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Abstract. The multi-leader-follower game can be looked on as a generalization of the Nash
equilibrium problem (NEP), which contains several leaders and followers. Recently, the multi-leader-
follower game has been drawing more and more attention, for example, in power markets. On the
other hand, in such real-world problems, uncertainty normally exists and sometimes cannot simply be
ignored. To handle mathematical programming problems with uncertainty, the robust optimization
($RO$) technique assumes that the uncertain data belong to some sets, and the objective function is
minimized with respect to the worst-case scenario. In this paper, we focus on a class of multi-leader
single-follower games under uncertainty with some special structure. We particularly assume that
the follower’s problem only contains equality constraints. By means of the $RO$ technique, we first
formulate the game as the robust Nash equilibrium problem, and then the generalized variational
inequality (GVI) problem. We then establish some results on the existence and uniqueness of a
robust $L/F$ Nash equilibrium. We also apply the forward-backward splitting method to solve the
GVI formulation of the problem and present some numerical examples to illustrate the behavior of
robust $L/F$ Nash equilibria.
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1. Introduction. As a solid mathematical methodology to deal with many so-
cial problems, such as economics, management and political science, game theory
studies the strategic solutions, where an individual makes a choice by taking into ac-
count the others’ choices. Game theory was developed widely in 1950 as John Nash
introduced the well-known concept of Nash equilibrium in non-cooperative games
[27, 28], which means no player can obtain any more benefit by changing his/her cur-
rent strategy unilaterally (other players keep their current strategies). Since then, the
Nash equilibrium problem (NEP), or the Nash game, has received a lot of academic
attention from more and more researchers. It has also been playing an important role
in many apphcation areas of economics, engineering and so on [4, 35].

The multi-leader-follower game can be looked on as a generalization of the Nash
equilibrium problem, which arises in various real-world conflict situations such as the
oligopolistic competition in a deregulated electricity market. It may further be di-
vided into that which contains only one follower, called the multi-leader single-follower
game and that which contains multiple followers, called the multi-leader multi-follower
game. In the multi-leader-follower game, several distinctive players called the leaders
solve their own optimization problems in the upper-level where the leaders compete
in a Nash game. At the same time, given the leaders’ strategies, the remaining play-
ers called the followers also solve their own optimization problems in the lower-level
where the followers also compete in a Nash game which is parameterized by the strat-
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egy tuple of the leaders. In particular, the leaders can anticipate the responses of
the followers, and then use this ability to select their own optimal strategies. On the
other hand, each follower selects his$/her$ optimal strategy responding to the strategies
of the leaders and the other followers. When no player can improve his/her status by
changing his$/her$ strategy unilaterally, we call the current set of leaders’ and followers’
strategies a leader-follower Nash equilibrium, or simply a $L/F$ Nash equilibrium.

The multi-leader-follower game has been studied by some researchers and used
to model several problems in applications. $A$ particular type of multi-leader multi-
follower games was first studied by Sherali [34], where he established an existence
result about the equilibrium by assuming that each leader can exactly anticipate
the aggregate follower reaction curve. Sherali [34] also ensured the uniqueness of
equilibrium for a special case where all leader share an identical cost function. Su
[37] considered a forward market equilibrium model, where he extended the existence
result of Sherali [34] under some weaker assumptions. Pang and Fukushima [30]
introduced a class of remedial models for the multi-leader-follower game that can
be formulated as a generalized Nash equilibrium problem (GNEP) with convexified
strategy sets. Moreover, they also proposed some oligopolistic competition models
in electricity power markets that lead to multi-leader-follower games. Based on the
strong stationarity conditions of each leader in a multi-leader-follower game, Leyffer
and Munson [25] derived a family of NCP, NLP, and MPEC formulations of the
multi-leader-follower games. They also reformulated the game as a square nonlinear
complementarity problem by imposing an additional restriction. By considering the
equivalent implicit program formulation, Hu and Ralph [22] established an existence
result about the equilibrium of a multi-leader multi-follower game which arose from
a restructured electricity market model.

In the above mentioned two equilibrium concepts, Nash equilibrium and $L/F$ Nash
equilibrium, each player is assumed to have complete information about the game.
This means, in a NEP, each player can observe his/her opponents’ strategies and
choose his/her own strategy exactly, while in a multi-leader-follower game, each leader
can anticipate each follower’s response to the leaders’ strategies exactly. However, in
many real-world problems, such strong assumptions are not always satisfied. Another
kind of games with uncertain data and the corresponding concept of equilibria need
to be considered.

There have been some important work about the games with uncertain data. Un-
der the assumption on probability distributions called Bayesian hypothesis, Harsanyi
[17, 18, 19] considered a game with incomplete information, where the players have no
complete information about some important parameters of the game. Further assum-
ing all players shared some common knowledge about those probability distributions,
the game was finally reformulated as a game with complete information essentially,
called the Bayes-equivalent of the original game. DeMiguel and Xu [10] considered a
stochastic multi-leader multi-follower game applied in a telecommunication industry
and established the existence and uniqueness of the equilibrium. Shanbhag, Infanger
and Glynn [33] considered a class of stochastic multi-leader multi-follower game and
established the existence of local equilibrium by a related simultaneous stochastic
Nash game.

Besides the probability distribution models, the distribution-free models based
on the worst case scenario have received attention in recent years [1, 20, 29]. In the
latter models, each player makes a decision according to the concept of robust op-
timization [5, 6, 7, 11]. Basically, in robust optimization ($RO$ ), uncertain data are
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assumed to belong to some set called an uncertainty set, and then a solution is sought
by taking int$0$ account the worst case in terms of the objective function value and/or
the constraint violation. In a NEP containing some uncertain parameters, we may
also define an equilibrium called robust Nash equilibrium. Namely, if each player has
chosen a strategy pessimistically and no player can obtain more benefit by changing
his$/her$ own current strategy unilaterally (i.e., the other players hold their current
strategies), then the tuple of the current strategies of all players is defined as a ro-
bust Nash equilibrium, and the problem of finding a robust Nash equihbrium is called
a robust Nash equilibrium problem. Such an equilibrium problem was studied by
Hayashi, Yamashita and Fukushima [20], where the authors considered the bimatrix
game with uncertain data and proposed a new concept of equilibrium called robust
Nash equilibrium. Under some assumptions on the uncertainty sets, they presented
some existence results about robust Nash equilibria. Furthermore, the authors showed
that such a robust Nash equilibrium problem can be reformulated as a second-order
cone complementarity problem (SOCCP) by converting each player’s problem into
a second-order cone program (SOCP). Aghassi and Bertsimas [1] considered a ro-
bust Nash equilibrium in an $N$-person NEP with bounded polyhedral uncertainty
sets, where each player solves a linear programming problem. They also proposed a
method of computing robust Nash equilibria. Note that both of these models [1, 20]
particularly deal with linear objective functions in players’ optimization problems.

More recently, Nishimura, Hayashi and Fukushima [29] considered a more general
NEP with uncertain data, where each player solves an optimization problem with a
nonlinear objective function. Under some mild assumptions on the uncertainty sets,
the authors presented some results about the existence and uniqueness of the robust
Nash equilibrium. They also proposed to compute a robust Nash equilibrium by
reformulating the problem as an SOCCP.

