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Abstract

One of the central open questions in bounded arithmetic is whether Buss’
hierarchy of theories of bounded arithmetic collapses or not. In this resume,
we summarize the author’s recent attempt to this problem. We reformulate
Buss’ theories using free logic and conjecture that such theories are easier to
handle. To support this claim, the author first shows that Buss’ theories prove
consistencies of induction-free fragments of our theories whose formulae have
bounded complexity. Next, the author proves that although our theories are
based on an apparently weaker logic, we can interpret theories in Buss’ hierarchy
by our theories using a simple translation.

1 Background
One of the central open questions in bounded arithmetic is whether Buss’ hierarchy
$S_{2}^{1}\subseteq T_{2}^{1}\subseteq S_{2}^{2}\subseteq T_{2}^{2}\subseteq\cdots$ of theories of bounded arithmetic collapses [5] or not. Since
it is known that collapse of Buss’ hierarchy implies the collapse of the polynomial-time
hierarchy [7], demonstration of the non-collapse of the theories in Buss’ hierarchy could
be one way to establish the non-collapse of the polynomial-time hierarchy. $A$ natural
way to demonstrate non-collapse of the theories in Buss’ hierarchy would be to identify
one of these theories that proves (some appropriate formulation of) a statement of the
consistency of some theory below it in the hierarchy.

Here, it is clear that we need a delicate notion of consistency because of several
negative results that have already been established. The “plain” consistency statement
cannot be used to separate the theories in Buss’ hierarchy, since Paris and Wilkie
[16] show that $S_{2}(\equiv\cup S_{2}^{i})$ cannot prove the consistency of Robinson Arithmetic
$Q$ . Apparently, this result stems more from the use of predicate logic than from the
strength of the base theory. However, Pudl\’ak [12] shows that $S_{2}$ cannot prove the
consistency of proofs that are carried out within $S_{2}^{1}$ and are comprised entirely of
bounded formulae. Even if we restrict our attention to the induction-free fragment of
bounded arithmetic, we cannot prove the consistency of such proofs, as shown by Buss
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and Ignjatovi\v{c} [6]. More precisely, Buss and Ignjatovi\v{c} prove that $S_{2}^{i}$ cannot prove the
consistency of proofs that are comprised entirely of $\Sigma_{i}^{b}$ and $\Pi_{i}^{b}$ formulae and use only
BASIC axioms (the axioms in Buss’ hierarchy other than induction) and the rules of
inference of predicate logic.

Therefore, if we want to demonstrate non-collapse of the theories in Buss’ hierarchy,
we should consider a weaker notion of consistency and/or a weaker theory. $A$ number
of attempts of this type have been made, both on the positive side (those that establish
provability of consistency of some kind) and on the negative side (those that establish
non-provability of consistency). On the positive side, Kraj\’i\v{c}ek and Takeuti [8] show
that $T_{2}^{i}\vdash$ RCon $(T_{1}^{i})$ , where $T_{1}^{i}$ is obtained from $T_{2}^{i}$ by eliminating the function symbol
$\#$ , and RCon $(T_{1}^{i})$ is a sentence which states that all “regular” proofs carried out within
$T_{1}^{i}$ are consistent. Takeuti [14], [15] shows that there is no “small” strictly $i$-normal
proof $w$ of contradiction. Here, $w$ is small” means that $w$ has its exponentiation $2^{w}.$

Although Takeuti allows induction in strictly $i$-normal proof $w$ , the assumption that $w$

is small is a significant restriction to $w$ since bounded arithmetics cannot prove existence
of exponentiation. Another direction is to consider cut-free provability. Paris Wilkie
[16] mentioned above proves that $I\Delta_{0}+\exp$ proves the consistency of cut-free proofs
of $I\triangle 0$ . For weaker theories than $I\Delta_{0}+exp$ , we need to relativized the consistency by
some cut, then we get similar results [11], [3]. For further weaker theories, Beckmann [4]
shows that $S_{2}^{1}$ proves the consistency of $S_{2}^{-\infty}$ , where $S_{2}^{-\infty}$ is the equational theory which
is formalized by recursive definitions of the standard interpretations of the function
symbols of $S_{2}$ . Also, it is known that $S_{2}^{i}$ proves $Con(G_{i})$ , that is, the consistency of
quantified propositional logic $G_{i}$ . On the negative side, we have the results mentioned
above, that is, those of Paris and Wilkie [16], Pudl\’ak [12], and Buss and Ignjatovic
[6]. In addition, there are results which extend incompleteness theorem to Herbrand
notion of consistency [2], [1].

2 Our approach
In the paper [17], the author introduce the theory $S_{2}^{i}E(i=-1,0,1,2\ldots)$ , which for
$i\geq 1$ corresponds to Buss’ $S_{2}^{i}$ , and we show that the consistency of strictly $i$-normal
proofs that are carried out only in $S_{2}^{-1}E$ , can be proved in $S_{2}^{i+2}.$

$S_{2}^{i}E$ is based on the following observation: The difficulty in proving the consis-
tency of bounded arithmetic inside $S_{2}$ stems from the fact that inside $S_{2}$ we cannot
define the evaluation function which, given an assignment of natural numbers to the
variables, maps the terms of $S_{2}$ to their values. For example, the values of the terms
2, 2#2, $2\# 2\neq 2,2\neq 2\neq 2\# 2,$

$\ldots$ increase exponentially; therefore, we cannot define the
function that maps these terms to their values, since the rate of growth of every func-
tion which is definable in $S_{2}$ is dominated by some polynomial in the length of the
input [10]. With a leap of logic, we consider this fact to mean that we cannot assume
the existence of values of arbitrary terms in bounded arithmetic. Therefore, we must
explicitly prove the existence of values of the terms that occur in any given $pro$of.
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Based on this observation, $S_{2}^{i}E$ is formulated by using free logic instead of the ordi-
nary predicate calculus. Free logic is a logic which is free from ontological assumptions
about the existence of the values of terms. Existence of such objects is explicitly stated
by an existential predicate rather than being implicitly assumed. See [9] for a general
introduction to free logic and [13] for its application to intuitionistic logic.

