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Abstract
In this study, we consider two-player (simultaneous) stochastic games on fi-

nite graphs in which each player chooses an action at every state, being unaware
of the choice of the other. We will prove some interesting facts about generalized
stochastic reachability games. In particular, we show that there exists a mem-
oryless randomized optimal strategy for Player II in this game, while the same
thing does not hold for Player I. Our main contribution in this paper is a proof of
the existence of a memoryless $\epsilon$-optimal strategy for Player I in any generalized
reachability games. Actually, this result for reachabihty games was shown by
Chatterjee et al. [5] in a slightly different setting. Beforehand, we show that
the generalized reachability game is determinate, and give a simple expression of
values for this game by defining the notion of a limit value of finite-step games.

1 Introduction
Firstly, we give a brief explanation of this game. For each round of a game, Player I and
Player II choose their actions simultaneously and then the next state is determined. $A$

finite or infinite sequence of states obtained is the result of a play. We investigate a
generalized reachability game, where the goal of Player I is to force the plays to reach
a specified set of target states with a higher expected value, and the objective of the
opponent is to prevent it. In a reachability game, we assign value 1 to any plays that
reach the target states, and value $0$ otherwise. However, in generalized reachability
games, we define a label function, and this can be seen as a weighted reachability
payoff function which assigns to every infinite play either $0$ if any target state is not
visited in a play, or the reward (positive real number) of the first target state visited by
the players. These can be regarded as zero-sum games, and the reachability objective
is one of the most basic objectives among the Borel objectives. We are concerned
with the highest expected value that Player I can achieve against any strategy of the
opponent. Similarly, we also discuss the lowest expected value that the Player II can
achieve against any strategy of Player I. If these two quantities are equal, we call them
the values of the game and say the game is determined. An optimal strategy of Player
I is a strategy that guarantees the value of the game from each position. Finally, an
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$\epsilon$-optimal strategy of Player I is a strategy that satisfies the objective within an $\epsilon$ error
of the value of the game.

1.1 Related Works and Motivations
In 1953, Gale and Stewart [11] introduced the theory of infinite games, which are two-
player infinite games with perfect information. This game has been investigated by
many mathematicians and logicians, and until now, it is one of the major topics in
game theory and mathematical logic. The determinacy result for turn-based games
with Borel objectives was established as a deep result by Martin [14]. On the other
hand, the determinacy for one-round simultaneous game was proved by von Neumann
[15] by using his famous minimax theorem. Infinite versions of von Neumann’s games
were introduced by David Blackwell [1]. The determinacy for such games with Borel
objectives was established by Martin [13].

Recently, Jan $Krc\check{a}1[12]$ studied the determinacy of stochastic tum-based games fo-
cused on some winning objectives. He mainly discussed reachability games and showed
that the games are determined for both finite and infinite games. In finite reachability
games, both players have memoryless and deterministic optimal strategies. In the case
of infinite games with finite branching, only Player II has an optimal strategy (mem-
oryless and deterministic). In the games with infinite branching, none of the players
have an optimal strategy in general. He also considered a safety game which is a dual
game of reachabihty games, and hence the results are dual to reachability case as well.

Inspired by his work, we try to investigate stochastic games with imperfect infor-
mation and analyze the strategies of the players. Most of previous results related to
this topic were obtained with use of payoff functions. Over the stochastic games on
graphs, typical payoff functions are limit-average (also called mean-payoff) and dis-
counted payoff. To know the definition of mean payoff functions, see [10], [8], and
[16]; for discounted payoff, see [10] and [6]. Besides their simple definitions, these two
payoff functions enjoy the property that memoryless optimal strategies always exist,
especially in turn-based stochastic games. In [2], they introduced a multi-mean payoff
on a turn-based stochastic parity game. Their work can be seen as an extension of
[3] where mean-payoff parity games have been studied. While Chatterjee et al. [4]
defined another simple payoff function, which contains both the limit-average and the
discounted sum functions in two-player turn-based games on a graph.

Simultaneous stochastic games on graphs are more difficult to analyze rather than
turn-based games. In simultaneous games, optimal strategies may not exist, but for
every real $\epsilon>0$ , there always exists a strategy that satisfies a winning outcome with
an expected value that lies within $\epsilon$ of the optimal value. The existence of memoryless
$\epsilon$-optimal strategies for simultaneous stochastic games with reachability and safety
objectives for all $\epsilon>0$ were shown in [10]. However, the proof of this fact is rather
complex. $A$ more specialized result of the existence of memoryless $\epsilon$-optimal strategies
is shown in [9] but again, the proof used deep results from analysis. Chatterjee et al. [5]
showed that the existence of memoryless $\epsilon$-optimal strategies can be established by a
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different way, where their proof relies on combinatorial techniques and uses properties
of a Markov decision process. In particular, their proof is built upon a value-iteration
scheme that converges to the value of the game. Simultaneous reachability games have
been studied more specifically in [7], where they extended their study to $\omega$-regular
objectives and provided algorithms for computing the sets of winning states for each
type of games.