In this paper, inspired by the previous work on the robust Nash equilibrium
problem, we extend the idea of robust optimization for the NEP to the multi-leader
single-follower game. 1 We propose a new concept of equilibrium for the multi-leader
single-follower gme with uncertain data, called robust $L/F$ Nash equilibrium. In par-
ticular, we show some results about the existence and uniqueness of the robust $L/F$

Nash equilibrium. We also consider the computation of the equilibrium by reformu-
lating the problem as a GVI problem. It may be mentioned here that the idea of this
paper also comes from Hu and Fukushima [21], where the authors considered a class
of multi-leader single-follower games with complete information and showed some ex-
istence and uniqueness results for the $L/F$ Nash equilibrium by way of the variational
inequality (VI) formulation. $A$ remarkable feature of the multi-leader single-follower
game studied in this paper is that the leaders anticipate the follower’s response under
their respective uncertain circumstances, and hence the follower’s responses estimated
by the leaders are generally different from each other.

The organization of this paper is as follows. In the next section, we describe the ro-
bust multi-leader single-follower game and define the corresponding robust $L/F$ Nash
equilibrium. In Section 3, we show sufficient conditions to guarantee the existence
of a robust $L/F$ Nash equilibrium by reformulating it as a robust Nash equilibrium
problem. In Section 4, we consider a particular class of robust multi-leader single-
follower games with uncertain data, and discuss the uniqueness of the robust Nash

$\overline{1We}$will focus on the multi-leader singlefollower game. This is, however, for simplicity of
presentation. In fact, the obtained results can naturally be extended to some multi-leader multi-
follower game, with considerable notational complication.
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equilibrium by way of the generalized variational inequality (GVI) formulation. In
Section 5, we show results of numerical experiments where the GVI formulation is
solved by the forward-backward splitting method. Finally, we conclude the paper in
Section 6.

Throughout this paper, we use the following notations. The gradient $\nabla f(x)$ of a
differentiable function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is regarded as a column vector. For any set $X,$

$\mathcal{P}(X)$ denotes the set comprised of all the subsets of X. $\mathbb{R}_{+}^{n}$ denotes the $n$-dimensional
nonnegative orthant in $\mathbb{R}^{n}$ , that is to say, $\mathbb{R}_{+}^{n}$ $:=\{x\in \mathbb{R}^{n}|x_{i}\geq 0, i=1, \cdots, n\}$ . For
any vector $x\in \mathbb{R}^{n}$ , its Euclidean norm is denoted by $|x\Vert$

$:=\sqrt{x^{T}x}$ . If a vector $x$

consists of several subvectors, $x^{1},$
$\cdots,$

$x^{N}$ , it is denoted, for simplicity of notation, as
$(x^{1}, \cdots, x^{N})$ instead of $((x^{1})^{T}, \cdots, (x^{N})^{T})^{T}.$

2. Preliminaries.

2.1. Nash Equilibrium Problems with Uncertainty. In this subsection, we
describe the Nash equilibrium problem with uncertainty and its solution concept,
robust Nash equilibrium. First, we introduce the NEP and Nash equilibrium.

In a NEP, there are $N$ players labelled by integers $\nu=1,$ $\cdots,$
$N$ . Player $v$ ’s

strategy is denoted by vector $x^{\nu}\in \mathbb{R}^{n_{\nu}}$ and his$/her$ cost function $\theta_{\nu}(x)$ depends on
all players’ strategies, which are collectively denoted by the vector $x\in \mathbb{R}^{n}$ consisting
of subvectors $x^{\nu}\in \mathbb{R}^{n_{\nu}},$ $\nu=1,$ $\cdots,$ $N$ , and $n:=n_{1}+\cdots+n_{N}$ . Player $v$ ’s strategy set
$X^{\nu}\subseteq \mathbb{R}^{n_{\nu}}$ is independent of the other players’ strategies which are denoted collectively
as $x^{-\nu}$ $:=(x^{1}, \cdots, x^{\nu-1}, x^{\nu+1}, \cdots, x^{N})\in \mathbb{R}^{n-\nu}$ , where $n_{-\nu}$ $:=n-n_{\nu}$ . For every fixed
but arbitrary vector $x^{-\nu}\in X^{-\nu}$ $:= \prod_{v=1,\nu\neq\nu}^{N}X^{\nu’}$ , which consists of all the other
players’ strategies, player $v$ solves the following optimization problem for his own
variable $x^{\nu}$ :

$minimizex \theta_{\nu}(x^{\nu}, x^{-v})$

(2.1)
subject to $x^{\nu}\in X^{\nu},$

where we denote $\theta_{\nu}(x)=\theta_{\nu}(x^{\nu}, x^{-\nu})$ to emphasize the particular role of $x^{\nu}$ in this
problem. $A$ tuple of strategies $x^{*};=(x^{*,\nu})_{v=1}^{N}\in X$ $:= \prod_{\nu=1}^{N}X^{\nu}$ is called a Nash
equilibrium if for all $\nu=1,$ $\cdots,$ $N,$

$\theta_{\nu}(x^{*,\nu}, x^{*,-\nu})\leq\theta_{\nu}(x^{\nu}, x^{*,-\nu}) \forall x^{\nu}\in X^{\nu}.$

For the $N$-person non-cooperative NEP, we have the following well-known result
about the existence of a Nash equihbrium.

LEMMA 2.1. [2, Theorem 9.1.1] Suppose that for each player $v,$

(a) the strategy set $X^{\nu}$ is nonempty, convex and compact,
(b) the objective function $\theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n_{-v}}arrow \mathbb{R}$ is continuous;
(c) the function $\theta_{\nu}$ is convex with respect to $x^{\nu}.$

Then, the $NEP$ comprised of the players’ problems (2.1) has at least one Nash equi-
librium.

In the NEP with complete information, all players are in the equal position.
Nash equilibrium is well-defined when all players seek their own optimal strategies
simultaneously by observing and estimating the opponents’ strategies, as well as the
values of their own objective functions, exactly. However, in many real-world $mo$dels,
such information may contain some uncertain parameters, because of observation
errors and/or estimation errors.

125



ROBUST NASH EQUILIBRIA IN MULTI-LEADER-FOLLOWER GAMES

To deal with some uncertainty in the NEP, Nishimura, Hayashi and Fukushima
[29] considered a Nash equilibrium problem with uncertainty and defined the corre-
sponding equilibrium called robust Nash equilibrium. Here we briefly explain it under
the following assumption:

A parameter $u^{\nu}\in \mathbb{R}^{l_{v}}$ is involved in player $v$ ’s objective function,
which is now expressed as $\theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-v}\cross \mathbb{R}^{l_{\nu}}arrow \mathbb{R}$. Although the
player $v$ does not know the exact value of parameter $u^{\nu}$ , yet he$/she$

can confirm that it must belong to a given nonempty set $U^{\nu}\subseteq \mathbb{R}^{l_{\nu}}.$

Then, player $\nu$ solves the following optimization problem with parameter $u^{\nu}$ for
his$/her$ own variable $x^{\nu}$ :

$minimizex \theta_{\nu}(x^{\nu}, x^{-\nu}, u^{\nu})$

(2.2)
subject to $x^{\nu}\in X^{\nu},$

where $u^{v}\in U^{\nu}$ . According to the $RO$ paradigm, we assume that each player $\nu$ tries to
minimize the worst value of his$/her$ objective function. Under this assumption, each
player $v$ considers the worst cost function $\tilde{\theta}_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n}-\nuarrow(-\infty, +\infty]$ defined by

$\tilde{\theta}_{\nu}(x^{\nu}, x^{-\nu}) :=\sup\{\theta_{\nu}(x^{\nu}, x^{-\nu}, u^{\nu})|u^{\nu}\in U^{\nu}\}$

and solves the following optimization problem:

$minimizex \tilde{\theta}_{\nu}(x^{\nu}, x^{-\nu})$

(2.3)
subject to $x^{\nu}\in X^{\nu}.$

Since this is regarded as a NEP with complete information, we can define the equi-
librium of the NEP with uncertain parameters as follows.

