ON THE REPRESENTATION AND THE RESIDUE OF CONCAVE FUNCTIONS

RINTARO OHNO

ABSTRACT. In [2] we introduced several integral representation formulas for concave functions. Using those, we gave a general formula to describe the residue of concave functions with a pole at $p \in (0, 1)$. In the present article we will present alternate versions of the formulas, as well as a shortcut for the calculation to obtain the range of the residue.

Key words: concave univalent functions, integral representations

1. INTRODUCTION

Let \mathbb{C} be the complex plane, $\widehat{\mathbb{C}}$ the Riemann sphere and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk. A univalent function $f : \mathbb{D} \to \widehat{\mathbb{C}}$ is said to be concave, if $f(\mathbb{D})$ is concave, i.e. $\mathbb{C} \setminus f(\mathbb{D})$ is convex. Commonly there are several types of concave functions, which map \mathbb{D} conformally onto a simply connected, concave domain in $\widehat{\mathbb{C}}$:

- (1) meromorphic, univalent functions f with a simple pole at the origin and the normalization $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$, said to belong to the class Co_0 ,
- (2) meromorphic, univalent functions f with a simple pole at the point p ∈ (0, 1) and the normalization f(z) = z + ∑_{n=2}[∞] a_nzⁿ, said to belong to the class Co_p and
 (3) analytic, univalent functions f satisfying f(1) = ∞ with the normalizations f(z) =
- (3) analytic, univalent functions f satisfying $f(1) = \infty$ with the normalizations $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and an opening angle of $f(\mathbb{D})$ at ∞ less or equal to $\alpha \pi$ with $\alpha \in (1, 2]$, said to belong to the class $Co(\alpha)$.

A detailed discussion of these classes has already been done in [2]. We therefore concentrate on the class Co_p for the present article.

2. Alternative formulas

In [2] we introduced the following integral representation formula for functions of Co_p .

Theorem 1. [2] Let $p \in (0,1)$. For a meromorphic function $f : \mathbb{D} \to \widehat{\mathbb{C}}$ of class Co_p , there exists a function $\varphi : \mathbb{D} \to \mathbb{D}$, holomorphic in \mathbb{D} with $\varphi(p) = p$, such that the concave function can be represented as

(1)
$$f'(z) = \frac{p^2}{(z-p)^2(1-zp)^2} \exp \int_0^z \frac{-2\,\varphi(\zeta)}{1-\zeta\varphi(\zeta)} d\zeta$$

for $z \in \mathbb{D}$. Conversely, for any holomorphic function φ mapping $\mathbb{D} \to \mathbb{D}$ with $\varphi(p) = p$, there exists a concave function of class Co_p described by (1).

However, a fixed point of the function φ at p is not very useful for further discussions. Using several transformations we obtain an alternate version of Theorem 1.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Concave functions; Integral representations.

Corollary 2. Let $p \in (0,1)$. For a meromorphic function $f : \mathbb{D} \to \widehat{\mathbb{C}}$ of class Co_p , there exists a function $\Psi : \mathbb{D} \to \mathbb{D}$, holomorphic in \mathbb{D} with $\Psi(0) = 0$ such that the concave function can be represented as

(2)
$$f'(z) = \frac{p^2}{(z-p)^2(1-zp)^2} \exp\left(2\int_p^{\frac{p-z}{1-pz}} \frac{p}{1-p\zeta} - \frac{\Psi(\zeta)}{1-\zeta\Psi(\zeta)}d\zeta\right)$$

for $z \in \mathbb{D}$. Conversely, for any holomorphic function Ψ mapping $\mathbb{D} \to \mathbb{D}$ with $\Psi(0) = 0$, there exists a concave function of class Co_p described by (2).