By following their series of studies, we present stochastic (simultaneous) games on
graphs with generalized version of reachability objectives. The aim of this research
is to clarify the existence of the values of games by using a weighted reachability
payoff function as we stated earlier. In particular, we want to express the values
of games in a more specific way. Although we know that for every general class of
games (i.e. Blackwell games), the determinacy and optimal value results hold for all
Borel objectives [13], our study provides a more specific proof for stochastic games and
may give a deep intuitive understanding into this topic, especially games on graphs.
Moreover, we investigate what type of optimal ( $\epsilon$-optimal) strategy exists for each
player.

As a result, we show that a generahzed reachability game is determinate. In partic-
ular, we give a simple expression of the values of this game by defining the notion of the
limit values of finite-step games. Our main results show the existence of memoryless
optimal strategy for Player II in this game and prove the existence of a memoryless
$\epsilon$-optimal strategy for Player I in any generalized reachability games.

2 Games
We begin our formal discussion by defining some basic concepts and descriptions of
games that are necessary for understanding the argument presented in subsequent
sections.

Definition 2.1. $A$ (two-player simultaneous infinite) stochastic game is a quadruple
$\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ , where $S,$ $A_{I}$ and $A_{II}$ are nonempty finite sets and $\delta$ is a function
from $S\cross A_{I}\cross A_{II}$ into S. Elements of $S$ are called states. Elements of $A_{I}$ are called
actions or moves of Player I. Similarly, $element_{\mathcal{S}}$ of $A_{II}$ are called actions or moves of
Player $\Pi.$ $\delta$ is called a transition function.
Definition 2.2. $A$ path or a play of a game $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ is a finite or infinite
sequence $s_{0}s_{1}s_{2}\ldots$ of states in $S$ such that for all $n\in \mathbb{N}$ , there exist $a_{n}\in A_{I}$ and
$b_{n}\in A_{II}$ where $\delta(s_{n}, a_{n}, b_{n})=s_{n+1}$ . Infinite paths of $\mathbb{G}$ are sometimes called runs. $We$

write $\Omega(\mathbb{G})$ for the set of all infinite plays; and $\Omega^{fin}(\mathbb{G})$ for the set of all finite plays of
non-zero length. Sometimes we write $\Omega$ or $\Omega^{fin}$ instead of $\Omega(\mathbb{G})$ or $\Omega^{fin}(\mathbb{G})$ when $\mathbb{G}$ is
clear from the context.

Intuitively, given a game $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ , a function $F:\Omega(\mathbb{G})arrow[0,1]$ and a state
$s\in S$ , we imagine the following infinite game $\mathbb{G}_{S}(F)$ : at stage $n\in \mathbb{N}\backslash \{O\}$ , we have the
finite part of a play $wrn$ with $w(O)=s$ , and each player selects their actions $a_{I}\in A_{I}$
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and $a_{II}\in A_{II}$ , simultaneously, and then, the next state $w(n)=\delta(w(n-1), a_{I}, a_{II})$ is
determined. In this case the value of the play $w$ is $F(w)$ . We assume that Player
I wants to maximize the value, whereas Player II wants to minimize. For a subset
$X$ of $\Omega(\mathbb{G})$ , the infinite game $\mathbb{G}_{s}(X)$ is defined in the same way considering $X$ as its
characteristic function. Thus, in the case of a set $X$ instead of a function $F$ , Player $I$

wants to put $w$ into $X$ , whereas Player II wants to avoid it.

2.1 Strategies and expected values
The notion of strategies plays an important role in infinite games. Informally, a strategy
for a player in the game is a rule that specifies the next move of the player for a given
finite play.

For a set $A$ , a probability distribution on $A$ is a function $\mu$ : $Aarrow[O, 1]$ with
$\sum_{a\in A}\mu(a)=1$ . We use $\mathcal{D}(A)$ for the set of all probability distributions on $A.$

A randomized strategy is a rule that chosen among the pure strategies at random
in various proportions (sometimes we called mixed strategy). We formalize this notion
in the following definition.