DEFINITION 2.2. $A$ stmtegy tuple $x=(x^{\nu})_{\nu=1}^{N}$ is called a robust Nash equilibrium
of the non-cooperative game $\omega$mprised of problems (2.2), if $x$ is a Nash equilibrium
of the $NEP$ comprised of problems (2.3).

2.2. Multi-Leader Single-Follower Games with Uncertainty. In this sub-
section, we describe a multi-leader single-follower game with uncertainty, and then
define the corresponding robust $L/F$ Nash equihbrium based on the above discussions
about the robust Nash equilibrium.

First, we introduce the multi-leader single-follower game. Let $X^{\nu}\subseteq \mathbb{R}^{n_{\nu}}$ denote
the strategy set of leader $v,$ $\nu=1,$ $\cdots,$

$N$ . We assume that the strategy set of each
leader is independent of the other rival leaders. We also denote each leader’s objective
function by $\theta_{\nu}(x^{\nu}, x^{-\nu}, y),$ $\nu=1,$ $\cdots,$

$N$ , which is dependent of his$/her$ own strategy
$x^{\nu}$ and all the other rival leaders’ strategies $x^{-\nu}\in X^{-\nu}$ $:= \prod_{\nu=1,\nu\neq\nu}^{N}X^{\nu’}$ , as well ae
the follower’s strategy denoted by $y.$

Let $\gamma(x, y)$ and $K(x)$ denote, respectively, the follower’s objective function and
strategy set that depend on the leaders’ strategies $x=(x^{\nu})_{\nu=1}^{N}$ . For given strate-
gies $x$ of the leaders, the follower chooses his$/her$ strategy by solving the following
optimization problem for variable $y$ :

minimize $\gamma(x, y)$

(2.4)
subject to $y\in K(x)$ .

For the multi-leader single-follower game described above, we can define an equi-
hbrium called $L/F$ Nash equilibrium [21], under the assumption that all the leaders can
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anticipate the follower’s responses, observe and estimate their opponents’ strategies,
and evaluate their own objective functions exactly. However, in many real-world $mo$d-
els, the information may contain uncertainty, due to some observation errors and$/or$

estimation errors. In this paper, we particularly consider a multi-leader single-follower
game with uncertainty, where each leader $\nu=1,$ $\cdots,$ $N$ tries to solve the following
uncertain optimization problem for his$/her$ own variable $x^{\nu}$ :

$minimizex \theta_{\nu}(x^{\nu}, x^{-\nu}, y, u^{v})$

(2.5)
subject to $x^{\nu}\in X^{\nu},$

where $y$ is an optimal solution of the following follower’s optimization problem (2.4)
parameterized by $x=(x^{\nu})_{\nu=1}^{N}$ . In this problem, an uncertain parameter $u^{\nu}\in \mathbb{R}^{l_{\nu}}$

appears in the objective function $\theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}\cross \mathbb{R}^{m}\cross \mathbb{R}^{l_{\nu}}arrow \mathbb{R}$ . We assume that
although leader $v$ does not know the exact value of parameter $u^{\nu}$ , yet he/she can
confirm that it must belong to a given nonempty set $U^{\nu}\subseteq \mathbb{R}^{l_{\nu}}.$

Here we assume that although the follower responds to the leaders’ strategies with
his/her optimal strategy, each leader cannot anticipate the response of the follower
exactly because of some observation errors and/or estimation errors. Consequently,
each leader $v$ estimates that the follower solves the following uncertain optimization
problem for variable $y$ :

minimize $\gamma_{\nu}(x, y, v^{v})$

(2.6)
subject to $y\in K(x)$ ,

where an uncertain parameter $v^{\nu}\in \mathbb{R}^{k_{\nu}}$ appears in the objective function $\gamma_{\nu}$ : $\mathbb{R}^{n}\cross$

$\mathbb{R}^{m}\cross \mathbb{R}^{k_{\nu}}arrow \mathbb{R}$ conceived by leader $\nu$ . We assume that although leader $v$ cannot know
the exact value of $v^{\nu}$ , yet he/she can estimate that it belongs to a given nonempty
set $V^{\nu}\subseteq \mathbb{R}^{k_{\nu}}$ . It should be emphasized that the uncertain parameter $v^{\nu}$ is associated
with leader $\nu$ , which means the leaders may estimate the follower’s problem differently.
Hence, the follower’s response anticipated by a leader may be different from the one
anticipated by another leader.

In the follower’s problem (2.6) anticipated by leader $v$ , we assume that for any
fixed $x\in X$ and $v^{\nu}\in V^{\nu},$ $\gamma_{\nu}(x, \cdot, v^{\nu})$ is a strictly convex function and $K(x)$ is a
nonempty, closed, convex set. That is, problem (2.6) is a strictly convex optimiza-
tion problem parameterized by $x$ and $v^{\nu}$ . We denote its unique optimal solution by
$y^{\nu}(x, v^{\nu})$ , which we assume to exist.

Therefore, the above multi-leader single-follower game with uncertainty can be
reformulated as a robust Nash equilibrium problem where each player $v$ solves the
following uncertain optimization problem for his/her own variable $x^{\nu}$ :

$mini_{\nu}^{m}$ize $\theta_{\nu}(x^{\nu}, x^{-\nu}, y^{\nu}(x^{\nu}, x^{-\nu}, v^{\nu}), u^{\nu})$

(2.7)
subject to $x^{\nu}\in X^{v},$

where uncertain parameters $u^{\nu}\in U^{\nu}$ and $v^{\nu}\in V^{\nu}.$

By means of the $RO$ paradigm, we define the worst cost function $\tilde{\Theta}_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross$

$\mathbb{R}^{n-\nu}arrow(-\infty, +\infty]$ for each player $v$ as follows:

(2.8) $\tilde{\Theta}_{\nu}(x^{\nu}, x^{-v}):=\sup\{\Theta_{v}(x^{\nu}, x^{-\nu}, v^{\nu}, u^{\nu})|u^{\nu}\in U^{\nu}, v^{\nu}\in V^{\nu}\},$

where $\Theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-v}\cross \mathbb{R}^{k_{\nu}}\cross \mathbb{R}^{l_{\nu}}arrow \mathbb{R}$ is defined by $\Theta_{\nu}(x^{\nu}, x^{-\nu}, v^{\nu})u^{\nu})$ $:=$

$\theta_{\nu}(x^{\nu}, x^{-\nu}, y^{\nu}(x^{\nu}, x^{-\nu}, v^{\nu}), u^{\nu})$ .
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Thus, we obtain a NEP with complete information, where each player $v$ solves
the following optimization problem:

$minimizex \tilde{\Theta}_{\nu}(x^{\nu}, x^{-\nu})$

(2.9)
subject to $x^{\nu}\in X^{\nu}.$

Moreover, we can define an equilibrium for the multi-leader single-follower game with
uncertainty comprised of problems (2.5) and (2.6) as follows.

