A propositional proof system based on comparator circuits

Satoru Kuroda (黒田覚) Gunma Prefectural Women's University

1 Introduction

Since the seminal paper by S. Cook [2], there have been many literatures on the connection of complexity classes and proof systems. The most prominent example is the relationships between the class P, Buss' theory S_2^1 [1] and extended Frege proofs.

In this paper we construct a propositional proof system which corresponds to the class CC. Originally, this class is defined by Subramanian [5]as the set of problems log-space reducible to the comparator circuit value problem. This class has not gained much attention since it was presented. However, recently Cook et.al. [4] shed a new light on the class by defining bounded arithmetic theory **VCC** and proved that stable marriage problem is definable in the theory. So we believe that our proof system gives a step forward for the investigation of the class.

Here we only give a rough outline of the system and detailed proofs are given in the forthcoming paper.

2 Preliminaries

A comparator gate is a function $C : \{0,1\}^2 \to \{0,1\}^2$ that takes an input pair (p,q)and outputs a pair $(p \land q, p \lor q)$. A comparator circuit consists of n wires each having input bits and produces an output. In each layer, two wires are connected by an arrow representing a comparator gate. Formally, a comparator circuit can be represented as a directed acyclic graph with input nodes having indegree 0 and outdegree 1, output nodes with indegree 1 and outdegree 0, and comparator gates with indegree 2.

The comparator circuit value problem (CCV) is a decision problem. Given a comparator circuit, an input and a designated output wire, decide whether the circuit outputs one on that wire.

Definition 1 The complexity class CC is the class of problems which are AC^{0} many-one reducible to CCV.

We formalize CC reasoning in tow sort language. The language L_2 comprises number variables x, y, z, \ldots and string variables X, Y, Z, \ldots . It also has the following symbols: $Z(x) = 0, x + y, x \cdot y, x \leq y, x \in Y$.

The class Σ_0^B is the class of L_2 -formulas in which all quantifiers are bounded number quantifiers $\forall x < t$ or $\exists x < t$ and Σ_1^B is the class of formulas of the form

$$\exists \bar{X} < \bar{t}\varphi(\bar{X}), \ \varphi \in \Sigma_0^B.$$

We define L_2 -theory \mathbf{V}^0 as having the axioms $BASIC_2$ which is a finite set of defining formulas for symbols in L_2 together with

$$\Sigma_0^B$$
-IND : $\exists X < a \forall y < a (y \in X \leftrightarrow \varphi(y))$

where $\varphi \in \Sigma_0^B$ contains no free occurrences of X.

The theory **VCC** is defined the extension of \mathbf{V}^0 by the axiom expressing CCV. Let $\delta_{CCV}(m, n, X, Y, Z)$ be the following Σ_0^B formula:

$$\begin{split} \forall i < m(Y(i) \leftrightarrow Z(0,i) \land \forall i < n \forall x < m \forall y < m \\ (X)^i = \langle x, y \rangle \rightarrow \begin{bmatrix} Z(i+1,x) \leftrightarrow (Z(i,x) \land Z(i,y)) \\ \land Z(i+1,y) \leftrightarrow (Z(i,x) \lor Z(i,y)) \\ \land \forall j < m((j \neq x \land j \neq y) \rightarrow (Z(i+1,j) \leftrightarrow Z(i,j))) \end{bmatrix} \end{split}$$

This formula expresses the following properties:

- X encodes a comparator circuit with m wires and n gates as sequence of n pairs $\langle i, j \rangle$ with i, j < m and $(X)^i$ encodes the *i*-th comparator gate of X,
- Y(i) encodes the *i*-th input to X,
- Z is an $(n+1) \times m$ matrix, where Z(i, j) is the value of wire j at layer i.

Definition 2 The theory VCC is the L_2 theory which is aximatized by axioms of \mathbf{V}^0 together with

$$CCV : \exists Z \leq \langle m, n+1 \rangle + 1\delta_{CCV}(m, n, X, Y, Z).$$

Theorem 1 (Cook et.al.) A function is computable in CC if and only if it is Σ_1^B definable in VCC.