Using free logic, we can force each proof carried out within $S_{2}^{-1}E$ to somehow
“contain” the values of the terms that occur in the proof. By extracting these values
from the proof, we can evaluate the terms and then determine the truth value of $\Sigma_{i}^{b}$

formulae. The standard argument using a truth predicate proves the consistency of
strictly $i$-normal proofs that are carried out only in $S_{2}^{-1}$ . It is easy to see that such a
consistency proof can be carried out in $S_{2}^{i+2}.$

This result improve on the positive results in the previous section in that 1) unlike
$T_{1}^{i}$ or $G_{i^{Y}},$ $S_{2}^{i}E$ is based on essentially the same language as $S_{2}^{i}$ , thereby making it
possible to construct a G\"odel sentence by diagonalization; 2) unlike Takeuti [14], [15],
we do not assume that the G\"odel number of the proofs which are proved consistent are
small, that is, have exponentiations, thereby making it possible to apply the second
incompleteness theorem–in particular, to derive a G\"odel sentence from the consistency
statement; 3) unlike the results on Herbrand and cut-free provability, $S_{2}^{i}E$ has the Cut-
rule, thereby, making it easy to apply the second incompleteness theorem; and 4) unlike
Beckmann [4], our system is formalized in predicate logic. On the other hand, we are
still unable to show that the consistency of strictly $i$-normal proofs is not provable
within $S_{2}^{j}$ for some $j\leq i$ . In a sense, our result is an extension of that of Beckmann
[4] to predicate logic, since both results are based on the fact that the proofs contain
“computations” of the terms that occur in them. In fact, if we drop the Cut-rule
from $S_{2}^{-1}E$ , the consistency of strictly $i$-normal proofs can be proved in $S_{2}^{1}$ for any $i.$

This “collapse” occurs since, roughly speaking, the combination of the Cut-rule and
universal correspond substitution rule in $PV.$

3 Definition of $S_{2}^{i}E$

The underlining logic of system $S_{2}^{i}E$ is a first-order predicate logic with special predi-
cate $E$ which signifies the existence of values. The system is formalized using sequent
calculus.

The vocabulary of $S_{2}^{i}E$ is obtained from that of $S_{2}^{i}$ by adding the unary predicate
symbol $E$ and replacing the set of function symbols of $S_{2}$ with an arbitrary but finite
set $\mathcal{F}$ of function symbols which denote polynomial-time computable functions. The
formulae of $S_{2}^{i}E$ are built up from atomic formulae by use of the propositional connec-
tives $\neg,$ $\wedge,$ $v$ ; the bounded quantifiers $\forall x\leq t,$ $\exists x\leq t$ ; and the unbounded quantifiers
$\forall x,$ $\exists x$ . Implication $(\supset)$ is omitted from the language, and negation $(\neg)$ is applied
only to equality $=$ and inequality $\leq$ . These restrictions appear essential to prove con-
sistency. If there is implication (or negation applied to arbitrary formulae) in $S_{2}^{-1}E,$

$S_{2}^{-1}E$ allows induction speedup [6] [12], therefore $S_{2}^{-1}E$ polynomially interprets $S_{2}^{i}E,$
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$i\geq 0$ . This allows to prove $Ef(n)$ for any polynomial time $f$ in $S_{2}^{-1}E$ by a proof whose
length is bounded by some fixed polynomial of length of binary representation of $n.$

However, this contradicts the statement of soundness (Proposition 1)
We assume that there are finitely many axioms for $S_{2}^{i}E$ . The axioms of $S_{2}^{i}E$ must

satisfy the boundedness conditions defined below.

Definition 1. $A$ sequent $\Gammaarrow\triangle$ satisfies the boundedness conditions if it has the
following three properties, where $a$ are the variables that occur free in $\Gammaarrow\Delta.$

1. All the formulae that occur in $\Gammaarrow\Delta$ are either in the form $t=u,$ $t\neq u,$ $t\leq u,$

$\neg t\leq u$ , Et.

2. Every variable in $a$ occurs free in at least one formula in $\Gamma.$

3. There is a constant $\alpha\in \mathbb{N}$ such that

$S_{2}^{1} \vdash\max\{t_{\Delta}(\vec{a})\}arrow\leq\alpha\cdot\max\{t_{\Gamma}(\vec{a})\}arrow$, (1)

$t_{\triangle}(\vec{a})arrow$ are the subterms of the terms that occur in $\triangle$ and $t_{\Gamma}(a)arrow$ are the subterms
of the terms that occur in $\Gamma$ $(for$ convenience, $\max\emptyset is$ defined $to be 1)$ . Since
the function symbols of $S_{2}E$ are definable in $S_{2}^{1}$ , we can regard the terms in $t_{\Gamma}(a)arrow$

and $t_{\Delta}(a)arrow$ as terms of $S_{2}^{1}$ , hence we can regard $\max\{t_{\Gamma}(\vec{a})\}arrow\leq\alpha\cdot\max\{t_{\Delta}(a)\}arrow$ as
an $S_{2}^{1}$ formula.

The consistency proof only uses this property for axioms. We refer [17] for more
detail on the axioms and inference rules.

4 $S_{2}^{i+2}$ consistency proof of strictly $i$-normal proofs

In [17], we define $i$ -normal formula and strictly $i$ -normal proof, and in $S_{2}^{i+2}$ we prove
the consistency of strictly $i$-normal proofs in $S_{2}^{-1}E$ . The consistency proof is based
on the facts that we can produce a $\Sigma_{i}^{b}$ formula that constitutes a truth definition for
$i$-normal formulae and we can apply the $\Sigma_{i+2^{-}}^{b}$ PIND rule to prove the soundness of
strictly $i$-normal proofs in $S_{2}^{-1}E$ . The idea is that to use a term $t$ in an $S_{2}^{-1}E$ proof,
we first need to prove that $Et$ holds. To do this, we show that for a given assignment
$\rho$ of values to the variables in $t$ , the value of $t$ is bounded by the size of the proof of
$Et$ plus the size of $\rho$ . Therefore, we can define a valuation function for terms and a
truth definition for the formulae in the proof. Once we obtain the truth definition,
consistency is easy to prove.

First, we define bounded valuation of terms.