DEFINITION 2.3. $A$ strategy tuple $x=(x^{\nu})_{\nu=1}^{N}\in X$ is called a robust $L/F$

Nash equilibrium of the multi-leader single-follower game with uncertainty comprised
of problems (2.5) and (2.6), if $x$ is a robust Nash equilibrium of the $NEP$ with uncer-
tainty comprised of problems (2.7), i. e., a Nash equilibrium of the $NEP$ compmsed of
problems (2.9).

2.3. Generalized Variational Inequality Problem. The generahzed varia-
tional inequahty (GVI) problem GVI $(S, \mathcal{F})$ is to find a vector $x^{*}\in S$ such that

(2.10) $\exists\xi\in \mathcal{F}(x^{*})$ , $\xi^{T}(x-x^{*})\geq 0$ for all $x\in S,$

where $S\subseteq \mathbb{R}^{n}$ is a nonempty closed convex set and $\mathcal{F}$ : $\mathbb{R}^{n}arrow \mathcal{P}(\mathbb{R}^{n})$ is a given
set-valued mapping. If the set-valued mapping $\mathcal{F}$ happens to be a vector-valued
function $F:\mathbb{R}^{n}arrow \mathbb{R}^{n}$ , i.e., $\mathcal{F}(x)=\{F(x)\}$ , then GVI (2.10) reduces to the following
variational inequality (VI) problem VI$(S, F)$ :

(2.11) $F(x^{*})^{T}(x-x^{*})\geq 0$ for all $x\in S.$

The VI and GVI problems have wide applications in various areas, such as trans-
portation systems, mechanics, and economics [15, 26].

Recall that a vector-valued function $F$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ is said to be monotone (strictly
monotone) on a nonempty convex set $S\subseteq \mathbb{R}^{n}$ if $(F(x)-F(y))^{T}(x-y)\geq(>)0$ for
all $x,$ $y\in S$ $(for all x, y\in S such that x\neq y)$ . It is well known that if $F$ is a strictly
monotone function, VI (2.11) has at most one solution [13]. The GVI problem has
a similar property. To see this, we first introduce the monotonicity of a set-valued
mapping.

DEFINITION 2.4. [39] Let $S\subseteq \mathbb{R}^{n}$ be a nonempty convex set. $A$ set-valued
mapping $\mathcal{F}$ : $\mathbb{R}^{n}arrow \mathcal{P}(\mathbb{R}^{n})$ is said to be monotone (strictly monotone) on $S$ , if the
inequality

$(\xi-\eta)^{T}(x-y)\geq(>)0$

holds for all $x,$ $y\in S$ $(for all x, y\in S such that x\neq y)$ and any $\xi\in \mathcal{F}(x),$ $\eta\in \mathcal{F}(y)$ .
Moreover, $\mathcal{F}$ is called maximal monotone if its graph

$gph\mathcal{F}=\{(x,\xi)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}|\xi\in \mathcal{F}(x)\}$

is not properly contained in the graph of any other monotone mapping on $\mathbb{R}^{n}.$

PROPOSITION 2.5. [14] Suppose that the set-valued mapping $\mathcal{F}$ : $\mathbb{R}^{n}arrow \mathcal{P}(\mathbb{R}^{n})$ is
strictly monotone on S. Then the $GVI(2.10)$ has at most one solution.

Maximal monotone mappings have been studied extensively, e.g., see [31]. $A$

well-known example of the monotone set-valued mapping is $T=\partial f$ , where $\partial f$ is
the subdifferential of a proper closed convex function. Another important example is
$T=F+N_{S}$ , where $F$ is a vector-valued, continuous maximal monotone mapping, $S$
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is a nonempty closed convex set in $\mathbb{R}^{n}$ , and $N_{S}$ is the normal cone mapping defined by
$N_{S}(x):=\{d\in \mathbb{R}^{n}|d^{T}(y-x)\leq 0, \forall y\in S\}$ . Then, from the inequality (2.11), we can
easily see that a vector $x^{*}\in S$ solves the VI $(S, F)$ if and only if $0\in F(x^{*})+N_{S}(x^{*})$ .
For the GVI problem, a similar property holds. $A$ vector $x^{*}\in S$ solves the GVI $(S, \mathcal{F})$

if and only if $0\in \mathcal{F}(x^{*})+N_{S}(x^{*})$ . In Section 5, we will solve the GVI formulation of
our game by applying a sphtting method to this generalized equation.

3. Existence of Robust $L/F$ Nash Equilibrium. In this section, we discuss
the existence of a robust $L/F$ Nash equilibrium for a multi-leader single-follower game
with uncertainty.

ASSUMPTION 3.1. For each leader $v$ , the following conditions hold.
(a) The functions $\theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}\cross \mathbb{R}^{m}\cross \mathbb{R}^{l_{\nu}}arrow \mathbb{R}$ and $y^{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}\cross \mathbb{R}^{k_{v}}arrow \mathbb{R}^{m}$

are both continuous.
(b) The uncertainty sets $U^{\nu}\subseteq \mathbb{R}^{l_{\nu}}$ and $V^{v}\subseteq \mathbb{R}^{k_{\nu}}$ are both nonempty and compact.
(c) The strategy set $X^{\nu}$ is nonempty, compact and convex.
(d) The function $\Theta_{\nu}(\cdot, x^{-v}, v^{\nu}, u^{\nu})$ : $\mathbb{R}^{n_{\nu}}arrow \mathbb{R}$ is convex for any fixed $x^{-\nu},$ $v^{\nu},$

and $u^{\nu}.$

Under Assumption 3.1, we have the following property for function $\tilde{\Theta}_{\nu}$ defined
by (2.8):

$PROPOSITION\sim 3.2$ . For each leader $v$ , under Assumption 3.1, we have
(a) $\Theta_{\nu}(x)$ is finite for any $x\in X$ , and the function $\tilde{\Theta}_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}arrow \mathbb{R}$ is

continuous;
(b) the function $\tilde{\Theta}_{\nu}(\cdot, x^{-v})$ : $\mathbb{R}^{n_{\nu}}arrow \mathbb{R}$ is convex on $X^{\nu}$ for any fixed $x^{-\nu}\in X^{-\nu}.$

Proof. The results follow from Theorem 1.4.16 in [3] and Proposition 1.2.4(c) in
[9] directly. $\square$

Now, we establish the existence of a robust $L/F$ Nash equilibrium.
THEOREM 3.3. If Assumption 3.1 holds, then the multi-leader single-follower

game with uncertainty comprised of problems (2.5) and (2.6) has at least one robust
$L/F$ Nash equilibrium.