Definition 2.3. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game. $A$ (randomized) stmtegy of Player
I in $\mathbb{G}$ is any function $\sigma$ : $\Omega^{fin}(\mathbb{G})arrow \mathcal{D}(A_{I})$ . We write $\Sigma_{I}^{\mathbb{G}}$ or $\Sigma_{I}$ for the set of
all strategies of Player I. Similary, $a$ (randomized) stmtegy of Player $\Pi$ in $\mathbb{G}$ is any
function $\tau$ : $\Omega^{fin}(\mathbb{G})arrow \mathcal{D}(A_{II})$ , and we write $\Sigma_{II}^{\mathbb{G}}$ or $\Sigma_{II}$ for the set of all stmtegies of
Player $\Pi.$

Intuitively, for a given finite play, memoryless strategies give the next action de-
pending on the current state rather than the finite play itself.

Definition 2.4. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game. $A$ stmtegy $\sigma$ of Player I is called
memoryless if $\sigma(p)=\sigma(q)$ holds whenever $p,$ $q\in\Omega^{fin}(\mathbb{G})$ satisfy $p(|p|-1)=q(|q|-1)$ .
A memoryless stmtegy of Player $\Pi$ is defined similarly. We write $\Sigma_{I}^{M}$ and $\Sigma_{II}^{M}$ for the
set of all memoryless stmtegies of Player I and Player $\Pi$, respectively.

Clearly, given a memoryless strategy $\sigma\in\Sigma_{I}^{M}$ , there exists the function $\sigma’$ : $Sarrow$

$\mathcal{D}(A_{I})$ such that $\sigma(ps)=\sigma’(s)$ holds for any $ps\in\Omega^{fin}(\mathbb{G})$ with $s\in S$ . We sometimes
identify $\sigma$ with $\sigma’$ . Similar identification will be used for Player II.

A pair $(\sigma, \tau)\in\Sigma_{I}\cross\Sigma_{II}$ and a state $s\in S$ determine a probability measure $P_{s}^{\sigma,\tau}$ on
$\Omega_{s}=\{w\in\Omega : w(O)=s\}$ as follows.

Definition 2.5. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game. For a pair $(\sigma, \tau)\in\Sigma_{I}^{\mathbb{G}}\cross\Sigma_{II}^{\mathbb{G}}$ of
stmtegies and a state $s\in S,$ $P_{s}^{\sigma,\tau}$ denotes the probability measure on $\Omega_{S}$ determined by

$P_{s}^{\sigma,\tau}([p])= \prod_{n\in\{1,\cdots,|p|-1\}a,b}\sum_{\in A_{I}\cross A_{II}}\{\sigma(prn)(a)\tau(prn)(b);(p(n-1), a, b)\in\delta^{-1}(p(n))\}$

for any $p\in\Omega_{s}^{fin}$ , where $p$] $=\{w\in\Omega : p\subset w\}.$
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Intuitively, for a function $F:\Omegaarrow[0,1]$ with $P_{s}^{\sigma,\tau}(F)= \int_{\Omega_{S}}FdP_{s}^{\sigma,\tau}$ exists, $P_{s}^{\sigma,\tau}(F)$

means the expectated value of an infinite game $\mathbb{G}(F)$ from $s$ when Player I and Player
II use the strategy $\sigma$ and $\tau$ , respectively. In the case of a subset $X$ of $\Omega$ instead of $F,$

$P_{s}^{\sigma,\tau}(X)$ means the probability that the infinite play in $\Omega_{S}$ belongs to $X$ when Player
I and Player II use the corresponding strategies.

2.2 Values and optimal strategies
Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game, and let $F:\Omega(\mathbb{G})arrow[0,1]$ satisfy that $P_{s}^{\sigma,\tau}(F)$ exists
for any $\sigma\in\Sigma_{I}^{\mathbb{G}},$ $\tau\in\Sigma_{II}^{\mathbb{G}}$ and $s\in S$ . We call such a function $F$ a payoff function
of $\mathbb{G}$ . (In the game $\mathbb{G}(X)$ , the set $X$ with such a property is called a winning set of
$\mathbb{G}.)$ The value of Player I in a game $\mathbb{G}_{s}(F)$ for a state $s$ is the supremum of expected
value which Player I can ensure. Formally, it is $\sup_{\sigma\in\Sigma_{I}^{G}}\inf_{\tau\in\Sigma_{II}^{\mathbb{G}}}P_{s}^{\sigma,\tau}(F)$ . Let $\neg F$

be a function defined by $\neg F(w)=1-F(w)$ . The value of Player II is defined as
$\sup_{\sigma\in\Sigma_{I}^{\mathbb{G}}}\inf_{\tau\in\Sigma_{II}}{}_{\mathbb{G}}P_{s}^{\sigma,\tau}(\neg F)$ . This value is equal to $1- \inf_{\tau\in\Sigma_{II}^{\mathbb{G}}}\sup_{\sigma\in\Sigma_{I}}{}_{\mathbb{G}}P_{s}^{\sigma,\mathcal{T}}(F)$ . We say
that the game $\mathbb{G}(F)$ is determinate if

