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Online TSP for a Class of Pseudo-Planar Graphs
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Abstract. This paper considers online TSP in a pseudo-planar graph, say a maximal 1-plane
geometric graphs. A maximal 1-plane geometric graph is a geometric graph such that each edge
of the graph crosses the other edge at most once and any graph obtained by adding a new edge
to the graph is no more 1-plane graph. Suppose that a searcher is required to visit all vertices
of the given graph. He/she starts the exploration from a given vertex and finally returns to
the initial vertex as quickly as possible. The information of the graph is given online. As the
exploration proceeds, a searcher gains more information of the graph. We give a competitive
analysis of algorithms in [2], [3] for a maximal 1-plane geometric graph, and we prove an upper
bound of a competitive ratio as 16.
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1 Introduction

We study online traveling salesman problems (online TSP for short) for a maximal
1-plane geometric graph.

Online TSP in an undirected graph are defined as follows. Given an undirected
graph G = (V, E), suppose that a searcher is initially at a vertex of G. Starting
from the origin 0 € V, the aim of a searcher is to visit all vertices of G at least
once and to return to o as quickly as possible. A searcher makes all his/her decisions
based on partial knowledge obtained so far with respect to the graph and gathers new
information as exploration proceeds. We assume that vertices are labeled so that a
searcher can distinguish them. The length of an edge e € F is denoted by |e|. We also
assume the ability of a searcher as follows: whenever a searcher visits a new vertex,
he/she learns all incident edges, their lengths and the labels of their end vertices. The
goal is to find a tour of minimum length that visits all vertices and returns to the
origin.

In this paper, we consider exploring a maximal 1-plane geometric graph. For a
undirected graph G = (V, E) embedded on the plane, G is called a geometric graph
if each edge of G is drawn as a straight line segment connecting two end vertices of
the edge. For a undirected graph G = (V, E), G is called a k-planar graph if it can be
drawn on the plane such that each edge of G is crossed by other edges at most k times.
Also for an undirected graph G = (V, E') embedded on the plane, G is called a k-plane
graph if each edge of G is crossed by other edges at most k times. In the following, for
a k-plane graph G = (V, E), an edge of G is said to be a blue edge if it crosses another
edge, and to be a red edge otherwise. Then there are two definitions of the maximality
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of k-plane graphs. In general definition (Suzuki [4]), for a k-plane graph G = (V, E), G
is called a mazimal k-plane graph if adding any new edge to G produces an edge with
at least k£ + 1 crossing. In the other definition (Eades et al. [1]), for a k-plane graph
G = (V,E), G is called a red-mazimal k-plane graph if any red edge cannot be added
to G. This paper adopts the former definition. Furthermore we restrict a graph class
to that of geometric graphs. For a geometric graph, the k-planarity and the maximal
k-planarity can be similarly defined. Namely, for a geometric graph G = (V, E), G is
called a k-plane geometric graph if G is a k-plane graph, and G is called a mazimal
k-plane geometric graph if G is a maximal k-plane graph. For example, an embedded
graph in Fig. 1 is a maximal 1-plane geometric graph, however it is a planar graph (see
Fig. 2). In general, the performance of an online algorithm is measured by a competitive

Fig. 1. A maximal 1-plane geometric graph (dark grey
edges represent red edges while light grey edges repre-
sent blue edges) Fig. 2. A planar graph

ratio which is defined as follows. Let S denote a class of objects to be explored. When
an online exploration algorithm ALG is used to explore an object S € S, let |ALG(S)]
denote the tour length (cost) required to explore S by ALG. Let |OPT(S)| denote the
tour length (cost) required to explore S by the offline optimal algorithm. Then the
competitive ratio of ALG is defined as follows:

ALG(S)|
ses |OPT(S)|

For online TSP in an undirected graph, Kalyanasundaram et al. [2] presented an
algorithm ShortCut. They showed that this algorithm achieves 16-competitive for an
undirected planar graph. Recently, Megow et al. [3] sophisticated the formulation of
ShortCut and made the competitive analysis simple. They called their formulation
of ShortCut newly Blockings. Also they generalized the result in [2] to 16(1 + 2g)-
competitive for an undirected graph with genus g.

We give a competitive analysis of Blockings algorithm in [3] for online TSP in a
maximal 1-plane geometric graph. In [3], for a set of edges P which Blockings traverses
and a minimum spanning tree M ST of the entire graph, they showed that a competitive
ratio of their algorithm is at most 16 if PU M ST is planar. We show that PUMST is
also planar for a maximal 1-plane geometric graph and hence that 16-competitiveness
follows for this class of non-planar graphs. Upper bound of genus of a maximal 1-plane
geometric graph is non-trivial and has not been known yet, thus we cannot apply
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directly the result of [3] to our case. However, even if genus of a maximal 1-plane
geometric graph is only 1, we improve a competitive ratio for such a graph from 48 to
16.