Proof. For each leader $v$ , since Assumption 3.1 holds, the function $\tilde{\Theta}_{\nu}$ is contin-
uous and finite at any $x\in X$ and it is als$0$ convex with respect to $x^{\nu}$ on $X^{\nu}$ from
Proposition 3.2. Therefore, from Lemma 2.1, the NEP comprised of problems (2.9)
has at least one Nash equilibrium. That is to say, the Nash equilibrium problem
with uncertainty comprised of problems (2.7) has at least one robust Nash equilib-
rium. This also means, by Definition 2.2, the multi-leader single-follower game with
uncertainty comprised of problems (2.5) and (2.6) has at least one robust $L/F$ Nash
equilibrium. $\square$

4. A Uniqueness Result for a Robust $L/F$ Nash Equilibrium Model. In
this section, we discuss the uniqueness of a robust $L/F$ Nash equilibrium for a special
class of multi-leader single-follower games with uncertainty. In this game, each leader
$v=1,$ $\cdots,$

$N$ solves the following optimization problem:

$mini_{\nu}^{mize} \theta_{\nu}(x^{v}, x^{-v}, y, u^{\nu}):=\omega_{\nu}(x^{\nu}, x^{-\nu}, u^{\nu})+\varphi_{\nu}(x^{\nu}, y)$

subject to $x^{\nu}\in X^{\nu},$
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where $y$ is an optimal solution of the following follower’s problem parameterized by
the leaders’ strategy tuple $x=(x^{\nu})_{\nu=1}^{N}$ :

minimize $\gamma(x, y)$ $:= \psi(y)-\sum_{\nu=1}^{N}\varphi_{\nu}(x^{\nu}, y)$

subject to $y\in \mathcal{Y}.$

In this game, the objective functions of $N$ leaders and the follower contain some
related terms. In particular, the last term of each leader’s objective function appears
in the follower’s objective function in the negated form. Therefore, the game partly
contains a kind of zero-sum structure between each leader and the follower. An ap-
phcation of such special multi-leader single-follower games with complete information
has been presented with some illustrative numerical examples in [21]. Here, in each
leader $\nu$ ’s problem, we assume that the strategy set $X^{\nu}$ is nonempty, compact and
convex. Due to some estimation errors, leader $v$ cannot evaluate his/her objective
function exactly, but only knows that it contains some uncertain parameter $u^{\nu}$ be-
longing to a fixed uncertainty set $U^{\nu}\subseteq \mathbb{R}^{l_{v}}$ . We further assume that functions $\omega_{\nu},$

$\varphi_{\nu},$
$\psi$ and the set $\mathcal{Y}$ have the following explicit representations:

$\omega_{\nu}(x^{\nu}, x^{-\nu}, u^{\nu}) :=\frac{1}{2}(x^{\nu})^{T}H_{\nu}x^{\nu}+\sum_{\nu=1,\nu\neq\nu}^{N}(x^{\nu})^{T}E_{\nu\nu’}x^{\nu’}+(x^{\nu})^{T}R_{\nu}u^{\nu},$

$\varphi_{\nu}(x^{\nu}, y):=(x^{\nu})^{T}D_{\nu}y,$

$\psi(y):=\frac{1}{2}y^{T}By+c^{T}y,$

$\mathcal{Y}:=\{y\in \mathbb{R}^{m}|Ay+a=0\},$

where $H_{\nu}\in \mathbb{R}^{n_{\nu}\cross n_{\nu}}$ is symmetric, $D_{\nu}\in \mathbb{R}^{n_{\nu}\cross m},$ $R_{\nu}\in \mathbb{R}^{n_{\nu}\cross l_{\nu}},$ $E_{\nu\nu’}\in \mathbb{R}^{n_{\nu}\cross n_{\nu’}},$

$v,$ $\nu’=1,$ $\cdots,$ $N$ , and $c\in \mathbb{R}^{m}$ . In the case that $N=2$ , since there is no ambiguity,
for convenience, we write $E_{\nu}$ instead of $E_{\nu\nu’}$ . Matrix $B\in \mathbb{R}^{m\cross m}$ is assumed to be
symmetric and positive definite. Moreover, $A\in \mathbb{R}^{p0\cross m},$ $a\in \mathbb{R}^{p_{0}}$ , and $A$ has full row
rank.

We assume that although the follower can respond to all leaders’ strategies exactly,
yet each leader $\nu$ cannot exactly know the follower’s problem, but can only anticipate
it as follows:

minimizey $\gamma^{\nu}(x, y, v^{\nu})$ $:= \frac{1}{2}y^{T}By+(c+v^{\nu})^{T}y-\sum_{\nu=1}^{N}\varphi_{\nu}(x^{\nu}, y)$

subject to $y\in \mathcal{Y}.$

Here, the uncertain parameter $v^{\nu}$ belongs to some fixed uncertainty set $V^{\nu}\subseteq \mathbb{R}^{m}.$

In the remainder of the paper, for simplicity, we will mainly consider the following
game with two leaders, labelled I and II. The results presented below can be extended
to the case of more than two leaders in a straightforward manner. 2 In this game,
leader $\nu$ solves the following problem:

$mini_{\nu}^{m}$ize $\frac{1}{2}(x^{\nu})^{T}H_{\nu}x^{\nu}+(x^{v})^{T}E_{\nu}x^{-\nu}+(x^{\nu})^{T}R_{\nu}u^{\nu}+(x^{\nu})^{T}D_{\nu}y$

(4.1)
subject to $x^{\nu}\in X^{\nu},$

$\overline{2We}$will give a numerical example with three leaders in Section 5.
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where $y$ is an optimal solution of the following follower’s problem anticipated by leader
$\nu$ :

$minimizey \frac{1}{2}y^{T}By+(c+v^{\nu})^{T}y-(x^{I})^{T}D_{I}y-(x^{II})^{T}D_{II}y$

(4.2)
subject to $Ay+a=0,$

where $u^{\nu}\in U^{\nu}$ and $v^{\nu}\in V^{\nu},$ $v=I$ , II.
Since the follower’s problems estimated by two leaders are both strictly convex

quadratic programming problems with equality constraints, each of them is equivalent
to finding a pair $(y, \lambda)\in \mathbb{R}^{m}\cross \mathbb{R}^{p_{0}}$ satisfying the following KKT system of linear
equations for $v=I$ , II:

$By+c+v^{\nu}-(D_{I})^{T}x^{I}-(D_{II})^{T}x^{II}+A^{T}\lambda=0,$

$Ay+a=0.$

Note that, under the given assumptions, a KKT pair $(y, \lambda)$ exists uniquely for each
$(x^{I}, x^{II}, v^{\nu})$ and is denoted by $(y^{\nu}(x^{I}, x^{II}, v^{\nu}), \lambda^{\nu}(x^{I}, x^{II}, v^{\nu}))$ . For each $v=I$ , II, by
direct calculations, we have

$y^{\nu}(x^{I}, x^{II}, v^{\nu})=-B^{-1}(c+v^{\nu})-B^{-1}A^{T}(AB^{-1}A^{T})^{-1}(a-AB^{-1}(c+v^{\nu}))$

$+[B^{-1}(D_{I})^{T}-B^{-1}A^{T}(AB^{-1}A^{T})^{-1}AB^{-1}(D_{I})^{T}]x^{I}$

$+[B^{-1}(D_{II})^{T}-B^{-1}A^{T}(AB^{-1}A^{T})^{-1}AB^{-1}(D_{II})^{T}]x^{II},$

$\lambda^{\nu}(x^{I}, x^{II}, v^{\nu})=(AB^{-1}A^{T})^{-1}(a-AB^{-1}(c+v^{\nu}))+(AB^{-1}A^{T})^{-1}AB^{-1}(D_{I})^{T}x^{I}$

$+(AB^{-1}A^{T})^{-1}AB^{-1}(D_{II})^{T}x^{II}.$

Let $P=I-B^{-\frac{1}{2}}A^{T}(AB^{-1}A^{T})^{-1}AB^{-\frac{1}{2}}$ . Then, by substituting each $y^{\nu}(x^{I}, x^{II}, v^{\nu})$

for $y$ in the respective leader’s problem, leader $v$ ’s objective function can be rewritten
as