$\sup_{\sigma\in\Sigma_{I}^{\mathbb{G}}}\inf_{\tau\in\Sigma_{II}^{G}}P_{S}^{\sigma,\tau}(F)+\sup_{\tau\in\Sigma_{II}^{\mathbb{G}}}\inf_{\sigma\in\Sigma_{I}^{\mathbb{G}}}P_{s}^{\tau,\sigma}(\neg F)=1$

holds for any $s\in S$ . Or equivalently, the game $\mathbb{G}(F)$ is determinate if and only if

$\sup_{\sigma\in\Sigma_{I}^{\mathbb{G}}}\inf_{\tau\in\Sigma_{II}^{\mathbb{G}}}P_{s}^{\sigma,\tau}(F)=\inf_{\tau\in\Sigma_{II}^{\mathbb{G}}}\sup_{\sigma\in\Sigma_{I}^{\mathbb{G}}}P_{s}^{\sigma,\tau}(F)$

holds for any $s$ $\in$ $S$ . In this case, we write $va1_{s}^{\mathbb{G}}(F)$ or $va1_{S}(F)$ instead of
$\sup_{\sigma\in\Sigma_{I}^{\mathbb{G}}}\inf_{\tau\in\Sigma_{II}}{}_{G}P_{s}^{\sigma,\tau}(F)$ , and call it the value at $\mathcal{S}$ in the game $\mathbb{G}(F)$ .

The following is a well-known theorem obtained by Martin.

Theorem 2.6 (Martin [13]). Let $\mathbb{G}$ be a game and let $F$ : $\Omega(\mathbb{G})arrow[0,1]$ a Borel
measumble function. Then the game $\mathbb{G}(F)$ is determinate. $\square$

Definition 2.7. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta),$ $F$ : $\Omegaarrow[0,1]$ and $\epsilon\in[0,1]$ . Suppose that
$\mathbb{G}(F)$ is determinate. $A$ stmtegy $\sigma\in\Sigma_{I}$ of Player I is $\epsilon$ -optimal if $\inf_{\tau\in\Sigma_{II}}{}_{\mathbb{G}}P_{s}^{\sigma,\tau}(F)\geq$

$va1_{s}(F)-\epsilon$ holds for any $s\in S$ . Similarly, a stmtegy $\tau\in\Sigma_{II}$ of Player $\Pi$ is $\epsilon$ -optimal
if $\sup_{\sigma\in\Sigma_{I}}{}_{\mathbb{G}}P_{s}^{\sigma,\tau}(F)\leq va1_{S}(F)+\epsilon$ holds for any $s\in S$ . Optimal stmtegies are $0$ -optimal
stmtegies.

By the definition, a strategy $\sigma\in\Sigma_{I}$ of Player I is optimal if and only if

$\inf_{\mathcal{T}\in\Sigma_{II}}P_{S}^{\sigma,\tau}(F)=va1_{s}(F)$

holds for all $s\in S$ , and $\tau\in\Sigma$ 11 is optimal if and only if

$\sup_{\sigma\in\Sigma_{I}}P_{s}^{\sigma,\tau}(F)=va1_{s}(F)$

147



holds for all $s\in S.$

When $\mathbb{G}(F)$ is determinate and $\epsilon$ is a positive real number, then $\epsilon$-optimal strategies
of Player I and Player II always exist by the definition. However, there are some cases
that Player I or Player II has no optimal strategy.

Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game and let $V$ : $Sarrow[O, 1]$ . We define $F_{V}$ : $\Omega(\mathbb{G})arrow$

$[0,1]$ by $F_{V}(w)=V(w(1))$ . Games of the form $\mathbb{G}(F_{V})$ are called one-step games. We
write $\mathbb{G}(V)$ meaning $\mathbb{G}(F_{V})$ , and we write $va1_{s}(V)$ for $s\in S$ instead of $va1_{s}(F_{V})$ . In one-
step games optimal strategies always exist for each player. This theorem is well-known
as von Neumann’s minimax theorem.

Theorem 2.8 (von Neumann $[15]$ ). In any one-step game, both players have their
optimal stmtegies. $\square$

3 Generalized Reachability Games
Reachability games are in some respect the simplest infinite games. In this section, we
will prove some basic facts on a generalized version of reachability games. In particular,
we will describe the value of generalized reachability games as a limit value of finite-
step games. We will see that Player II has a memoryless optimal strategy, and Player
I has a memoryless $\epsilon$-optimal strategy in any generalized reachability games for every
positive real number $\epsilon$ . However, in general it is known that, even in a reachability
game, Player I may not have an optimal strategy.