In the propositional translation, it is easier to work with the universal conservative extension of **VCC**. Let L_{CC} be the language L_2 extended by a single function symbol F_{CC} . We denote the Σ_0^B formula in the extended language by $\Sigma_0^B(F_{CC})$.

Definition 3 The theory $\mathbf{V}^0(F_{CC})$ is the $\Sigma_0^B(F_{CC})$ theory which is aximatized by $BASIC_2, \Sigma_0^B(F_{CC})$ -IND and the following defining axiom of F_{CC} :

$$F_{CC}(X,Y) = Z \leftrightarrow \delta_{CCV}(\sqrt{|X|}, |Y|, X, Y, Z)$$

where \sqrt{m} is the integer part of the square root of m.

It is not difficult to see that

Theorem 2 VCC and $\mathbf{V}^0(F_{CC})$ proves the same L_2 theorems.

3 The system CCK

In this section we present a propositional proof system CCK which corresponds to bounded arithmetic theory **VCC** in the sense that

- CCK has polynomial size proofs for all $\forall \Sigma_0^B$ consequences of **VCC** and
- VCC proves the reflection principle of *CCK*.

The fundamental idea is to introduce connectives used to construct comparator circuits so that formulas represents circuits. The language of CCK comprises the following symbols:

- propositional variables x_1, x_2, \ldots
- connectives \neg_k , [j, k] for $j, k \in \omega$, \oplus
- superscripts $^{(i)}$ for $i \in \omega$

We define CCK formulas and a number $w(\varphi)$ for a formula φ recursively as follows:

- a propositional variable x_i is a formula and $w(x_i) = 1$,
- if φ is a formula and $i, k \leq w(\varphi)$ then so is $(\neg_k \varphi)^{(i)}$ and $w(\neg_k \varphi) = w(\varphi)$,
- if φ is a formula and $i, j, k \leq w(\varphi)$ then so is $\varphi[j, k]^{(i)}$ and $w(\varphi[j, k]) = w(\varphi)$
- if φ and ψ are formulas and $i \leq w(\varphi) + w(\psi)$ then so is $(\varphi \oplus \psi)^{(i)}$ and $w(\varphi \oplus \psi) = w(\varphi) + w(\psi)$.

The intuitive meaning of the above definition is that, the superscript in $\varphi^{(i)}$ represents its designated output, $\neg_k \varphi$ is φ with negation at the top of the k-th wire, $\varphi[j,k]$ is obtained from φ by placing arrows from j to k at to top, and $\varphi \oplus \psi$ is a juxtaposition of φ and ψ . Furthermore, the function $w(\varphi)$ represents the number of wires in φ .

Before we define the proof system CCK we introduce one more important notion. Two CCK-formulas are identical if they are of the same form if superscripts are ignored. Thus for instance $(\neg_k \varphi)^{(i)}$ and $(\neg_k \varphi)^{(j)}$ are identical.

Proposition 1 Checking whether two formulas are identical can be done in AC^{0} .

Now we define the system CCK. Axioms of CCK are

$$\varphi \to \varphi, \to \top, \perp \to .$$

Inference rules of CCK are contraction, weakening, exchange, cut and the following logical rules introducing connectives:

$$\frac{\Gamma \to \Delta, \varphi^{(i)}}{(\neg_i \varphi)^{(i)}, \Gamma \to \Delta} \qquad \frac{\varphi^{(j)}, \Gamma \to \Delta}{(\neg_i \varphi)^{(j)}, \Gamma \to \Delta} \qquad \neg_i \text{-left}$$