Definition 2. Let $t$ be a term of $S_{2}^{i}E$ , let $\rho$ be an assignment for variables of $t$ , and
let $u\in \mathbb{N}.$ $A$ -valuation tree for $t$ which is bounded by $u$ is a tree $w$ that satisfies the
following conditions.
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1. Every node of $w$ is of the form $\langle\lceil t_{j}\rceil,$ $c\rangle$ where $t_{j}$ is a subterm of $t,$ $c\in \mathbb{N}$ , and
$c\leq u.$

2. Every leaf of $w$ is either $\langle\lceil 0\rceil,$ $0\rangle$ or $\langle\lceil a\rceil,$ $\rho(a)\rangle$ for some variable $a$ in the domain
of $\rho.$

3. The root ofwis $\langle\lceil t\rceil,$ $c\rangle$ for somec $\leq u.$

4. If $\langle\lceil f(t_{1}, \ldots, t_{n})\rceil,$ $c\rangle$ is a node of $w$ , its children are $\langle\lceil t_{1}\rceil,$ $d_{1}\rangle,$

$\ldots,$
$\langle\lceil t_{n}\rceil,$ $d_{n}\rangle$ which

satisfy the condition $c=f(d_{1}, \ldots, d_{n})$ .

If the root of a $\rho-$-valuation tree $w$ for $t$ is $\langle\lceil t\rceil,$ $c\rangle$ , we say the value of $w$ is $c.$

The statement that $t$ converges to the value $c$ $($ and $c\leq u)$ is defined by the formula
which expresses that the following relation $($which $we$ denote $by v(\lceil t\rceil, \rho)\downarrow_{u}c$) holds:

$\exists w\leq s(\lceil t\rceil, u)$ such that $w$ is (the G\"odel number of) a -valuation tree for $t$ which is
bounded by $u$ and has root $\langle\lceil t\rceil,$ $c\rangle,$

” where $s(\lceil t\rceil, u)$ is a term which bounds (the G\"odel

numbers of) all $\rho-$-valuation trees for $t$ which are bounded by $u$ . This formula appears
to be $\Sigma_{1}^{b}$ , since there a leading $\exists$ , but actually this formula is $\triangle_{1}^{b}$ since for each $t$ and
$rho,$ $w$ is uniquely determined and polynomially computable.

Using the notion of $\rho$-valuation tree, we give a “bounded” truth definition of i-
normal formulae.

First, we present a truth definition for quantifier-free formulae. Since logical sym-
bols can be arbitrarily nested, we follow the same strategy that was used in our def-
inition of valuation for terms. We attach a truth value to each node of a subformula
tree, and we define the value attached to the root (the node that represents the entire
formula) as the truth value of the formula.

Definition 3. Let $A$ be a quantifier-free formula of $S_{2}^{-1}E$ , let $\rho$ be an assignment for
free variables of $A$ , and let $u\in \mathbb{N}.$ $A$ -truth tree for $A$ which is bounded by $u$ is a
tree $w$ that satisfies the following conditions.

Every leaf of $w$ has one of the following five forms (where in each form the possible
values of $\epsilon$ are $0$ and 1): $\langle\lceil t_{1}\leq t_{2}\rceil,$ $\epsilon\rangle,$ $\langle\lceil t_{1}\not\leq t_{2}\rceil,$ $\epsilon\rangle,$ $\langle\lceil t_{1}=t_{2}\rceil,$ $\epsilon\rangle,$ $\langle\lceil t_{1}\neq t_{2}\rceil,$ $\epsilon\rangle,$

$\langle\lceil Et\rceil,$ $\epsilon\rangle.$

For a leaf of the form $\langle\lceil t_{1}\leq t_{2}\rceil,$ $\epsilon\rangle,$ $\epsilon=1$ if $\exists c_{1},$ $c_{2}\leq u,$ $v(\lceil t_{1}\rceil, \rho)\downarrow_{u}c_{1},$ $v(\lceil t_{2}\rceil, \rho)\downarrow_{u}$

$c_{2}$ , and $c_{1}\leq c_{2}$ ; otherwise, $\epsilon=0.$

For a leaf of the form $\langle\lceil t_{1}\not\leq t_{2}\rceil,$ $\epsilon\rangle,$ $\epsilon=1if\exists c_{1},$ $c_{2}\leq u,$ $v(\lceil t_{1}\rceil, \rho)\downarrow_{u}c_{1},$ $v(\lceil t_{2}\rceil, \rho)\downarrow_{u}$

$c_{2}$ , and $c_{1}\not\leq c_{2}$ ; otherwise, $\epsilon=0.$

The conditions that must be satisfied by a leaf of the form $\langle\lceil t_{1}=t_{2}\rceil,$ $\epsilon\rangle$ or $\langle\lceil t_{1}\neq$

$t_{2}\rceil,$ $\epsilon\rangle$ are the obvious analogues of those for $\langle\lceil t_{1}\leq t_{2}\rceil,$ $\epsilon\rangle$ and $\langle\lceil t_{1}\not\leq t_{2}\rceil,$ $\epsilon\rangle_{z}$ respectively.
For a leaf of the form $\langle\lceil Et\rceil_{)}\epsilon\rangle,$ $\epsilon=1$ if $\exists c\leq u,$ $v(\lceil t\rceil, \rho)\downarrow_{u}c$; otherwise, $\epsilon=0.$

Every intermediate node $r$ of $w$ is of the form $\langle\lceil A_{1}\wedge A_{2}\rceil,$ $\epsilon\rangle$ or $\langle\lceil A_{1}\vee A_{2}\rceil,$ $\epsilon\rangle$ , where
the children of $r$ are the nodes $\langle\lceil A_{1}\rceil,$ $\epsilon_{1}\rangle$ and $\langle\lceil A_{2}\rceil,$ $\epsilon_{2}\rangle.$

For a node of the form $\langle\lceil A_{1}\wedge A_{2}\rceil,$ $\epsilon\rangle,$ $\epsilon=1$ if $\epsilon_{1}=1$ and $\epsilon_{2}=1$ ; otherwise, $\epsilon=0.$

For a node of the form $\langle\lceil A_{1}\vee A_{2}\rceil,$ $\epsilon\rangle,$ $\epsilon=1$ if $\epsilon_{1}=1$ or $\epsilon_{2}=1$ ; otherwise, $\epsilon=0.$

The root of $w$ is $\langle\lceil A\rceil,$ $\epsilon\rangle$ for some $\epsilon\in\{0,1\}.$
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The truth of a quantifier-free formula $A$ is defined by the $\Sigma_{1}^{b}$ formula $T_{-1}(u, \lceil A\rceil,\rho)$

which expresses that $\exists w\leq s(\lceil A\rceil, u)$ such that $w$ is (the Godel number of) a $\rho$-truth
tree for A which is bounded by $u$ and has root $\langle\lceil A\rceil,$ $1\rangle,$

” where $s(\lceil A\rceil, u)$ is a term
which bounds (the G\"odel numbers of) all $\rho$ -truth trees for A which are bounded by $u.$

Next, we would like to present a truth definition for $\Sigma_{i}^{b}$ formulae. However, since it
is technically difficult to do this for general $\Sigma_{i}^{b}$ formulae, we restrict our definition to
$i$ -normal formulae. Since $i\in\{-1,0,1,2, \ldots\}$ , we $have-1$-normal formulae, -normal
formulae, 1-normal formulae, 2-normal formulae, and so on.