$\Theta_{\nu}(x^{\nu}, x^{-\nu}, v^{\nu}, u^{v})$

$:=\theta_{\nu}(x^{\nu}, x^{-\nu}, y^{v}(x^{v}, x^{-\nu}, v^{\nu}), u^{\nu})$

(4.3)
$= \frac{1}{2}(x^{\nu})^{T}H_{v}x^{\nu}+(x^{\nu})^{T}D_{\nu}G_{\nu}x^{\nu}+(x^{\nu})^{T}R_{\nu}u^{\nu}+(x^{\nu})^{T}D_{v}r$

$+(x^{v})^{T}(D_{\nu}G_{-\nu}+E_{\nu})x^{-\nu}-(x^{\nu})^{T}D_{\nu}B^{-\frac{1}{2}}PB^{-\frac{1}{2}}v^{\nu}.$

Here, $G_{I}\in \mathbb{R}^{m\cross n_{I}},$ $G_{II}\in \mathbb{R}^{m\cross n_{II}}$ , and $r\in \mathbb{R}^{m}$ are given by

$G_{I}=B^{-\frac{1}{2}}PB^{-\frac{1}{2}}(D_{I})^{T},$

$G_{II}=B^{-\frac{1}{2}}PB^{-\frac{1}{2}}(D_{II})^{T},$

$r=-B^{-\frac{1}{2}}PB^{-\frac{1}{2}}c-B^{-1}A^{T}(AB^{-1}A^{T})^{-1}a.$

With the functions $\Theta_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}\cross \mathbb{R}^{m}\cross \mathbb{R}^{l_{\nu}}arrow \mathbb{R}$ defined by (4.3), we
can formulate the above multi-leader single-follower game with uncertainty as a NEP
with uncertainty where as the vth player, leader $\nu$ solves the following optimization
problem:

$mini_{\nu}^{m}$ize $\Theta_{\nu}(x^{\nu}, x^{-\nu}, v^{\nu}, u^{\nu})$

subject to $x^{\nu}\in X^{\nu}.$
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Here, $u^{\nu}\in U^{\nu}$ and $v^{\nu}\in V^{\nu},$ $v=I$ , II.
By means of the $RO$ technique, we construct the robust counterpart of the above

NEP with uncertainty which is a NEP with complete information, where leader $\nu$

solves the following optimization problem:

$minimizex \tilde{\Theta}_{\nu}(x^{\nu}, x^{-\nu})$

(4.4)
subject to $x^{\nu}\in X^{\nu}.$

Here, functions $\tilde{\Theta}_{\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-v}arrow \mathbb{R}$ and $\tilde{\Theta}_{-\nu}$ : $\mathbb{R}^{n_{\nu}}\cross \mathbb{R}^{n-\nu}arrow \mathbb{R}$ are defined by

$\tilde{\Theta}_{\nu}(x^{\nu}, x^{-\nu}) :=\sup\{\Theta_{\nu}(x^{\nu}, x^{-\nu}, v^{\nu}, u^{\nu})|u^{\nu}\in U^{\nu}, v^{\nu}\in V^{\nu}\}$

$= \frac{1}{2}(x^{\nu})^{T}H_{\nu}x^{\nu}+(x^{\nu})^{T}D_{\nu}G_{\nu}x^{\nu}+(x^{\nu})^{T}D_{\nu}r$

$+(x^{\nu})^{T}(D_{\nu}G_{-\nu}+E_{\nu})x^{-v}+\phi_{\nu}(x^{\nu})$ ,

where $\phi_{\nu}$ : $\mathbb{R}^{n_{\nu}}arrow \mathbb{R}$ are defined by

$\phi_{\nu}(x^{\nu}) :=\sup\{(x^{\nu})^{T}R_{\nu}u^{\nu}|u^{\nu}\in U^{\nu}\}$

(4.5)
$+ \sup\{-(x^{\nu})^{T}D_{\nu}B^{-\frac{1}{2}}PB^{-\frac{1}{2}}v^{\nu}|v^{\nu}\in V^{\nu}\}.$

In what follows, based on the analysis of the previous section, we first show the
existence of a robust $L/F$ Nash equilibrium.

THEOREM 4.1. Suppose that for each $v=I$ , II, the strategy set $X^{\nu}$ is nonempty,
compact and convex, the matrix $H_{\nu}\in \mathbb{R}^{n_{\nu}\cross n_{\nu}}$ is symmetric and positive semidefinite,
and the uncertainty sets $U^{\nu}$ and $V^{\nu}$ are nonempty and compact. Then, the multi-
leader single-follower game with uncertainty comprised of problems (4.1) and (4.2)
has at least one robust $L/F$ Nash equilibrium.

Proof. We will show that the conditions in Assumption 3.1 hold. Since conditions
$(a)-(c)$ clearly hold, we only confirm that condition (d) holds. In fact, recalling that
$P$ is a projection matrix, it is easy to see that $D_{I}G_{I}$ and $D_{II}G_{II}$ are both positive
semidefinite. Since $H_{I}$ and $H_{II}$ are also positive semidefinite, the functions $\Theta_{I}$ and
$\Theta_{II}$ are convex with respect to $x^{I}$ and $x^{II}$ , respectively. Therefore, Assumption 3.1
holds. Hence, by Theorem 3.3, the proof is complete. $\square$

In order to investigate the uniqueness of a robust $L/F$ Nash equilibrium, we
reformulate the robust Nash equilibrium counterpart comprised of problems (4.4) as
a GVI problem.

Notice that the functions $\tilde{\Theta}_{\nu}$ are convex with respect to $x^{\nu}$ . Let us define the
mappings $T_{I}:\mathbb{R}^{nI}\cross \mathbb{R}^{n_{II}}arrow \mathbb{R}^{n_{1}}$ and $T_{II}:\mathbb{R}^{n_{I}}\cross \mathbb{R}^{nII}arrow \mathbb{R}^{n_{II}}$ as

$T_{I}(x^{I}, x^{II}) :=H_{I}x^{I}+D_{I}r+2D_{I}G_{I}x^{I}+(D_{I}G_{II}+E_{I})x^{II},$

$T_{II}(x^{I}, x^{II}) :=H_{II}x^{II}+D_{II}r+(D_{II}G_{I}+E_{II})x^{I}+2D_{II}G_{II}x^{II}.$

Then, the subdifferentials of $\tilde{\Theta}_{\nu}$ with respect to $x^{\nu}$ can be written as
$\partial_{x^{I}}\tilde{\Theta}_{I}(x^{I}, x^{II})=T_{I}(x^{I}, x^{II})+\partial\phi_{I}(x^{I})$ ,

$\partial_{x^{II}}\tilde{\Theta}_{II}(x^{I}, x^{II})=T_{II}(x^{I}, x^{II})+\partial\phi_{II}(x^{II})$,

where $\partial\phi_{\nu}$ denotes the subdifferentials of $\phi_{\nu},$ $\nu=I$ , II. By [8, Proposition B.$24(f)$ ],
for each $\nu=I$ , II, $x^{*,\nu}$ solves the problem (4.4) if and only if there exists a subgradient
$\xi^{\nu}\in\partial_{x^{\nu}}\tilde{\Theta}_{\nu}(x^{*,\nu}, x^{-\nu})$ such that

(4.6) $(\xi^{\nu})^{T}(x^{\nu}-x^{*,\nu})\geq 0 \forall x^{\nu}\in X^{\nu}.$
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Therefore, we can investigate the uniqueness of a robust $L/F$ Nash equihbrium
by considering the following GVI problem which is formulated by concatenating the
above first-order optimality conditions (4.6) of all leaders’ problems: Find a vector
$x^{*}=$ $(x^{*,I}, x^{*\prime}11)\in X$ $:=X^{I}\cross X$11 such that

$\exists\xi\in\tilde{\mathcal{F}}(x^{*})$ , $\xi^{T}(x-x^{*})\geq 0$ for all $x\in X,$

where $\xi=(\xi^{I}, \xi^{II})\in\sim \mathbb{R}^{n},$ $x=(x_{\sim}^{I}, x^{II})\in \mathbb{R}^{n}$ , and the set-valued mapping $\tilde{\mathcal{F}}$ : $\mathbb{R}^{n}arrow$

$\mathcal{P}(\mathbb{R}^{n})$ is defined by $\mathcal{F}(x)$ $:=\partial_{x^{I}}\Theta_{I}(x^{I}, x^{II})\cross\partial_{x^{II}}\tilde{\Theta}$ 11 $(x^{I}, x^{II})$ .
In what follows, we show that $\tilde{\mathcal{F}}$ is strictly monotone under suitable conditions.