Definition 3.1. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game. $A$ function $\ell$ is called a label on $S$

if dom$(\ell)\subset S$ and $\ell(s)\in[O, 1]$ for any $s\in$ dom$(\ell)$ . We define $\mathcal{R}^{\mathbb{G},\ell}$ : $\Omega(\mathbb{G})arrow[0,1]$ by

$\mathcal{R}^{\mathbb{C},\ell}(w)=\{\begin{array}{ll}\ell(w(N_{w})) if (\exists N\in \mathbb{N})[w(N)\in dom (\ell)],0 otheruise,\end{array}$

where $N_{w}$ is the least natuml number $N$ such that $w(N)\in$ dom$(\ell).$ $A$ game of the form
$\mathbb{G}(\mathcal{R}^{\mathbb{G},\ell})$ is called a genemlized reachability game.

For a subset $T$ of $S$ , let $\mathcal{R}^{\mathbb{G},T}=\mathcal{R}^{\mathbb{G},\ell_{T}}$ , where $\ell_{T}$ : $Tarrow\{1\}$ . Games of the form
$\mathbb{G}(\mathcal{R}^{G,T})$ are called reachability games.

Definition 3.2. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game and let $\ell$ a label on S. For every
state $s\in S$ and $n\in \mathbb{N}$ , we define $V_{n}^{G,\ell}$ : $Sarrow[O, 1]$ inductively by

$V_{0}$ $(s$$\mathbb{G},\ell)=\{\begin{array}{ll}\ell(s) if s\in dom (\ell) ,0 otherwise,\end{array}$ $V^{\mathbb{G},\ell}(s)=\{$

$\ell(s)$ if $s\in$ dom$(\ell)$ ,
$n+1$

$va1_{s}(V_{n}^{\mathbb{G},\ell})$ otherwise.

We let $V^{\mathbb{G},\ell}(s)= \lim_{narrow\infty}V_{n}^{\mathbb{G},\ell}(s)$ for any state $s$ , and we call it the limit value at $s.$
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3.1 Determinacy and optimal strategy
For a label $\ell$ on $S$ and $n\in \mathbb{N}$ , we define $\mathcal{R}_{n}^{\mathbb{G},\ell}$ : $\Omega(\mathbb{G})arrow[0,1]$ by $\mathcal{R}_{n}^{\mathbb{G},\ell}(w)=s_{w}$ if there
exists $m\leq n$ with $w(m)\in$ dom$(\ell)$ and $\mathcal{R}_{n}^{\mathbb{G},\ell}(w)=0$ otherwise.

Theorem 3.3. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game and let $\ell$ a label on S. For any
$n\in \mathbb{N}$ , both players have their optimal stmtegies in the game $\mathbb{G}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ , and the equality
$V_{n}^{\mathbb{G},\ell}(s)=va1_{8}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ holds for all $s\in S.$

Proof. We define $\sigma_{n}^{*}$ and $\tau_{n}^{*}$ inductively. Let $\sigma_{0}^{*}$ and $\tau_{0}^{*}$ be any strategies. Now suppose
that we have constructed $\sigma_{n}^{*}$ and $\tau_{n}^{*}$ . Choose $\sigma$ and $\tau$ as optimal strategies of Player
I and II respectively in the one-step game $\mathbb{G}(V_{n}^{\mathbb{G},\ell})$ . Define $\sigma_{n+1}^{*}$ by $\sigma_{n+1}^{*}(s)=\sigma(s)$

and $\sigma_{n+1}^{*}(s\rho)=\sigma_{n}^{*}(\rho)$ for any $s\in S$ and any $\rho\neq\emptyset$ with $s\rho\in\Omega^{fin}$ . Similarly, define
$\tau_{n+1}^{*}$ by $\tau_{n+1}^{*}(s)=\tau(s)$ and $\tau_{n+1}^{*}(s\rho)=\tau_{n}^{*}(\rho)$ for any $s\in S$ and any $\rho\neq\emptyset$ with
$s\rho\in\Omega^{fin}$ . It is easy to see by induction on $n$ that $\sigma_{n}^{*}$ and $\tau_{n}^{*}$ satisfy the equalities
$V_{n}^{\mathbb{G},\ell}(s)= \inf_{\tau\in\Sigma_{II}}P_{s}^{\sigma_{n}^{*},\tau}(\mathcal{R}_{n}^{\mathbb{G},\ell})=\sup_{\sigma\in\Sigma_{I}}P_{s}^{\sigma,\tau_{n}^{*}}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ . This equalities imply that the
$\sigma_{n}^{*}$ and $\tau_{n}^{*}$ are optimal strategies in the game $\mathbb{G}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ and that $V_{n}^{\mathbb{G},\ell}(s)=va1_{s}(\mathcal{R}_{n}^{\mathbb{G},\ell})$

holds. $\square$

Now we verify the value $va1_{s}(\mathcal{R}^{\mathbb{G},\ell})$ is equivalent to the hmit value $V^{\mathbb{G},\ell}(s)$ .