Definition 4 (pure $i$-normal). Let $i\geq-1$ , and let $A(a)$ be a formula.
If $i=-1,$ $A(\vec{a})$ is $pure-1$-normal if $A(a)$ is quantifier free.
If $i\geq 0,$ $A(\vec{a})$ is pure $i$-normal if it is of the form

$\exists x_{1}\leq t_{1}(\vec{a})\forall x_{2}\leq t_{2}(\vec{a}, x_{1})$ $\cdots$

$Q_{i}x_{i}\leq t_{i}(\vec{a}, x_{1}, \ldots, x_{i-1})Q_{i+1}x_{i+1}\leq|t_{i+1}(\vec{a}, x_{1}, \ldots, x_{i})|.A_{0}(\vec{a}, x_{1}, \ldots, x_{i+1})$ ,

where $Q_{i}$ is $\forall$ if $i$ is even, and $\exists$ if $i$ is odd, and $A_{0}(\vec{a}, x_{1}, \ldots, x_{i+1})$ is quantifier free
and does not contain the predicate $E.$

Definition 5 ( $i$-normal). If $i=-1,$ $A(\vec{a})$ is $i$-normal if it is quantifier free.
If $i\geq 0,$ $A(a)$ is $i$-normal if it is a subformula of a pure $i$ -normal formula or is Et

for some term $t$ . In other words, $A(a)$ is either an $E$-form, a quantifier-free formula
that does not contain $E$ , or a formula of the form

$Q_{j}x_{j}\leq t_{j}(\vec{a}, x_{1}, \ldots, x_{j-1})\cdots Q_{i}x_{i}\leq t_{i}(\vec{a}, x_{1}, \ldots, x_{i-1})$

$Q_{i+1}x_{i+1}\leq|t_{i+1}(\vec{a}, x_{1}, \ldots, x_{i})|.A_{0}(\vec{a}, x_{1}, \ldots, x_{i+1})$ , (2)

where $A_{0}(\vec{a}, x_{1}, \ldots, x_{i+1})$ is quantifier free and does not contain $E;1\leq j\leq i+1$ ; and
for $ever1/k$ with $j\leq k\leq i+1,$ $Q_{k}$ is either $\forall$ or $\exists$ , according as $k$ is even or odd. If
$j=i+1$ , the above formula is $Q_{i+1}x_{i+1}\leq|t_{i+1}(\vec{a}, x_{1}, \ldots, x_{i})|.A_{0}(\vec{a}, x_{1}, \ldots, x_{i+1})$ .

The following is a truth definition $T_{i}(u, \lceil B\rceil, \rho)$ for $i$-normal formulae $B$ . First, we
define a truth definition $T_{i,l}$ for $i$-normal forms with $l$ quantifiers.

Definition 6. Let $i\geq-1$ , let $B$ be an $i$ -normal formula with $l$ quantifiers. Note that
$0\leq l\leq i+1$ . We define $T_{i,l}(u, \lceil B\rceil, \rho)$ by recursion on $l$ in the meta-language.

If $l=0$, then $B$ is quantifier free, so $T_{i}(u, \lceil B\rceil, \rho)\equiv T_{-1}(u, \lceil B\rceil, \rho)$ .
If $l\geq 1$ , then

$B\equiv Q_{j}x_{j}\leq t.A(\vec{a}, x_{1}, \ldots, x_{j})$ ,

where $j=i+2-l;t\equiv t_{j}(\vec{a}, x_{1}, \ldots, x_{j-1})$ if $j<i+1$ , and $t\equiv|t_{i+1}(\vec{a}, x_{1}, \ldots, x_{i})|$ if
$j=i+1$ ; and $A(\vec{a}, x_{1}\ldots, x_{j})$ is an $i$ -normal formula with $l-1$ quantifiers. Assume
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that we have defined $T_{i,l-1}(u, \lceil C\rceil, \rho)$ for all $i$ -normal formulae $C$ with $l-1$ quantifiers.
We define $T_{i,l}(u, \lceil B\rceil, \rho)$ to be the following formula.

$\exists c\leq u, v(\lceil t\rceil, \rho)\downarrow_{u}c\wedge Q_{j}d_{j}\leq c.T_{i}(u, \lceil A(\vec{a}, x_{1}, \ldots, x_{j})\rceil, \rho[x_{j}\mapsto d_{j}])$

Then, let INQ $(\lceil B\rceil, l)$ be a formula which represents $B$ is an $i$ -normal form with $l$

quantifiers”. we define $T_{i}(u, \lceil B\rceil, \rho)$ as

$\{INQ(\lceil B\rceil, 0)\supset T_{i,0}(u, \lceil B\rceil, \rho)\}\vee\ldots\vee\{INQ(\lceil B\rceil, i+1)\supset T_{i,i+1}(u, \lceil B\rceil, \rho).\}$ (3)

Since we can contmct successive $\exists$ quantifiers into a single $\exists$ quantifier, $T_{i}(u, \lceil B\rceil, \rho)$

is $\Sigma_{i+1}^{b}.$

Finally, we prove the (sort of) the soundness of $S_{2}^{i}E$-proofs. However, since we
restrict our attention to $i$-normal formulae, we can consider only strictly $i$ -normal
proofs for the soundness proof.

Definition 7. An $S_{2}^{-1}E$ proof is strictly $i$-normal if all formulae contained in the proof
are $i$ -normal. The property $w$ is (the G\"odel number of) a strictly $i$ -normal proof tree
for $\Gammaarrow\triangle$ ” is $\triangle_{1}^{b}$ -definable. We write i-Prf$(w, \lceil\Gammaarrow\triangle\rceil)$ for the $\triangle_{1}^{b}$ formula that
defines this property.