$$\begin{array}{ccc} \frac{\varphi^{(i)}, \Gamma \to \Delta}{\Gamma \to \Delta, (\neg_i \varphi)^{(i)}} & \frac{\Gamma \to \Delta, \varphi^{(j)}}{\Gamma \to \Delta, (\neg_i \varphi)^{(j)}} & \neg_i \text{-right} \\ \\ \frac{\varphi^{(i)}, \Gamma \to \Delta}{(\varphi \oplus \psi)^{(i)}, \Gamma \to \Delta} & \frac{\psi^{(i)}, \Gamma \to \Delta}{(\varphi \oplus \psi)^{(w(\varphi)+i)}, \Gamma \to \Delta} & \oplus \text{-left} \\ \\ \frac{\Gamma \to \Delta, \varphi^{(i)}}{\Gamma \to \Delta, (\varphi \oplus \psi)^{(i)}} & \frac{\Gamma \to \Delta, \psi^{(i)}}{\Gamma \to \Delta, (\varphi \oplus \psi)^{(w(\varphi)+i)}} & \oplus \text{-right} \\ \\ \frac{\varphi^{(i)}, \Gamma \to \Delta \varphi^{(j)}, \Gamma \to \Delta}{(\varphi^{[i,j]})^{(i)}, \Gamma \to \Delta} & \frac{\varphi^{(i)}, \varphi^{(j)}, \Gamma \to \Delta}{(\varphi^{[i,j]})^{(j)}, \Gamma \to \Delta} & [i,j] \text{-left} \\ \\ \\ \frac{\Gamma \to \Delta, \varphi^{(i)}, \varphi^{(j)}}{\Gamma \to \Delta, (\varphi^{[i,j]})^{(i)}} & \frac{\Gamma \to \Delta \varphi^{(i)} \ \Gamma \to \Delta, \varphi^{(j)}}{\Gamma \to \Delta, (\varphi^{[i,j]})^{(j)}} & [i,j] \text{-right} \\ \\ \\ \\ \\ \\ \frac{\varphi^{(j)}, \Gamma \to \Delta}{(\varphi^{(i)}, \Gamma \to \Delta} & \frac{\Gamma \to \Delta, \varphi^{(j)}}{\Gamma \to \Delta, (\varphi^{(i)})^{(j)}} & \text{wire-switching} \\ \end{array}$$

provided that $\varphi^{(i)}$ and $\varphi^{(j)}$ are identical.

A CCK-proof is a sequence C_1, \ldots, C_k of CCK-formulas such that each C_i is either an axiom or obtained from preceding formulas by one of the inference rules of CCK. The size size(P) of a CCK-proof P is the number of formulas in it.

It is easy to show that Boolean formulas are expressed by CCK-formulas and any rules of Frege system can be represented by some rule of CCK. So we have the following:

Proposition 2 CCK proof system p-simulates Frege.

As CCK formulas are special cases of Boolean circuits and circuit Frege and extended Frege are p-equivalent, we have

Theorem 3 Extended Frege system p-simulates CCK proof system.

4 **Propositional Translation**

In this section we prove that CCK is at least as strong as **VCC**. More precisely, it is proved that all $\forall \Sigma_0^B$ theorems of the universal conservative extension of **VCC** are translated into families of CCK-formulas having polynomial size CCK-proofs.

First we define the translation.

Definition 4 For $\varphi(\bar{X}) \in \Sigma_0^B(F_{CC})$, we define its propositional translation $\|\varphi(\bar{X})\|_{\bar{n}}$ inductively as follows:

• if φ is an atomic sentence without string variables then

$$\|\varphi\| = \begin{cases} \top & \text{if } \varphi \text{ is true,} \\ \bot & \text{if } \varphi \text{ is false.} \end{cases}$$