2 Blockings algorithm

In this section, we briefly review the graph exploration algorithms of {2] and [3]. Al-
though the algorithm of [3] is essentially the same as that of [2], we will review the
one by [3] because it sophisticated the one by [2]. The following description is based
on [3].

Definition 1 A vertex is said to be explored if it has been visited at least once by a
searcher, and unexplored otherwise. An edge is said to be explored if both end vertices
are explored. A boundary edge uv is an edge with an explored end vertex u and an
unezplored end vertez v.

Definition 2 For a fized parameter 6 > 0, a boundary edge e = uv is said to be
blocked if there is a boundary edge € = u'v' with «' explored and v' unexplored such
that |€'| < |e| holds and the length of any shortest known path from u to v' is at most
(14 6)le].

The algorithm of [3] is named as Blockings. It can be seen as a sophisticated variant
of depth-first-search (DFS for short). The crucial ingredient is a blocking condition
depending on a fixed parameter § > 0, which determines when to diverge from DFS.
The procedure of Blockings for a partially explored graph G and a vertex y of G which
is explored for the first time, say Blockings(G,y), is represented as follows.

Algorithm 1 The exploration algorithm Blockings(G,y) (by [3])
Input: A partially explored graph G and a vertex y of G which is explored for the first time.
1: while there is an unblocked boundary edge e = uv, with u explored and v unexplored,
such that u = y or such that e had previously been blocked by some edge zy do

walk a shortest known path from y to u

traverse e = uv

Blockings (G, v)

walk a shortest known path from v to y
: end while

Blockings performs a standard DFS, but it traverses a boundary edge only if it
is not blocked. Suppose that a searcher is at a vertex u and considers traversing a
boundary edge wv. If uv is blocked, then its traversal is postponed, possibly forever;
otherwise a searcher traverses uv. Traversing ry and exploring y may cause another
edge uv, whose traversal was delayed earlier, to become unblocked. Then a searcher
walks a shortest known path from y to u and traverses e = uv. To explore the entire
graph starting from the origin o, we call Algorithm 1 as Blockings(G,, 0), where G, is
the partially explored graph in which only o has been visited so far.

Theorem 1 (by [3]) A competitive ratio of Blockings for an undirected planar graph
18 at most 16.



Sketch of proof in [3]. Let P denote a set of edges which Blockings traverses at line
3 for each iteration of the while loop. Actually a searcher may traverse edges at lines
2,3 and 5. Suppose that at line 1 uv had previously been blocked by some edge zy,
then the length of a path which a searcher moves at line 2 is at most (1 + J)|e| from
Definition 2. Thus the total length of edges which he/she traverses at line 2 and 3 is
at most (24 &)|e|. Considering that at line 5 he/she can traverse backward same edges
as at lines 2 and 3, the length of edges traversed in each iteration of the while loop is
at most 2(2+ 6)|e|. Therefore the tour length required to explore an undirected planar
graph G by Blockings, say |Blockings(G)|, satisfies the following inequality:

|Blockings(G)| < 2(2 + 6)|P|. (1)

Let M ST be a minimum spanning tree that shares a maximum number of edges with
P. Then considering that P U M ST is planar and so each edge e € P\ MST is
contained in at most two face cycles, for each edge e € P\ M ST one of its face cycles
can be uniquely assigned as C, such that every assigned cycle is different from each
other. By [3], the following claim is proved.

Claim 1 (by [3]) If an edge e € P\ MST is contained in a cycle C' in P U MST,
then the cycle C has length at least (2 + 6)|e|.

From this claim, (2+6)|P\ MST| < 3 _cp\ prs7 |Ce| holds, and also 3. p\ prs7 [Ce| <
2|/PUMST| = 2(|MST|+|P\ MST)|) holds, thus we have |P\ MST| < (2/6)|MST|,

namely,
[Pl < (1+3)|MST) )

From (4) and (2), we obtain
|Blockings(G)] < 2(2 +6)(1 + %)lMSTI. (3)

Since the tour length required to explore G by the offline optimal algorithm, say
|OPT(G)|, satisfies |OPT(G)| > |MST| and 2(2 + 6)(1 + 2/9) is at least 16 for § = 2,
we can see Blockings is 16-competitive for an undirected planar graph. ]

3 Competitive analysis

Let G = (V, E) be a maximal 1-plane geometric graph. For any two vertices u,v € V,
let uv denote a straight line segment between u and v. Notice that uv denotes an edge
if w and v are adjacent with each other in G. For any connected subgraph G’ C G,
let MST(G’) denote a minimum spanning tree of G’. Then the following proposition
holds.