Proposition 1. Let Env be the temary relation that holds of precisely the triples
$(\rho’, \lceil\sigma\rceil, u)$ where $\sigma$ is a term, a formula, or a sequent; $\rho’$ is an $a\mathcal{S}$signment for free
variables $\sigma;u\in \mathbb{N}$ ; for every variable $x$ of $S_{2}^{i}E$ , there is a pair $(\lceil x\rceil, n)$ in $\rho’$ (for some
$n\in \mathbb{N})$ if and only if $x$ occurs free in $\sigma$ ; and $\rho’(x)\leq u$ for every variable $x$ that occurs
free in $\sigma$ . We identify assignments with their Godel numbers; therefore, we regard Env
as a temary relation on $\mathbb{N}.$

Let $u\in \mathbb{N}$ , and let $\sigma$ be a term, a formula, or a sequent. $BdEnv(\lceil\sigma\rceil, u)$ de-
notes the greatest $m\in \mathbb{N}$ which is (the G\"odel number of) an assignment $\rho’$ such that
Env $(\rho’, \lceil\sigma\rceil, u)$ holds.

Let $\Gammaarrow\triangle$ be a sequent comprised entirely of $i$ -normal formulae, and let $u,$ $w\in \mathbb{N}$

such that i-Prf$(w, \lceil\Gammaarrow\triangle\rceil)$ holds, $w\leq u$ , and the binary representation of $u$ is of the
form $11\cdots 1$ , that is, all the bits are 1. Then for every node $r$ of $w$ , the following holds
(where $\rho$ denotes an environment as well as its G\"odel number and $\Gamma_{r}arrow\triangle_{r}$ denotes
the conclusion of the subproof which corresponds a node $r$).

$\forall\rho\leq$ BdEnv $(\lceil\Gamma_{r}arrow\triangle_{r}\rceil, u)[Env(\rho, \lceil\Gamma_{r}arrow\triangle_{r}\rceil, u)\supset$

$\forall u’\leq u\ominus r\{[\forall A\in\Gamma_{r}, T_{i}(u’, \lceil A\rceil, \rho)]\supset[\exists B\in\triangle_{r}, T_{i}(u’\oplus r, \lceil B\rceil, \rho)]\}]$ (4)

Furthermore, this is derivable in $S_{2}^{i+2}.$
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Proof. By induction on $r$ , For the purpose of illustration, we consider the case where
$r$ is an axiom or Cut.

$\overline{\Gamma(\vec{s}(\vec{a}))arrow\triangle(\vec{s}(\vec{a}))}$

Ax,
(5)

where $\Gamma(\vec{s}(\vec{a}))arrow\Delta(\vec{s}(\vec{a}))$ is a substitution instance of an axiom.
Since there are only finite many axioms, we use case analysis on the axiom which

derives this substitution instance. Assume that $\forall A\in\Gamma,$ $T_{i}(u’, \lceil A(\vec{s}(\vec{a}))\rceil, \rho)$ . Let
$\Gamma(\vec{b})arrow\triangle(\vec{b})$ be the axiom into which the substitution was made. This axiom sat-
isfies the boundedness conditions (Definition 1). Moreover, its standard interpretation
(Et is interpreted as trivially true formula.) is derivable in $S_{2}^{i+2}.$

By the first boundedness condition, all the formulae in $\Gamma$ and $\Delta$ are quantifier
free. Let $\vec{b}=b_{1},$

$\ldots,$
$b_{l}$ and $\vec{s}(\vec{a})=s_{1}(\vec{a}),$

$\ldots,$
$s\iota(\vec{a})$ , where $s_{k}(\vec{a})$ is the term that was

substituted for the variable $b_{k}$ in the application of the axiom rule $(k=1, \ldots, l)$ . By
the second boundedness condition, $b_{k}$ occurs in $\Gamma$ , so by Lemma 3.15 of [17], $\exists d_{k}\leq u’$

such that $v(\lceil s_{k}(\vec{a})\rceil, \rho)J$. , $d_{k}(k=1, \ldots, l)$ , hence $\forall A\in\Gamma,$ $T_{i}(u’, \lceil A(\vec{b})\rceil,$ $\rho[\vec{b}\mapsto d)$ .
Let $t_{\Gamma}(\vec{b})arrow$ be the subterms of the terms that occur in $\Gamma(\vec{b})$ , and let $t_{\Delta}(b)arrow$ be the

subterms of the terms that occur in $\Delta(\vec{b})$ . Since all formulae occur in $\Gamma$ and $\triangle$ are
quantifier-free, $\vec{b}$ are all variables contained $t_{\Gamma}(\vec{b})arrow$ and $\Gamma(\vec{b})$ . Since the function symbol
of $S_{2}^{i}E$ is definable in $S_{2}^{1}$ , we can view the terms in $t_{\Gamma}(\vec{b})arrow$ and $t_{\Delta}(\vec{b})arrow$ as terms of $S_{2}^{1}$ . By
the third boundedness condition, the relation

$\max\{t_{\Delta}(\vec{b})\}arrow\leq\alpha\cdot\max\{t_{\Gamma}(\vec{b})\}arrow$ (6)

is provable in $S_{2}^{1}.$

Since $\forall A\in\Gamma,$ $T_{i}(u’, \lceil A(\vec{b})\rceil,$ $\rho[\vec{b}\mapsto\eta)$ , we have $\max\{t_{\Gamma}(\grave{di}\}arrow\leq u’$ . By Lemma 3.11
of [17], we have that, for every $A$ in $\Gamma,$ $A(dJ$ is true (in the meta-language). Since
$\Gamma(d^{-})arrow\Delta(dJ$ holds (in the meta-language), there is some $B$ in $\Delta$ such that $B(di$ is
true (in the meta-language). Since we can take $\alpha$ to be 4, we have $\max\{t_{\Delta}arrow(\overline{d})\}\leq$

$4\cdot u’\leq u’\oplus r$ . Let $\vec{c}=FV(B(\vec{b}))$ . Then $T_{i}(u’\oplus r, \lceil B(\vec{c})\rceil,$ $\rho[\vec{c}\mapsto d$ holds by Lemma
3.18 of [17]. By Lemma 3.5 of [17] and the fact that $v(\lceil s_{k}(\vec{a})\rceil, \rho)\downarrow_{u’}d_{k}(k=1, \ldots, l)$ ,
we obtain $v(\lceil s_{k}(\vec{a})\rceil, \rho)\downarrow u’\oplus rd_{k}$ . Using that result and Lemma 3.15 of [17], we have
$T_{i}(u’\oplus r, \lceil B(\vec{s}(\vec{a}))\rceil, \rho)$ , so we are done.

Next, we consider the Cut rule.