Theorem 3.4. For any state $s\in S$ , the equation $V^{\mathbb{G},\ell}(s)=va1_{s}(\mathcal{R}^{\mathbb{G},\ell})$ holds.

Proof. It is enough to show that the following inequalities:

$\inf_{\tau\in\Sigma_{II}}\sup_{\sigma\in\Sigma_{I}}P_{s}^{\sigma,\tau}(\mathcal{R}^{\mathbb{G},\ell})\leq V^{\mathbb{G},\ell}(s)\leq\sup_{\sigma\in\Sigma_{I}}\inf_{\tau\in\Sigma_{II}}P_{s}^{\sigma,\tau}(\mathcal{R}^{\mathbb{G},\ell})$ .

To show the first inequality, choose an optimal strategy $\tau^{*}$ of Player II in the one-step
game $\mathbb{G}(V^{\mathbb{G},\ell})$ . We may see $\tau^{*}$ as a memoryless strategy of Player II in the generahzed
reachability game $\mathbb{G}(\mathcal{R}^{\mathbb{G},\ell})$ . We show that $\tau^{*}$ satisfies the inequality $\sup_{\sigma\in\Sigma_{I}}P_{s}^{\sigma,\tau^{*}}(\mathcal{R}^{\mathbb{G},l})\leq$

$V^{\mathbb{G},\ell}(s)$ for any $s\in S.$ (Thus, if we prove the second inequality, then we can say this
$\tau^{*}$ is, in fact, an optimal strategy of Player II in the game $\mathbb{G}(\mathcal{R}^{\mathbb{G},\ell}).)$ It is enough to
show that $\sup_{\sigma}P_{s}^{\sigma,\tau^{*}}(\mathcal{R}_{n}^{\mathbb{G},\ell})\leq V^{\mathbb{G},\ell}(s)$ for any $s\in S$ and $n\in \mathbb{N}$ . We show this by
induction on $n$ . The case $n=0$ is clear. Suppose that $\sup_{\sigma}P_{s}^{\sigma,\tau^{*}}(\mathcal{R}_{n}^{\mathbb{G},\ell})\leq V^{\mathbb{G},\ell}(s)$

holds for any $s\in S$ as an induction hypothesis. Fix $s\in S$ . If $s\in dom(\ell)$ , then it is
obvious that the inequality holds for $s$ . Otherwise, we have the equality $P_{s}^{\sigma,\tau^{*}}(\mathcal{R}_{n}^{\mathbb{G}}\dotplus^{\ell_{1}})=$

$\sum_{s\in S}P_{S}^{\sigma,\tau^{*}}([ss’])P_{S}^{\sigma,\tau^{*}}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ for any $\sigma\in\Sigma_{I}$ . By the induction hypothesis, we know
that $P_{s}^{\sigma,\tau^{*}}( \mathcal{R}_{n}^{\mathbb{G}}\dotplus^{\ell_{1}})\leq\sum_{s\in S}P_{s}^{\sigma,\tau^{*}}([ss’])V^{\mathbb{G},\ell}(s’)$ . Hence the equalities

$\sup_{\sigma}P_{s}^{\sigma,\tau^{*}}(\mathcal{R}_{n}^{\mathbb{G}}\dotplus^{\ell_{1}})\leq\sup_{\sigma}\sum_{s\in S}P_{S}^{\sigma,\tau^{*}}([ss’])V^{\mathbb{G},\ell}(s’)=V^{\mathbb{G},\ell}(s)$

hold by the optimality of $\tau^{*}$ in the one-step game. Let us now show the second in-
equahty. We have $P_{s}^{\sigma,\tau}(\mathcal{R}_{n}^{\mathbb{G},\ell})\leq P_{s}^{\sigma,\tau}(\mathcal{R}^{\mathbb{G},\ell})$ since $\mathcal{R}_{n}^{\mathbb{G},\ell}(w)\leq \mathcal{R}^{\mathbb{G},\ell}(w)$ for any $w\in\Omega.$

Hence $\sup_{\sigma}\inf_{\tau}P_{s}^{\sigma,\tau}(\mathcal{R}_{n}^{\mathbb{G},\ell})\leq\sup_{\sigma}\inf_{\tau}P_{s}^{\sigma,\tau}(\mathcal{R}^{\mathbb{G},\ell})$ holds. By Theorem 3.3, $V_{n}^{\mathbb{G},\ell}(s)=$

$va1_{s}(\mathcal{R}_{n}^{\mathbb{G},\ell})=\sup_{\sigma}\inf_{\tau}P_{s}^{\sigma,\tau}(\mathcal{R}_{n}^{\mathbb{G},\ell})$ holds. Thus the second inequality holds. $\square$
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Corollary 3.5. Player $\Pi$ has a memoryless optimal stmtegy in any genemlized reach-
ability game. $\square$

Contrary to the case of Player II, Player I has no even optimal strategy in some
reachability games. We give such an example below.

