1)$ and $T_{n}=T_{n+r}$ And they

proved the weak convergence of the iterative process defined by (1) in a Hilbert space.
Motivated by [25], author and Takahashi [6] introduced an implicit iterative process

for a nonexpansive semigroup and then prove a weak convergence theorem for the
nonexpansive semigroup by using the idea of mean (see also [2, 3, 4]).

In this paper, we study the implicit iterations (1) for one-parameter nonexpansive
semigroups and prove a weak convergence theorem for a uniformly asymptotically reg-

ular one-parameter nonexpansive semigroup in a Hilbert space. We also prove a weak
convergence theorem for a uniformly asymptotically regular nonexpansive semigroup
(see also [22, 23]). Further, we study Browder’s type iterations for nonexpansive semi-

groups. Then, we prove strong convergence theorems for uniformly asymptotically
regular nonexpansive semigroups in Hilbert spaces by using the idea of [1, 7, 9, 22, 23].

And we give a strong convergence theorem for the nonexpansive semigroup by the
viscosity approximation method.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by $\mathbb{N}$ and $\mathbb{R}$ the set of all positive integers and the
set of all real numbers, respectively. We also denote by $\mathbb{R}^{+}$ the set of all nonnegative
real numbers. Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$

and let $C$ be a nonempty closed convex subset of $H$ . Then, for every point $x\in H,$

there exists a unique nearest point in $C$ , denoted by $P_{C}x$ , such that

$\Vert x-P_{C}x\Vert\leq\Vert x-y\Vert$

for all $y\in C.$ $P_{C}$ is called the metric projection of $H$ onto $C$ . It is characterized by

$\langle P_{C}x-y, x-P_{C}x\rangle\geq 0$

for all $y\in C$ . See [23] for more details. The following result is well-known; see also
[23].

Lemma 2.1. Let $C$ be a nonempty bounded closed convex subset of a Hilbert space $H$

and let $T$ be a nonexpansive mapping of $C$ into itself. Then, $F(T)\neq\emptyset.$

We write $x_{n}arrow x$ $( or \lim_{narrow\infty}x_{n}=x)$ to indicate that the sequence $\{x_{n}\}$ of vectors in
$H$ converges strongly to $x$ . We also write $x_{n}arrow x$ $( or w-\lim_{narrow\infty}x_{n}=x)$ to indicate that
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the sequence $\{x_{n}\}$ of vectors in $H$ converges weakly to $x$ . In a Hilbert space, it is well
known that $x_{n}arrow x$ and $\Vert x_{n}\Vertarrow\Vert x\Vert$ imply $x_{n}arrow x.$

Let $S$ be a semitopological semigroup. $A$ semitopological semigroup $S$ is called
right (resp. left) reversible if any two closed left (resp. right) ideals of $S$ have nonvoid
intersection. If $S$ is right reversible, $(S, \leq)$ is a directed system when the binary relation
$”\leq$

” on $S$ is defined by $s\leq t$ if and only if $\{s\}\cup\overline{S_{\mathcal{S}}}\supset\{t\}\cup\overline{S+t},$
$s,$ $t\in S,$ where $\overline{A}$

is the closure of $A.$ $A$ commutative semigroup $S$ is a directed system when the binary
relation is defined by $s\leq t$ if and only if $\{s\}\cup(S+s)\supset\{t\}\cup(S+t)$ .

Let $C$ be a nonempty closed convex subset of a Hilbert space $H.$ $A$ family $S=$

$\{T(t) : t\in S\}$ of mappings of $C$ into itself is said to be a nonexpansive semigroup on
$C$ if it satisfies the following conditions:

(i) For each $t\in S,$ $T(t)$ is nonexpansive;
(ii) $T(t_{\mathcal{S}})=T(t)T(s)$ for each $t,$ $s\in S.$

We denote by $F(S)$ the set of common fixed points of $\mathcal{S}$ , i.e., $F(S)= \bigcap_{t\in S}F(T(t))$ .
We say that a Banach space $E$ satisfies Opial’s condition [12] if for each sequence

$\{x_{n}\}$ in $E$ which converges weakly to $x,$

$\neg\lim_{narrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert x_{n}-y\Vert$ (2)

for each $y\in E$ with $y\neq x$ . In a reflexive Banach space, this condition is equivalent to
the analogous condition for a bounded net which has been introduced in [10]. It is well
known that this condition is equivalent to the analogous condition of fifii (see [5]). It
is well known that Hilbert spaces satisfy Opial’s condition (see [12, 23]).