$:$

:
$r_{1}$

$:$

:
$r_{2}$

$\frac{\Gammaarrow\triangle,AA,\Piarrow\Lambda}{\Gamma,\Piarrow\triangle,\Lambda}$ Cut (7)

Assume that $\forall B\in\Gamma,$ $\Pi,$ $T_{i}(u’, \lceil B\rceil, \rho)$ . Let $\vec{a}$ be the variables that occur free in $A$ but
do not occur free in $\Gamma_{r}arrow\Delta_{r}$ , and let $\rho[\vec{a}\mapsto 0]$ be the environment that extends $\rho$

and maps every variable in $\vec{a}$ to $0$ (where $\rho[\vec{a}\mapsto 0\neg\equiv\rho$ if $\vec{a}$ is empty). Note that
$\rho[\vec{a}\mapsto 0]$ is an environment for $\Gamma_{r_{1}}arrow\triangle_{r_{1}}$ , and that $\rho[\vec{a}\mapsto 0\neg$ assigns a value less than
$u$ for every variable $y$ that occurs free in $\Gamma_{r_{1}}arrow\triangle_{r_{1}}$ . Let $\rho_{1}$ be the subsequence of
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$\rho[\vec{a}\mapsto\vec{0}]$ such that Env$(\rho_{1}, \lceil\Gamma_{r_{1}}arrow\triangle_{r1}\rceil, u)$ . Then we have $\forall B\in\Gamma,$ $T_{i}(u’, \lceil B\rceil, \rho_{1})$ , and
$\rho_{1}\leq$ BdEnv $(\lceil\Gamma_{r_{1}}arrow\triangle_{r1}\rceil, u)$ . By the induction hypothesis applied to $r_{1}$ together with
the fact that $u’\leq u\ominus r\leq u\ominus r_{1}$ , either $\exists C\in\triangle,$ $T_{i}(u’\oplus r_{1}, \lceil C\rceil, \rho_{1})$ or $T_{i}(u’\oplus r_{1}, \lceil A\rceil, \rho_{1})$ .

If there is some $C$ in $\triangle$ such that $T_{i}(u’\oplus r_{1}, \lceil C\rceil, \rho_{1})$ , we have $T_{i}(u’\oplus r_{1}, \lceil C\rceil, \rho[\vec{a}\mapsto 0])$

because $\rho_{1}$ is a subsequence of $\rho[\vec{a}\mapsto\vec{0}]$ and by Lemma 3.17 of [17]. Furthermore,
$T_{i}(u’\oplus r_{1}, \lceil C\rceil, \rho)$ holds by Lemma 3.17 of [17], since none of the variables in $\vec{a}$ occurs
free in $C$ . Thus $T_{i}(u’\oplus r, \lceil C\rceil, \rho)$ by Lemma 3.16 of [17] and the fact that $u’\oplus r_{1}\leq u’\oplus r.$

Hence we are done, so assume otherwise.
Then we have $T_{i}(u’\oplus r_{1}, \lceil A\rceil, \rho_{1})$ , so $T_{i}(u’\oplus r_{1}, \lceil A\rceil, \rho[\vec{a}\mapsto\vec{0}])$ holds by Lemma 3.17

of [17], because $\rho_{1}$ is a subsequence of $\rho[\vec{a}\mapsto\vec{0}]$ . By our assumption about $\Pi$ , we have
$\forall B\in\Pi,$ $T_{i}(u’, \lceil B\rceil, \rho[\vec{a}\mapsto 0])$ by Lemma 3.17 of [17], because $\rho$ is a subsequence of
$\rho[\vec{a}\mapsto\vec{0}]$ . By Lemma 3.16 of [17], we have $\forall B\in\Pi,$ $T_{i}(u’\oplus r_{1}, \lceil B\rceil, \rho[\vec{a}\mapsto\vec{0}])$ .

Note that $\rho[\vec{a}\mapsto 0]$ is an environment for $\Gamma_{r_{2}}arrow\triangle_{r_{2}}$ , and that $\rho[\vec{a}\mapsto 0\rceil(y)\leq u$

for every variable $y$ that occurs free in $\Gamma_{r_{2}}arrow\triangle_{r}2^{\cdot}$ Let $\rho_{2}$ be the subsequence of
$\rho[\vec{a}\mapsto\vec{0}]$ such that Env $(\rho_{2}, \lceil\Gamma_{r2}arrow\triangle_{r2}\rceil, u)$ . Then we have $T_{i}(u’\oplus r_{1}, \lceil A\rceil, \rho_{2})$ and
$\forall B\in\Pi,$ $T_{i}(u’\oplus r_{1}, \lceil B\rceil, \rho_{2})$ ; in addition, $\rho_{2}\leq$ BdEnv$(\lceil\Gamma_{r2}arrow\triangle_{r_{2}}\rceil, u)$ .

Our choice of G\"odel numbering, together with the fact that $r_{1}$ and $r_{2}$ are G\"odel
numbers of nonempty subproofs of $\Gamma_{r}arrow\triangle_{r}$ , ensures that $|r_{1}\oplus r_{2}|<|r|$ . Since
$u’\leq u\ominus r$ , we have $|u’\oplus r_{1}|\leq|u\ominus r\oplus r_{1}|<|u\ominus(r_{1}\oplus r_{2})\oplusr_{1}|=|u\ominus r_{2}|$ , hence
$u’\oplus r_{1}<u\ominus r_{2}.$

By the induction hypothesis applied to $r_{2}$ together with the fact that $u’\oplus r_{1}<u\ominus r_{2},$

there is some $D$ in $\Lambda$ such that $T_{i}(u’\oplus r_{1}\oplus r_{2}, \lceil D\rceil, \rho_{2})$ . Then we have $T_{i}(u’\oplus r_{1}\oplus$

$r_{2},$ $\lceil D\rceil,$ $\rho[\vec{a}\mapsto\vec{0}])$ by Lemma 3.17 of [17], because $\rho_{2}$ is a subsequence of $\rho[\vec{a}\mapsto\vec{0}].$

Furthermore, $T_{i}(u’\oplus r_{1}\oplus r_{2}, \lceil D\rceil, \rho)$ holds by Lemma 3.17 of [17], because none of the
variables in $\vec{a}$ occurs free in $D$ . Since $|r_{1}\oplus r_{2}|<|r|$ , we have $u’\oplus r_{1}\oplus r_{2}<u’\oplus r$ , so
$T_{i}(u’\oplus r, \lceil D\rceil, \rho)$ by Lemma 3.16 of [17]. Hence we are done.