Proof. Let $p \in (0, 1)$ and $z \in \mathbb{D}$. Applying the transformation $\zeta = \frac{p-x}{1-px}$ and $\Phi(x) = \varphi(\zeta)$ we obtain

$$\int_{0}^{z} \frac{-2\varphi(\zeta)}{1-\zeta\varphi(\zeta)} d\zeta = \int_{p}^{\frac{p-s}{1-pz}} \frac{-2\Phi(x)}{1-\frac{p-x}{1-px}\Phi(x)} \cdot \frac{p^{2}-1}{(1-px)^{2}} dx$$
$$= \int_{p}^{\frac{p-s}{1-pz}} \frac{-2\Phi(x)(p^{2}-1)}{(1-px)^{2}-(p-x)\Phi(x)(1-px)} dx$$

Here the function Φ is holomorphic in \mathbb{D} with $\Phi(0) = p$. Therefore there exists a function $\Psi : \mathbb{D} \to \mathbb{D}$ holomorphic in \mathbb{D} with $\Psi(0) = 0$, such that $\Phi(x) = \frac{p - \Psi(x)}{1 - p\Psi(x)}$. Then

$$\begin{split} \int_{0}^{z} \frac{-2\,\varphi(\zeta)}{1-\zeta\varphi(\zeta)} d\zeta &= \int_{p}^{\frac{p-z}{1-pz}} \frac{-2\frac{p-\Psi(x)}{1-p\Psi(x)}(p^{2}-1)}{(1-px)^{2}-(p-x)\frac{p-\Psi(x)}{1-p\Psi(x)}(1-px)} dx \\ &= \int_{p}^{\frac{p-z}{1-pz}} \frac{-2(p-\Psi(x))(p^{2}-1)}{(1-px)\left((1-p^{2})-x\Psi(x)(1-p^{2})\right)} dx \\ &= \int_{p}^{\frac{p-z}{1-pz}} \frac{-2(\Psi(x)-p)}{(1-px)(1-x\Psi(x)} dx \\ &= 2\int_{p}^{\frac{p-z}{1-pz}} \frac{p}{1-px} - \frac{\Psi(x)}{1-x\Psi(x)} dx. \end{split}$$

Changing the variable inside the integration and replacing the integral in (1) leads to the statement.

The formula for the residue derived from the integral representation in [2] was given as follows.

Theorem 3. [2] Let $f(z) \in Co_p$ be a concave function with a simple pole at some point $p \in (0,1)$. Then the residue of this function f can be described by some function $\varphi : \mathbb{D} \to \mathbb{D}$, holomorphic in \mathbb{D} and $\varphi(p) = p$, such that

(3)
$$\operatorname{Res}_{p} f = -\frac{p^{2}}{(1-p^{2})^{2}} \exp \int_{0}^{p} \frac{-2\varphi(z)}{1-x\varphi(z)} dz.$$

Applying the alternative representation from Corollary 2, we obtain

Corollary 4. Let $f(z) \in Co_p$ be a concave function with a simple pole at some point $p \in (0,1)$. Then the residue of this function f can be described by some function $\Psi : \mathbb{D} \to \mathbb{D}$, holomorphic in \mathbb{D} and $\Psi(0) = 0$, such that

(4)
$$\operatorname{Res}_{p} f = -\frac{p^{2}}{(1-p^{2})^{2}} \exp 2 \int_{0}^{p} \frac{\Psi(x)}{1-x\Psi(x)} - \frac{p}{1-px} dx.$$

The advantage of Corollary 4 over the original presentation is the fixed point of Ψ at the origin. This provide much easier means for the construction, than a fixed point at p. Furthermore, the Schwarz Lemma can be applied directly without any complicated analysis, giving a way for the estimate of special values. We will show an application in the next section.

3. RANGE OF THE RESIDUE

Wirths proved the following statement in [3] using the inequality

$$\left|\frac{1}{f(z)} - \frac{1}{z} + \frac{1+p^2}{p}\right| \le 1$$

provided by Miller in [1].