- For each string variable X we introduce propositional variables x₀,..., x_{n-1} and let ||i ∈ X ||_n = x_i.
- $\|\neg \varphi\|_{\bar{n}} = \neg_k \|\varphi\|_n$ where k is the designated output position of $\|\varphi\|_n$.
- $||x \in F_{CC}(X,Y)||_{i,m,n} = C_U^{m,n}(\bar{p}_X,\bar{p}_Y)$ where $C_U^{m,n}$ denotes the formula representing universal comparator circuit with a code X for a comparator circuit and Y as its input.
- $\|\varphi \wedge \psi\|_{\bar{n}} = (\|\varphi\|_n \oplus \|\psi\|_n)[i, w(\|\varphi\|_n) + j]^{(i)},$
- $\|\varphi \vee \psi\|_{\bar{n}} = (\|\varphi\|_n \oplus \|\psi\|_n)[i, w(\|\varphi\|_n) + j]^{(w(\|\varphi\|_n) + j)},$
- $\|(\forall x < t)\varphi(x)\|_n = (\bigoplus_{x \le t} \|\varphi(x)\|_n)[i_0, i_1][i_0, i_2] \cdots [i_0, i_{t-1}]^{(i_0)}.$
- $\|(\exists x < t)\varphi(x)\|_n = (\bigoplus_{x \le t} \|\varphi(x)\|_n)[i_0, i_1][i_1, i_2] \cdots [i_{t-2}, i_{t-1}]^{(i_{t-1})}.$

Theorem 4 Let $\varphi(\bar{X})$ in Σ_0^B . If $\mathbf{VCC} \vdash (\forall \bar{X})\varphi(\bar{X})$ then $\{\|\varphi(\bar{X})\|_{\bar{n}}\}_{\bar{n}\in\omega}$ has polynomial size CCK-proofs.

(Proof). It suffices to show that axioms of $\mathbf{V}^0(F_{CC})$ are translated into CCK formulas having polynomial size proofs. For axioms of \mathbf{V}^0 it suffices to remark that CCK p-simulates Frege. So it suffices to show that $\Sigma_0^B(F_{CC}-\text{IND})$ can be simulated by polynomial size CCK proofs. The proof is similar to the one for VTC^0 and TC^0 -Frege.

5 Proving the reflection principle

We will show the converse to the argument of the last section; CCK is not stronger than VCC.

We will give a rough idea of how formulas, proofs etc. are coded in L_0 . Assume any reasonable coding of CCK formulas in L_0 . Then for each CCK formula φ we can assign a string X_{φ} which codes an equivalent comparator circuit with negation gates in such a way that $(X_{\varphi})^i$ codes the comparator gate or the negation gate on *i*-th level. Although comparator circuit with negation gates is not by definition contained in **VCC**, it can be shown that **VCC** proves the following result by Cook et.al [3].

Proposition 3 The circuit value problem for comparator circuits with negation gates is AC^0 reducible to CCV.

Let (X, i) denote a CCK formula X with the designated output i. We can define the Σ_0^B formula $Z \models (X, i)$ which states that (X, i) is true on the assignment Z. So we have

Lemma 1 VCC proves that any formula can be evaluated on any assignment.

Let $Prf^{CCK}(P, X, i)$ be the L_0 formula stating that P is a CCK-proof of the CCK formula (X, i). Then the following theorem follows by the argument similar to those for other systems.

Theorem 5 VCC proves that CCK is sound:

$$\forall i, \forall X (\exists PPrf^{CCK}(P, X, i) \to \forall Z (Z \models (X, i))).$$

6 Concluding Remarks

It is unknown whether the complexity class CC is properly contained in P. Furthermore, relations with subclasses of P such as NL is also open. A counterpart to this problem for propositional proof systems is whether CCK p-simulates extended Frege.

Another direction of research is to find a hard tautology for CCK or polynomial size CCK proofs for natural combinatorial principle.

References

- [1] S.R.Buss, Bounded Arithmetic, Bibliopolis, 1985.
- [2] S.A.Cook, The complexity of theorem proving procedures, Proceedings Third Annual ACM Symposium on Theory of Computing, May 1971, pp 151-158.
- [3] S.A.Cook, Y.Filmus, and D.T.M.Le, The Complexity of the Comparator Circuit Value Problem. preprint. 2012.
- [4] D.T.M.Le, S.A.Cook, and Y.Ye, A Formal Theory for the Complexity Class Associated with the Stable Marriage Problem. Computer Science Logic 2011.
- [5] A.Subramanian, A new approach to stable matching problems. SIAM Journal on Computing, 23(4), pp.671–700. 1994.