口

Theorerm 1. Let i-Con $\equiv\forall w.\neg i-Prf(w, \lceilarrow\rceil)$ , which states that there is no strictly
$i$ -normal proof of the empty sequent $arrow$ . Then

$S_{2}^{i+2}\vdash i$-Con(8)

Proof. We informally argue inside of $S_{2}^{i+2}$ . Assume that i-Prf$(w, \lceilarrow\rceil)$ holds for some
$w$ . Let $u$ be as in the statement of Proposition 1, let $\rho$ be the empty environment,
and let $r$ be the root of $w$ . Then we obtain $[\forall A\in\Gamma_{r}, T_{i}(u’, \lceil A\rceil, \rho)]\supset[\exists B\in$

$\triangle_{r},$ $T_{i}(u’\oplus r, \lceil B\rceil, \rho)]$ . However, both $\Gamma_{r}$ and $\triangle_{r}$ are empty. Therefore, we obtain
$[\forall A\in\emptyset, T_{i}(u’, \lceil A\rceil, \rho)]\supset[\exists B\in\emptyset, T_{i}(u’\oplus r, \lceil B\rceil, \rho)]$ . Since there is no $A\in\emptyset$ , the
premise is true. But since there is no $B\in\emptyset$ , the conclusion cannot be true. This is a
contradiction. Therefore, the formula $\forall w.\neg i-Prf(w, \lceilarrow\rceil)$ holds. 口
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5 Bootstrapping Theorem of $S_{2}^{i}E$

In this section, we establish the correspondence between $S_{2}^{i}E$ and $S_{2}^{i}$ . We show that
$S_{2}^{i}E$ has essentially the same strength as $S_{2}^{i}$ if $i\geq 1$ . The theorem which establishes
the correspondence is called the Bootstrapping Theorem (Theorem 2), following Buss’
use of the term “bootstrapping” in [5], since we bootstrap from the restricted set of
axioms of $S_{2}^{i}E$ to the full power of $S_{2}^{i}.$

We present a proof of the theorem in four “phases” of bootstrapping. In the first
phase, we show that all the functions of $S_{2}E$ are provably total. Each of the remain-
ing phases applies to a particular class of inferences of $S_{2}^{i}$ , and we show that all the
inferences covered in each phase are admissible in $S_{2}^{i}E$ (if properly translated from $S_{2}^{i}$

to $S_{2}^{i}E)$ , that is, that if all the premises of an inference covered in a given phase are
provable in $S_{2}^{i}E$ , then the conclusion of that inference is also provable in $S_{2}^{i}E$ (Defi-
nition 9). The Bootstrapping Theorem (Theorem 2) then follows from the fact that
every inference of $S_{2}^{i}$ is treated in some phase of the bootstrapping. Even the axioms
are included in this, since an axiom is just a rule of inference with no premise.

5.1 Translation of theorems of $S_{2}^{i}$

In this subsection, we introduce a translation of $S_{2}^{i}$ formulae to the language of $S_{2}^{i}E$

and state the Bootstrapping Theorem (Theorem 2).

Definition 8. The formulae of $S_{2}^{i}$ are tmnslated into formulae of $S_{2}^{i}E$ by replacing
every formula of the form $A\supset B$ with one of the form $\neg A\vee B$ , and using De Morgan
duality to replace every formula of the form $\neg A$ with a logically equivalent formula in
which every subformula prefaced with the negation symbol $\neg$ ”is of the form $t_{1}=t_{2}$

or $t_{1}\leq t_{2}$ . We call this tmnslation $the*$-translation and denote $the*$ -translation of $A$

by $A^{*}$ . Formally, $the*$ -tmnslation is defined as follows.
1. $(p(t_{1}, t_{2}))^{*}\equiv p(t_{1}, t_{2})$ if $p$ $is=or$ $\leq.$

2. $(\neg p(t_{1}, t_{2}))^{*}\equiv\neg p(t_{1}, t_{2})$ if $p$ $is=or$ $\leq.$

3. $(A\wedge B)^{*}\equiv A^{*}\wedge B^{*}.$

4. $(A\vee B)^{*}\equiv A^{*}\vee B^{*}$

5. $(\neg A)^{*}\equiv(\overline{A})^{*}$ , where $\overline{A}$ is the De Morgan dual of $A.$

6. $(A\supset B)^{*}\equiv(\overline{A})^{*}VB^{*}$

7. $(\forall x\leq t.A)^{*}\equiv\forall x\leq t.A^{*}$ and $(\exists x\leq t.A)^{*}\equiv\exists x\leq t.A^{*}$

$8.$ $(\forall x.A)^{*}\equiv\forall x.A^{*}$ and $(\exists x.A)^{*}\equiv\exists x.A^{*}$
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$\Gamma^{*}$ is the sequence of formulae which is obtained by applying $*to$ the formulae in
the sequence $\Gamma.$

The sequent $\Gammaarrow\triangle$ is tmnslated to the sequent $(\Gammaarrow\triangle)^{*}\equiv E\vec{a},$ $\Gamma^{*}arrow\triangle^{*}$ , where a
are the variables that occur free in $\Gammaarrow\triangle.$

The following theorem states that $S_{2}^{i}E$ proves $the*$-translations of sequents deriv-
able in $S_{2}^{i}$ if $i\geq 0.$

Theorerm 2 (Bootstrapping Theorem). If $i\geq 1$ and $S_{2}^{i}$ pmves a sequent $\Gammaarrow\triangle,$

then $S_{2}^{i}E$ pmves $its*$ -tmnslation $(\Gammaarrow\triangle)^{*}$

The rest of this section is devoted to a proof of the Bootstrapping Theorem. To
simplify the notation, we write $S_{2}^{i}E$ for $S_{2}^{i}E(\mathcal{F}, \mathcal{A})$

5.2 Bootstrapping Phase I: $S_{2}^{i}E$ proves totality of its functions.
In this subsection, we prove that if $i\geq 0$ , all the functions of $S_{2}^{i}E$ are provably total,
that is, that $S_{2}^{i}E\vdash E\vec{a}arrow Ef\vec{a}$ for every function symbol $f\in \mathcal{F}$. The proof is by
induction (in the meta-language) on the definition of $f.$

Proposition 2. If $i\geq 0$ , then for every n-ary function symbol $f$ of $S_{2}^{i}E,$ $S_{2}^{i}E$ proves

$E\vec{a}arrow Ef\vec{a}$ , (9)

where $\vec{a}\equiv a_{1},$

$\ldots,$ $a_{n}.$

The reason for specifying that $i\geq 0$ is that in the proof we apply the PIND rule to
$\Sigma_{0}^{b}$ formulae of $S_{2}^{i}E.$

It follows from this proposition that if all the variables in a term of $S_{2}^{i}E$ converge,
then the term itself converges.