Then, by Proposition 2.5, we can ensure the uniqueness of a robust $L/F$ Nash equilib-
rium. Since the subdifferentials $\partial\phi_{I}$ and $\partial\phi_{II}$ are monotone, we only need to establish
the strict monotonicity of mapping $T:\mathbb{R}^{n_{I}+n_{II}}arrow \mathbb{R}^{n_{I}+n_{II}}$ defined by

(4.7) $T(x);=(T_{II}(x^{I},x^{II})T_{I}(x^{I},x^{II}))\cdot$

For this purpose, we assume that the matrix

(4.8) $\mathcal{J}:=(\begin{array}{ll}H_{I} E_{I}E_{II} H_{II}\end{array})$

is positive definite. Note that the transpose of matrix $\mathcal{J}$ is the Jacobian of the
so-called pseudo gradient of the first two terms $\frac{1}{2}(x^{v})^{T}H_{\nu}x^{\nu}+(x^{\nu})^{T}E_{\nu}x^{\nu’}$ in the
objective functions of problems (4.1) and (4.2). The positive definiteness of such a
matrix is often assumed in the study on NEP and GNEP [23, 24, 32].

LEMMA 4.2. Suppose that matrix $\mathcal{J}$ defined by (4.8) is positive definite. Then,
the mapping $T$ defined by (4.7) is strictly monotone.

Proof. For any $x=(x^{I}, x^{II}),\tilde{x}=(\tilde{x}^{I},\tilde{x}^{II})\in X$ such that $x\neq\tilde{x}$ , we have

$(x-\tilde{x})^{T}(T(x)-T(\tilde{x}))$

$=(x-\tilde{x})^{T}(\begin{array}{ll}H_{I} E_{I}E_{II} H_{II}\end{array})(x-\tilde{x})+(x-\tilde{x})^{T}(\begin{array}{lll}2D_{I}G_{I} D_{I} G_{II}D_{II}G_{I} 2D_{II}G_{II} \end{array})(x-\tilde{x})$ .

It can be shown [21, Lemma 4.1] that matrix $(\begin{array}{ll}2D_{I}G_{I} D_{I}G_{II}D_{II}G_{I} 2D_{II}G_{II}\end{array})$ is positive semidef-
inite. Hence, the mapping $T$ is strictly monotone since matrix $\mathcal{J}$ is positive definite
by assumption. The proof is complete. $\square$

Now, we are ready to establish the uniqueness of a robust $L/F$ Nash equilibrium.
THEOREM 4.3. Suppose that matrix $\mathcal{J}$ defined by (4.8) is positive definite, and

the uncertainty sets $U^{\nu}$ and $V^{\nu}$ are nonempty and compact. Then the multi-leader
single-follower game with uncertainty comprised of problems (4.1) and (4.2) has a
unique robust $L/F$ Nash equilibrium.

Proof. It follows directly from Theorem 4.1, Proposition 2.5 and Lemma 4.2. We
omit the details. $\square$

REMARK 4.1. In our current framework, it is impossible to deal with the case
where the follower’s problem contains inequality constraints since in this case the
leaders’ problems will become nonconvex from the complementarity conditions in the
$KKT$ system of the follower’s problem.
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5. Numerical Experiments. In this section, we present some numerical re-
sults for the robust $L/F$ Nash equilibrium model described in Section 4. For this
purpose, we use a sphtting method for finding a zero of the sum of two maximal
monotone mappings $\mathcal{A}$ and $\mathcal{B}$ . The sphtting method solves a sequence of subprob-
lems, each of which involves only one of the two mappings $\mathcal{A}$ and $\mathcal{B}$ . In particular,
the forward-backward splitting method [16] may be regarded as a generalization of
the gradient projection method for constrained convex optimization problems and
monotone variational inequahty problems. In the case where $\mathcal{B}$ is vector-valued, the
forward-backward sphtting method for finding a zero of the mapping $\mathcal{A}+\mathcal{B}$ uses the
recursion

$x^{k+1}=(I+\mu \mathcal{A})^{-1}(I-\mu \mathcal{B})(x^{k})$

(5.1)
$;=J_{\mu \mathcal{A}}((I-\mu \mathcal{B})(x^{k})) k=0,1, \cdots,$

where the mapping $J_{\mu \mathcal{A}}$ $:=(I+\mu \mathcal{A})^{-1}$ is called the resolvent of $\mathcal{A}$ (with constant
$\mu>0)$ , which is a vector-valued mapping from $\mathbb{R}^{n}$ to $dom\mathcal{A}.$

In what follows, we assume that, in the robust multi-leader-follower game com-
prised of problems (4.1) and (4.2), for each leader $v=I$ , II, the uncertainty sets
$U^{\nu}\in \mathbb{R}^{l_{\nu}}$ and $V^{\nu}\in \mathbb{R}^{m}$ are given by

$U^{\nu}:=\{u^{\nu}\in \mathbb{R}^{l_{\nu}}|\Vert u^{\nu}\Vert\leq\rho^{\nu}\}$

and

$V^{\nu}:=\{v^{\nu}\in \mathbb{R}^{m}|\Vert v^{\nu}\Vert\leq\sigma^{\nu}\}$

with given uncertainty bounds $\rho^{\nu}>0$ and $\sigma^{\nu}>0$ . Here we assume that the uncer-
tainty sets are specified in terms of the Euchdean norm, but we may also use different
norms such as the $l_{\infty}$ norm; see Example 5.3. Further we assume that the constraints
$x^{\nu}\in X^{\nu}$ are exphcitly written as $g^{\nu}(x^{\nu})$ $:=A_{\nu}^{T}x^{\nu}+b_{\nu}\leq 0$, where $A_{\nu}\in \mathbb{R}^{n_{\nu}\cross l_{\nu}}$ and
$b_{\nu}\in \mathbb{R}^{l_{\nu}},$ $\nu=I$ , II.

Under these assumptions, the functions $\phi_{\nu},$ $v=I$ , II, defined by (4.5) can be
written exphcitly as

$\phi_{\nu}(x^{\nu})$ $:=\rho^{\nu}\Vert R_{\nu}^{T}x^{\nu}\Vert+\sigma^{\nu}\Vert B^{-}2PB^{-}2D_{\nu}^{T}x^{\nu}\Vert\iota\iota,$ $\nu=I$ , $II$ .