Proposition 2.2 ([12]). Let $H$ be a Hilbert space. Let $\{x_{n}\}$ be a sequence in $H$

converging weakly to $x\in H$ . Then,

$\varliminf_{narrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert x_{n}-y\Vert$ (3)

for each $y\in E$ with $y\neq x.$

3. CONVERGENCE THEOREMS FOR ONE-PARAMATER NONEXPANSIVE SEMIGROUPS

In this section, we prove a weak convergence theorem for an asymptotically regular
one-parameter nonexpansive semigroup by using the idea of [1, 9, 22, 23, 25]. Let $C$ be
a nonempty closed convex subset of a Hilbert space $H.$ $A$ family $\mathcal{S}=\{T(t) : t\in \mathbb{R}^{+}\}$ of
mapinngs of $C$ into itself satisfying the following conditions is said to be one-parameter
nonexpansive semigroup on $C$ :

(i) for each $t\in \mathbb{R}^{+},$ $T(t)$ is nonexpansive;
(ii) $T(0)=I$ ;
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(iii) $T(t+s)=T(t)T(s)$ for every $t,$ $s\in \mathbb{R}^{+}$ ;
(iv) for each $x\in C,$ $t\mapsto T(t)x$ is continuous.

We say that one-parameter nonexpansive semigroup $S=\{T(t) : t\in \mathbb{R}^{+}\}$ is asymp-
totically regular if

$\lim_{sarrow\infty}\Vert T(h+s)x-T(s)x\Vert=0$

for all $h\in \mathbb{R}^{+}$ and $x\in C$ (see also [22, 23]). The following lemma proved by Acedo
and Suzuki ([1]).

Lemma 3.1 ([1]). Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex
subset of H. Let $\mathcal{S}=\{T(s) : s\in \mathbb{R}^{+}\}$ be $a$ one-pammater nonexpansive semigroup on
C. Assume that $S=\{T(s) : s\in \mathbb{R}^{+}\}$ is asymptotically regular, that is,

$\lim_{tarrow\infty}\Vert T(h+t)x-T(t)x\Vert=0$

for all $h\in \mathbb{R}^{+}$ and $x\in C$ . Then,

$F(T(h))=F(S)$

for each $h\in \mathbb{R}^{+}.$

We say that one-paramater nonexpansive semigroup $S=\{T(t) : t\in \mathbb{R}^{+}\}$ is uni-
formly asymptotically regular if for every $h\in \mathbb{R}^{+}$ and for every bounded subset $K$ of
$C,$

$s \in \mathbb{R}hm_{+}\sup_{x\in K}\Vert T(h+s)x-T(s)x\Vert=0.$

holds.
We prove a weak convergence theorem for a uniformly asymptotically regular one-

parameter nonexpansive semigroup (see [1, 9]).

Theorem 3.2. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset
of H. Let $S=\{T(s) : s\in \mathbb{R}^{+}\}$ be a unifomly asymptotically regular one-parametr
nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{m_{n}\}$ be a sequence in $\mathbb{N}$ such
that $m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{N}$ . Let $\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that
$0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n}=\alpha_{n}x_{n-1}+(1-\alpha_{n})(T(m_{n}))x_{n}$

for dach $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges weakly to a common fixed point of $S.$
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4. WEAK CONVERGENCE THEOREMS FOR NONEXPANSIVE SEMIGROUPS

In this section, we prove a weak convergence theorem for an asymptotically regular
nonexpansive semigroup by using the idea of [1, 9, 22, 23, 25]. Let $C$ be a nonempty
closed convex subset of a Hilbert space $H$ , let $S$ be a commutative semigroup and let
$S=\{T(t) : t\in S\}$ be a nonexpansive semigroup on $C$ . We say that nonexpansive
semigroup $S=\{T(t) : t\in S\}$ is asymptotically regular if

$\lim_{s\in S}\Vert T(h)T(\mathcal{S})x-T(s)x\Vert=0$

for all $h\in S$ and $x\in C$ (see also [22, 23]). The following lemma plays an important
role in the proof of main theorem (see [1]).