Corollary 1. Let $t$ be a term of $S_{2}^{i}E$ . If $a_{1},$ $\ldots,$
$a_{n}$ are the variables that occur in $t,$

then the following holds if $i\geq 0.$

$S_{2}^{i}E\vdash Ea_{1}, \ldots, Ea_{n}arrow Et$ (10)

Proof of Proposition 2. The proof is by induction on the definition of $f.$ $\square$

5.3 Bootstrapping Phase II : $S_{2}^{i}E$ proves $*$-translations of ax-
ioms of $S_{2}^{i}$

In Bootstrapping Phase II, we prove $the*$-translations of axioms of $S_{2}^{i}$ in $S_{2}^{i}E$ . There
are two kinds of axioms: equality axioms and BASIC axioms.
Proposition 3. $The*$ -tmnslations of the equality axioms of $S_{2}^{i}$ are provable in $S_{2}^{i}E.$

Proposition 4. Assume that $A$ is a BASIC axiom. Then $(arrow A)^{*}(the*$ -tmnslation
of $arrow A)$ is derivable in $S_{2}^{i}E.$

We omit the proofs of these Propositions.
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5.4 Bootstrapping Phase III $:*$-translations of predicate logic
are admissible in $S_{2}^{i}E$

In Bootstrapping Phase III, we prove that $the*$-translations of the inferences of pred-
icate logic are admissible in $S_{2}^{i}E.$

Definition 9. The inference

$\frac{\Gamma_{1}arrow\Delta_{1}\cdots\Gamma_{\mathfrak{n}}arrow\triangle_{n}}{\Gammaarrow\Delta}$

(11)

$is$ admissible in $S_{2}^{i}E$ if $\Gammaarrow\Delta$ is pmvable in $S_{2}^{i}E$ whenever $\Gamma_{1}arrow\Delta_{1},$
$\ldots,$

$\Gamma_{n}arrow\Delta_{n}$

are provable in $S_{2}^{i}E.$

Proposition 5. If
$\frac{\Gamma_{1}arrow\Delta_{1}\cdots\Gamma_{n}arrow\triangle_{n}}{\Gammaarrow\Delta}$

(12)

is an inference of predicate logic, then the inference

$\frac{(\Gamma_{1}arrow\triangle_{1})^{*}\cdots(\Gamma_{n}arrow\Delta_{n})^{*}}{(\Gammaarrow\triangle)^{*}}$

(13)

is admissible in $S_{2}^{i}E.$

Pmof. By case analysis.
口

5.5 Bootstrapping Phase IV: $*$-translation of $\Sigma_{i}^{b_{-}}$ PIND rule is
admissible in $S_{2}^{i}E$

Finally, we prove admissibility of $the*$-translation of the $\Sigma_{i^{-}}^{b}$ PIND rule of $S_{2}^{i}.$

Lemma 1. Assume that $\Gamma,$ $Ea,$ $A( \lfloor\frac{1}{2}a\rfloor)arrow A(a),$ $\Delta$ is pmvable in $S_{2}^{i}E$ , where the
variable $a$ does not occur free in $\Gammaarrow\Delta$ and $A(a)$ is a $\Sigma_{i}^{b}$ formula. Then $\Gamma,$ $E\vec{a},$ $A(O)arrow$

$A(t),$ $\Delta$ is also provable in $S_{2}^{i}E$ , where $a$ are the variables that occur in the term $t.$

Proof. Note that $\lfloor\frac{1}{2}s_{0}a\rfloor=\lfloor\frac{1}{2}s_{1}a\rfloor=a$ if $Ea$ holds. Therefore, substituting $s_{0}a$ and $s_{1}a$

for $a$ in $\Gamma,$ $Ea,$ $A( \lfloor\frac{1}{2}a\rfloor)arrow A(a),$ $\triangle$ and applying Cut with $Eaarrow Es_{0}a$ and $Eaarrow Es_{1}a,$

we obtain $\Gamma,$ $Ea,$ $A(a)arrow A(s_{0}a),$ $\triangle$ and $\Gamma,$ $Ea,$ $A(a)arrow A(s_{1}a),$ $\triangle$ , respectively. Com-
bining $\Gamma,$ $A(O)arrow A(O),$ $\Delta$ and the $\Sigma_{i^{-}}^{b}$ PIND-$E$ rule, we have $\Gamma$ , Et, $A(O)arrow A(t),$ $\triangle.$

Since $Et$ is derivable from $E\vec{a}$ (Corollary 1), we have $\Gamma,$ $E\vec{a},$ $A(O)arrow A(t),$ $\triangle.$ $\square$

Proposition 6. $The*$ -tmnslation of the PIND rule of $S_{2}^{i}$ , that is, the inference

$\frac{E\vec{a}\{,Ea\},\Gamma^{*},A(\lfloor a/2\rfloor)^{*}arrow A(a)^{*},\triangle^{*}}{E\vec{a}\{,E\vec{b}\},\Gamma^{*},A(0)^{*}arrow A(t)^{*},\Delta^{*}}$
,

(14)
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is admissible in $S_{2}^{i}E$ , where the variable $a$ does not occur free in $\Gammaarrow\Delta,$ $A(a)$ is a
$\Sigma_{i}^{b}$ formula, $a$ are the variables other than $a$ that occur free in $\Gamma,$ $A(\lfloor a/2\rfloor)arrow A(a),$ $\triangle,$

and $\vec{b}$ are the variables that occur in $t$ but are not in $\vec{a}.$

The formula $Ea$ $(in the$ antecedent of $E\vec{a}\{, Ea\}, \Gamma^{*}, A(\lfloor a/2\rfloor)^{*}arrow A(a)^{*},$ $\Delta^{*}$ ) is
enclosed in bmces, as is $E\vec{b}$ $(in the$ antecedent of $E\vec{a}\{, E\vec{b}\}, \Gamma^{*}, A(O)^{*}arrow A(t)^{*},$ $\Delta^{*}$ ),
to indicate that $Ea$ and $E\vec{b}$ are not included in those antecedents unless the variable a
occurs free in $A(a)$ .

Proof. By Lemma 1.
口
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