Theorem 5. [3] Let $p \in (0, 1)$. For $a \in \mathbb{C}$ there exists a function $f \in Co_p$ such that $a = \operatorname{Res}_p f$ if and only if

(5)
$$\left|a + \frac{p^2}{1 - p^4}\right| \le \frac{p^4}{1 - p^4}$$

Let $\vartheta \in [0, 2\pi)$. A function $f \in Co_p$ has the residue

$$a = -\frac{p^2}{1 - p^4} + e^{i\vartheta} \frac{p^4}{1 - p^4}$$

if and only if

(6)
$$f_{\vartheta}(z) = \frac{z - \frac{p}{1+p^2}(1+e^{i\vartheta})z^2}{\left(1 - \frac{z}{p}\right)(1-pz)}$$

The established representation formula for the residue can be used for a different approach of the same statement as described in [2]. For the present discussion we will use Corollary 4, which provides a shortcut for the proof. We also present some details, omitted in [2]

Proof. Let $p \in (0, 1)$ and $\Psi : \mathbb{D} \to \mathbb{D}$ be holomorphic in \mathbb{D} with fixed point at the origin. For $a = \operatorname{Res}_p f$ with $f \in \operatorname{Co}_p$ we obtain with the use of Corollary 4

$$\left|a + \frac{p^2}{1 - p^4}\right| \stackrel{(4)}{=} \frac{p^2}{1 - p^4} \left|\frac{1 + p^2}{1 - p^2} \exp\left(2\int_0^p \frac{\Psi(x)}{1 - x\Psi(x)} - \frac{p}{1 - px}dx\right) - 1\right|$$

Some basic calculations yield

$$\frac{1+p^2}{1-p^2} = \exp 2\left(\frac{1}{2}\log\frac{1+p^2}{1-p^2}\right) = \exp \int_0^p \frac{2p}{1-p^2x^2} dx$$

and therefore

$$\begin{aligned} \left| a + \frac{p^2}{1 - p^4} \right| &= \frac{p^2}{1 - p^4} \left| \exp \int_0^p 2\left(\frac{p}{1 - p^2 x^2} - \frac{p}{1 - px} + \frac{\Psi(x)}{1 - x\Psi(x)} \right) dx - 1 \right| \\ &= \frac{p^2}{1 - p^4} \left| \exp \int_0^p 2\frac{\Psi(x) - p^2 x}{(1 - x\Psi(x))(1 - p^2 x^2)} dx - 1 \right|. \end{aligned}$$

From the triangle inequality, we know that

$$|e^{w}-1| = \left|\sum_{n=1}^{\infty} \frac{w^{n}}{n!}\right| \le \sum_{n=1}^{\infty} \frac{|w|^{n}}{n!} = e^{|w|} - 1.$$

Hence

$$\left|a + \frac{p^2}{1 - p^4}\right| \le \frac{p^2}{1 - p^4} \left(\exp \int_0^p 2\left|\frac{\Psi(x) - p^2 x}{(1 - x\Psi(x))(1 - p^2 x^2)}\right| dx - 1\right).$$

Due to the fixed point at the origin, we can apply the Schwarz Lemma and have $|\Psi(x)| \le x$ for 0 < x < p. Furthermore, since $\left|\frac{w-p^2x}{1-xw}\right| \le \frac{(1-p^2)x}{1-x^2}$ for $|w| \le x$, we have

(7)
$$\left|\frac{\Psi(x) - p^2 x}{1 - x\Psi(x)}\right| \leq \frac{(1 - p^2)x}{1 - x^2}.$$

Using the above, we finally obtain

$$\begin{aligned} \left| a + \frac{p^2}{1 - p^4} \right| &\stackrel{(7)}{\leq} \quad \frac{p^2}{1 - p^4} \left(\exp \int_0^p 2 \frac{(1 - p^2)x}{(1 - x^2)(1 - p^2 x^2)} dx - 1 \right) \\ &= \quad \frac{p^2}{1 - p^4} \left(\exp(\log(1 + p^2)) - 1 \right) \\ &= \quad \frac{p^4}{1 - p^4}. \end{aligned}$$

The rest of the proof goes according to the way described in [2].

References

- [1] J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607-613.
- [2] R. Ohno, Characterizations for concave functions and integral representations, Proceedings of the 19th ICFIDCAA (2013), Tohoku Univ. Press, to appear.
- [3] K.-J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32 (2006), 209-214.

GRADUATE SCHOOL OF INFORMATION SCIENCES, TOHOKU UNIVERSITY, SENDAI, 980-8579, JAPAN. *E-mail address:* rohno@ims.is.tohoku.ac.jp