Lemma 4.1. Let $H$ be a Hilbert space, let $C$ be a nonempty closed convex subset of
$H$ , and let $S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}$ be a nonexpansive
semigroup on $C$ such that $F(S)\neq\emptyset$ . Assume that $\mathcal{S}=\{T(t):t\in S\}$ is asymptotically
regular, that is,

$\lim_{t\in S}\Vert T(h)T(t)x-T(t)x\Vert=0$

for all $h\in S$ and $x\in C$ . Then,

$F(T(h))=F(\mathcal{S})$

for each $h\in S.$

We say that nonexpansive semigroup $S=\{T(t) : t\in S\}$ is uniformly asymptotically
regular if for every $h\in S$ and for every bounded subset $K$ of $C,$

$\lim_{s\in S_{x}}\sup_{\in K}\Vert T(h)T(s)x-T(s)x\Vert=0.$

holds.
We prove a weak convergence theorem for a uniformly asymptotically regular non-

expansive semigroup (see also [1, 9]).

Theorem 4.2. Let $H$ be a Hilbert space, let $C$ be a nonempty closed convex subset
of $H$ , and let $S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}.be$ a uniformly
asymptotically regular nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset.$ Let. $\{m_{n}\}$

be a sequence in $\mathbb{N}$ such that $m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{N}$ . Let $\{\alpha_{n}\}$ be a
sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ , let $t\in S$ , and let $\{x_{n}\}$

be the sequence defined by

$x_{n}=\alpha_{n}x_{n-1}+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges weakly to a common fixed point of $S.$
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5. STRONG CONVERGENCE THEOREMS

Motivated by [1, 7, 9], we study Browder’s type strong convergence theorems for
uniformly asymptotically regular nonexpansive semigroups (see also [22, 23]).

Theorem 5.1. Let $H$ be a Hilbert space, let $C$ be a nonempty closed convex subset

of $H$ , and let $S$ be a commutative semigroup. Let $S=\{T(t) : t\in S\}$ be a uniformly
asymptotically regular nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{m_{n}\}$

be a sequence in $\mathbb{N}$ such that $m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{N}$ . Let $\{\alpha_{n}\}$ be a
sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ , let $t\in S$ , and let $\{x_{n}\}$

be the sequence defined by

$x_{n}=\alpha_{n}u+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the metric projection

from $C$ onto $F(\mathcal{S})$ .

We know that $f$ : $Carrow C$ is said to be a contraction on $C$ if there exists $r\in(0,1)$

such that
$\Vert f(x)-f(y)\Vert\leq r\Vert x-y\Vert$

for each $x,$ $y\in C$ . Using [21] and Theorem 5.1, we obtain the following strong conver-
gence theorem by the viscosity approximation methods (see also [11]).

Theorem 5.2. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ , let $S$

be a commutative semigroup and let $S=\{T(t) : T\in S\}$ be a uniformly asymptotically
regular nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $f$ be a contmction on
C. Let $\{m_{n}\}$ be a sequence in $\mathbb{N}$ such that $m_{n}arrow\infty$ or $m_{n}arrow N$ for some $N\in \mathbb{N}$ . Let
$\{\alpha_{n}\}$ be a sequence in $\mathbb{R}$ such that $0<\alpha_{n}<1$ , and $\alpha_{n}arrow 0$ . Let $u\in C$ , let $t\in S$ , and
let $\{x_{n}\}$ be the sequence defined by

$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to Pu, where $P$ is the metric projection

from $C$ onto $F(S)$ .
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