Proposition 1 For an undirected connected graph G = (V, E) with weights associated
with edges, consider a connected subgraph G' and MST(G'). If an edge e of G’ does
not belong to MST(G'), e does not belong to MST(G), either.
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Fig.4. CH(a,b)

Fig. 3. A partial structure around a pair of blue edges

At first, we consider a partial structure around a pair of blue edges ac and bd which
intersect each other at a point ¢ (see Fig. 3). For a triangle abi in Fig. 3, let S denote a
set of vertices strictly lying in the inside of abi. For a vertex set SU{a, b}, let CH(a,b)
denote the convex hull for S U {a,b} (see Fig. 4). If S = @, let chain(a,b) denote an
edge ab. If S # 0, let chain(a,b) denote the boundary path from a to b of CH(a,b)
which is different from the boundary path consisting of an edge ab. In both cases there
is no edge which crosses chain(a, b), so there are red edges along chain(a, b) because of
the maximality of G. We can similarly define chain(b, c), chain(c,d) and chain(d, a).
We have the following lemma.

Lemma 1 For a pair of blue edges ac and bd, there exist always four concave chains
of red edges (each chain may possibly consist of one red edge), chain(a,b), chain(b,c),
chain(c,d) and chain(d,a) for short, such that all chains lie in the inside of a quadri-
lateral abcd and no vertex exists in the inside of a polygon formed by these four concave
chains.

Let G* denote a subgraph of G which consists of two blue edges, ac and bd, and
four concave chains of red edges, chain(a,b), chain(b,c), chain(c,d) and chain(d,a).
Assume without loss of generality that |ai| = min{]az|, |bi, |ci|, |di|} holds. Then we
have the following lemmas.

Lemma 2 A blue edge bd is not contained in MST(G).

Fig. 5. Illustration of the subgraph G* used in the proof of Lemma 2



Proof. Suppose otherwise. By the contraposition of Proposition 1, bd is also contained
in MST(G*), so there is one red edge, say ef, which is on the path consisting of two
concave chains, chain(a, b) and chain(d, a), and is not contained in M ST (G*) (see Fig.
5). The length of chain(a, b) is less than |ai| + |bi|, similarly the length of chain(d, a)
is less than |ai| + |di|, thus

lef| < max{|ai| + |bil, |ai| + |di[} (4)

holds. By (4) and the assumption of |ai| < |di| and |ai| < |bi|, we have
lef| < [bi] + |di| = |bd]. (5)
From (5) (MST(G*)\{bd})U{ef} is another spanning tree of G* whose length is less
than that of M ST(G*), which contradicts the minimality of MST(G*). 0

Lemma 3 For § > 1, Blockings does not traverse a blue edge bd.

Proof. Suppose that bd is a boundary edge such that b is explored and d is unexplored.
Then there is one boundary edge, say ef, on the concave chain path from b via a to d
such that all vertices on the concave chain path from b to e is explored (see Fig. 6).
We show that bd is blocked by ef as follows. At first, we have |ef| < |bd| from (5).

Fig. 6. Illustration of the case that bd is a boundary edge

Secondly, let SP(b,e) denote the shortest known path from b to e, then we have the
following inequality:

|SP(be)| < |ai| + |bi| + |ai| + |di]

< 2|bd|. (6)
From (6) and ¢ > 1, we obtain [SP(b,e)| < (1+ 6)|bd|. Therefore bd is always blocked
by ef if bd is a boundary edge, so Blocking; does not traverse bd. O

Theorem 2 A competitive ratio of Blockings for a mazimal 1-plane geometric graph
s at most 16.

Proof. Asin [3], let P denote a set of edges which Blockings traverses at line 3. Also in
[3], they proved that a competitive ratio of Blockings is at most 16 if P U MST(G) is
a planar graph. From Lemmas 2 and 3, we showed that at least one edge for each pair
of blue edges is never included in P and in M .ST(G). Thus we obtain PU MST(G) is

planar. a
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4 Conclusion

We give a competitive analysis of algorithms in [2] and [3] for online TSP in a maximal
1-plane geometric graph, and we prove a competitive ratio is at most 16.
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