Hence, for player $\nu=I$ , II, we can rewrite the problem (4.4) as follows:

$minimizex \frac{1}{2}(x^{\nu})^{T}(H_{\nu}+2D_{\nu}G_{\nu})x^{\nu}+(x^{\nu})^{T}(D_{\nu}G_{-\nu}+E_{\nu})x^{-\nu}$

(52) $+(x^{\nu})^{T}D_{\nu}r+\rho^{\nu}\Vert R_{\nu}^{T}x^{\nu}\Vert+\sigma^{\nu}\Vert B^{-\frac{1}{2}}PB^{-\frac{1}{2}}D_{\nu}^{T}x^{\nu}\Vert$

subject to $A_{\nu}^{T}x^{\nu}+b_{\nu}\leq 0.$

To apply the forward-backward splitting method to the NEP with the leaders’
problems (5.2), we let the mappings $\mathcal{A}$ and $\mathcal{B}$ be specified by

$\mathcal{A}(x):=(\partial\phi_{II}(x^{II})\partial\phi_{I}(x^{I}))+N_{X}(x)$ ,

$\mathcal{B}(x):=T(x)$ ,

where $T(x)$ is given by (4.7). Note that $\mathcal{A}$ is set-valued, while $\mathcal{B}$ is vector-valued.
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In order to evaluate the iterative point $x^{k+1}$ $:=(x^{I,k+1}, x^{II,k+1})$ in (5.1), we first
compute $z^{\nu,k}$ $:=x^{\nu,k}-\mu T_{\nu}(x^{k})$ . Then $x^{\nu,k+1}$ can be evaluated by solving the following
problem:

$mini_{\nu}mx$ ize $\frac{1}{2\mu}\Vert x^{\nu}-z^{\nu,k}\Vert^{2}+\rho^{\nu}\Vert R_{\nu}^{T}x^{\nu}\Vert+\sigma^{\nu}\Vert B^{-\frac{1}{2}}PB^{-\frac{1}{2}}D_{\nu}^{T}x^{\nu}\Vert$

subject to $A_{\nu}^{T}x^{\nu}+b_{v}\leq 0.$

Note that these problems can be rewritten as linear second-order cone programming
problems, for which efficient solvers are available [36, 38]. In what follows, we show
some numerical results to observe the behavior of robust $L/F$ Nash equilibria with dif-
ferent uncertainty bounds. To compute those equilibria, we use the forward-backward
splitting method with $\mu=0.2.$

EXAMPLE 5.1. The problem data are given as follows:

$H_{I}=(\begin{array}{ll}1.7 1.6l.6 2.8\end{array}), H_{II}=(\begin{array}{ll}2.7 1.3l.3 3.6\end{array}), D_{I}=(\begin{array}{lll}2.3 1.4 2.61.3 2.1 1.7\end{array})$

$D_{II}=(\begin{array}{lll}2.5 1.9 l.41.3 2.4 1.6\end{array}), E_{I}=(\begin{array}{ll}1.8 1.41.5 2.7\end{array}), E_{II}=(\begin{array}{ll}1.3 1.72.4 0.3\end{array}),$

$R_{I}=(\begin{array}{ll}1.2 1.81.6 1.7\end{array}), R_{II}=(\begin{array}{ll}1.8 2.31.4 1.7\end{array}), B=(\begin{array}{lll}2.5 1.8 0.21.8 3.6 2.10.2 2.l 4.6\end{array}),$

$A_{I}=(\begin{array}{lll}1.6 0.8 1.32.6 2.2 1.7\end{array}), A_{II}=(\begin{array}{lll}1.8 1.6 1.41.3 1.2 2.7\end{array}), c=(\begin{array}{l}1.42.62.1\end{array}),$

$A= (1.3 2.4 1.8), a=1.3, b_{I}=(\begin{array}{l}1.61.20.4\end{array}), b_{II}=(\begin{array}{l}1.61.52.6\end{array})$

Table 5.1 shows the computational results. In the table, $(x^{*,I}, x^{*\prime}11)$ denotes the
leaders’ optimal strategies and $(y^{*,I}, y^{*\prime}11)$ denotes the follower’s responses estimated
respectively by the two leaders, at the computed equilibria for various values of the
uncertainty bounds $\rho=(\rho^{I}, \rho^{II})$ and $\sigma=(\sigma^{I}, \sigma^{II})$ . In particular, when there is no
uncertainty $(\rho=0, \sigma=0)$ , the follower’s response anticipated by the two leaders
naturally coincide, i.e., $y^{*,I}=y^{*,II}$ , which is denoted $\overline{y}^{*}$ in the table. ValLl and
ValL2 denote the optimal objective values of the two leaders’ respective optimization
problems. Iter denotes the number of iterations required by the forward-backward
splitting method to compute each equihbrium.

Both ValLl and ValL2 increase as the uncertainty increases, indicating that the
leaders have to pay additional costs that compensate for the loss of information.

Moreover, the two leaders’ estimates of the follower’s response tend not only
to deviate from the estimate under complete information but to have a larger gap
between them.

EXAMPLE 5.2. In this example, the uncertainty sets are specified by the $l_{\infty}$ norm
as

$U^{v}:=\{u^{\nu}\in \mathbb{R}^{l_{v}}|\Vert u^{\nu}\Vert_{\infty}\leq\rho^{\nu}\}$

and

$V^{\nu}:=\{v^{\nu}\in \mathbb{R}^{m}|\Vert v^{\nu}\Vert_{\infty}\leq\sigma^{\nu}\}$
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TABLE 5. 1
Computational Results for Example 5. 1

TABLE 5.2
Computational Results for Example 5.2
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with given uncertainty bounds $\rho^{\nu}>0$ and $\sigma^{\nu}>0,$ $v=I$ , II. In the forward-backward
splitting method, $x^{\nu,k+1}$ can be obtained by solving the following optimization prob-
lems:

$minimizex^{\nu} \frac{1}{2\mu}\Vert x^{\nu}-z^{\nu,k}\Vert^{2}+\rho^{\nu}\VertR_{\nu}^{T}x^{\nu}\Vert_{1}+\sigma^{\nu}\Vert B^{-\frac{1}{2}}PB^{-\frac{1}{2}}(D_{\nu})^{T}x^{\nu}\Vert_{1}$

subject to $A_{\nu}^{T}x^{\nu}+b_{\nu}\leq 0,$

where $\Vert\cdot\Vert_{1}$ denotes the $l_{1}$ norm. These problems can further be rewritten as convex
quadratic programming problems. We use the same problem data as those in Example
5.1.

The computational results are shown in Table 5.2. In addition to observations
similar to those in Example 5.1, it may be interesting to notice that the optimal values
of leaders in Example 5.3 are always larger than those in Example 5.1 under the same
value of uncertainty data $(\rho;\sigma)$ except $(\rho, \sigma)=(0;0)$ . It is probably because the worst
case in Example 5.3 tends to be more pessimistic than that in Example 5.1, as the
former usually occurs at a vertex of the box uncertainty set, while the latter occurs
on the boundary of the inscribed sphere.

6. Conclusion. In this paper, we have considered a class of multi-leader single-
follower games with uncertainty. We have defined a new concept for the multi-leader
single-follower game with uncertainty, called robust $L/F$ Nash equilibrium. We have
discussed the existence and the uniqueness of a robust $L/F$ Nash equilibrium by
reformulating the game as a NEP with uncertainty and then a GVI problem. By
numerical experiments including those for the multi-follower case, we have observed
the influence of uncertainty on the follower’s responses estimated by the leaders.
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