Example 1. Consider the following simultaneous reachability game as shown in Figure
1. For a game $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ , let $S=\{s_{0}, s_{1}, s_{2}\},$ $A_{I}=\{x_{1}, x_{2}\}$ and $A_{II}=\{y_{1}, y_{2}\}.$

Define a tmnsition function $\delta$ by $\delta(s_{0}, x_{1}, y_{1})=s_{0},$ $\delta(s_{0}, x_{2}, y_{2})=s_{2},$ $\delta(s_{0}, x_{1}, y_{2})=$

$\delta(s_{0}, x_{2}, y_{1})=s_{1}$ and $\delta(s_{i}, x, y)=s_{i}$ for any $i\in\{1,2\}$ and $(x, y)\in A_{I}\cross A_{II}$ . Now
consider the reachability game $\mathbb{G}(\mathcal{R}^{\mathbb{G},T})$ with the target state $T=\{s_{1}\}.$

Fig. 1. An illustration of reachabihty game

One can pmve that $va1_{s0}(\mathcal{R}^{G,\{s_{1}\}})=1$ . We show that Player I has no optimal stmtegy
in the reachability game $\mathbb{G}(\mathcal{R}^{G,\{s_{1}\}})$ .

Pmof. Fix a strategy $\sigma\in\Sigma_{I}$ . We construct $\tau\in\Sigma_{II}$ such that $P_{s0}^{\sigma,\tau}(\mathcal{R}_{\{s_{1}\}})<1$ . For
$\rho\in\Omega^{fin}(\mathbb{G})$ , define $\tau(\rho)(y_{1})=1$ if $\sigma(\rho)(x_{1})=1$ , and define $\tau(\rho)(y_{2})=1$ otherwise. It
is clear that $P_{s_{0}}^{\sigma,\tau}(\mathcal{R}_{\{s_{1}\}})<1$ by the definitions of $\mathbb{G}$ and $\tau.$

$\square$

The next theorem says that, given a generalized reachability game, Player I always
has a memoryless $\epsilon$-optimal strategy in this game for any positive real number $\epsilon$ . In
fact, this result for reachability games was shown by Chatterjee et al. [5] in a shghtly
different setting. We essentially use their method to prove our theorem.

Theorem 3.6. In everst genemlized reachability game $\mathbb{G}(\mathcal{R}^{G,\ell})$ , there exists an $\epsilon-$

optimal memoryles$s’$ stmtegy of Player I for any $\epsilon>0.$

Proof. Let $\mathbb{G}=(S, A_{I}, A_{II}, \delta)$ be a game and let $\ell$ a label on $S$ . Without loss of
generality, we may assume that if $s\in$ dom$(\ell)$ or $va1_{S}(\mathcal{R}^{\mathbb{G},\ell})=0$ , then $\delta(s, x, y)=s$

holds for any $(x, y)\in A_{I}\cross A_{II}.$

Fix a positive real $\epsilon>0$ . Choose $n\in \mathbb{N}$ such that for any $s\in S$ , the inequality
$V_{n-1}^{\mathbb{G},\ell}(s)\geq va1_{S}(\mathcal{R}^{\mathbb{G},\ell})-\epsilon$ holds, and $va1_{s}(\mathcal{R}^{G,\ell})>0$ implies $V_{n-1}^{\mathbb{G},\ell}(s)>0$ . For $m\leq n,$

choose $\sigma_{m}\in\Sigma_{I}^{M}$ such that $\sigma_{m}$ is an optimal strategy of Player I in the one-step
game $\mathbb{G}(V_{m-1}^{G,\ell})$ . We define a strategy $\sigma^{*}\in\Sigma_{I}^{M}$ by $\sigma^{*}(s)=\sigma_{m_{\delta}}(s)$ for any $s\in S,$

where $m_{s}$ is the least number $m\leq n$ such that $V_{m}^{\mathbb{G},\ell}(s)=V_{n}^{\mathbb{G},\ell}(s)$ . By the definition,
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$V_{m_{S}}^{\mathbb{G},\ell}(s)= \inf_{\tau\in\Sigma_{II}^{M}}P_{s}^{\sigma^{*},\tau}(V_{m_{s}-1}^{\mathbb{G},\ell})$ holds for any $s\in S\backslash$ dom $(\ell)$ . Now choose a strategy
$\tau^{*}\in\Sigma_{II}^{M}$ such that $P_{s}^{\sigma^{*},\tau^{*}}( \mathcal{R}^{\mathbb{G},\ell})=\inf_{\tau}P_{s}^{\sigma^{*},\tau}(\mathcal{R}^{\mathbb{G},\ell})$ for all $s\in S.$

Fix an $s\in S\backslash$ dom$(\ell)$ with $V_{m_{s}}^{\mathbb{G},\ell}(s)>0$ . Suppose that $V_{n}(s)\geq V_{n}(s’)$ holds for any
$s’\in S$ with $P_{s}^{\sigma^{*},\tau^{*}}([ss’])>0$ . We have $V_{m_{s}}^{\mathbb{G},\ell}(s)=V_{m_{s}-1}^{\mathbb{G},\ell}(s’)=V_{n}^{\mathbb{G},\ell}(s’)$ for any $s’\in S$

with $P_{s}^{\sigma^{*},\tau^{*}}([ss’])>0$ since $V_{n}^{\mathbb{G},\ell}(s)=V_{m_{8}}^{\mathbb{G},I}(s),$ $V_{m_{s}-1}^{\mathbb{G},\ell}(s’)\leq V_{n}^{\mathbb{G},\ell}(s’)$ and $V_{m_{8}}^{\mathbb{G},\ell}(s)\leq$

$P_{s}^{\sigma^{*},\tau}(V_{m_{s}-1}^{\mathbb{G},\ell})$ hold. Therefore, if $s’\in S$ satisfies $P_{S}^{\sigma^{*},\tau^{*}}([ss’])$ , then $m_{s}>m_{s-1}$ . As a
result, we know that for any $s\in S\backslash$ dom$(\ell)$ there exists $s’$ with $P_{s}^{\sigma^{*},\tau^{*}}([ss’])>0$ such
that

$V_{n}^{G,\ell}(s)<V_{n}^{\mathbb{G},\ell}(s’)$ or $m_{s}>m_{s-1}.$

Note that $\{V_{n}^{\mathbb{G},\ell}(s)$ : $s\in S\backslash$ dom$(\ell)\}$ is finite, and $m_{s}=0$ imphes $s\in$ dom $(\ell)$ or
$V_{n}^{\mathbb{G},\ell}(s)=0$ . Here $V_{n}^{\mathbb{G},\ell}(s)=0$ implies $va1_{S}(\mathcal{R}^{\mathbb{G},\ell})=0$ . Hence for any $s\in S$ there exists
$\rho\in\Omega_{S}^{fin}$ such that $P_{s}^{\sigma^{*},\tau^{*}}([\rho])>0$ and

$\rho(|\rho|-1)\in$ dom$(P)$ or $va1_{\rho(|\rho|-1)}(\mathcal{R}^{G,\ell})=0.$

As a conclusion, we have $P_{S}^{\sigma^{*},\tau^{*}}(A)=0$ for any $s\in S$ , where $A=\{w\in\Omega$ : $(\forall n\in$

$\mathbb{N})[w(n)\in$ dom $(\ell)$ & $va1_{w(n)}(\mathcal{R}^{\mathbb{G},\ell})>0]\}$ . Thus, the sum

$\sum\{V_{n}^{\mathbb{G},\ell}(\rho(|\rho|-1))P_{S}^{\sigma^{*},\tau^{*}}([\rho]):\rho\in\Omega_{s}^{fin} \ | \rho|=k\}$

tends to $P_{s}^{\sigma^{*},\tau^{*}}(\mathcal{R}^{\mathbb{G},\ell})$ as $k$ to $\infty$ . It is easy to see by induction on $k\in \mathbb{N}$ that

$\sum\{V_{n}^{\mathbb{G},\ell}(\rho(|\rho|-1))P_{S}^{\sigma^{*},\tau^{*}}([\rho]):\rho\in\Omega_{s}^{fin} \ | \rho|=k\}\geq V_{n-1}^{\mathbb{G},\ell}(s)$

holds for any $k\in \mathbb{N}$ . Hence we have $P_{S}^{\sigma^{*},\tau^{*}}(\mathcal{R}^{\mathbb{G},\ell})\geq V_{n-1}^{G,\ell}(s)\geq va1_{s}(\mathcal{R}^{\mathbb{G},\ell})-\epsilon.$ $\square$

4 Concluding Remarks
In this work, we contributed some results on generalized stochastic reachability games.
We proved the game has a value by defining a limit value and show such a value is
equal to the value of the game. We also showed that there exists a memoryless optimal
strategy for Player II in any generalized reachability games, while Player I must settle
for $\epsilon$-optimality (memoryless).
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