A Report on Studies of Relative Randomness

NingNing Peng＊
Mathematical Institute，Tohoku University
Sendai－shi，Miyagi－ken，980－8578，Japan
sa8m42＠math．tohoku．ac．jp

Abstract

We report some results of our recent studies．Let Γ be a set of（Turing）oracles． A set Z is called Γ－random if Z is ML－random relative to A for all $A \in \Gamma$ ．We use \mathbb{L} and \mathbb{G} to denote the set of low sets and the set of 1－generic sets，respectively． In［7］，Yu proved that \mathbb{L}－randomness is equivalent to \emptyset^{\prime}－Schnorr randomness， where \emptyset^{\prime} denotes the halting problem．We show that $(\mathbb{L} \cap \mathbb{G})$－randomness is still equivalent to \emptyset^{\prime}－Schnorr randomness．We also proved that $(\mathbb{L} \cap \mathbb{M} \mathbb{R})$－randomness is equivalent to \emptyset^{\prime}－Schnorr randomness．

1 Introduction

For a definition of random sequences，many approaches have been made until a def－ inition was proposed by Martin－Löf［3］in 1966，which for the first time included all standard statistical properties of random sequences．The relativized randomness was first studied by Gaifman and Snir．We say that a set is n－random if it is ML－random relative to $\emptyset^{(n-1)}$ ．So it is 1－random if it is ML－random．2－random if it is ML－random relative to \emptyset^{\prime} ．2－randomness was first studied by Kurtz［6］．He also considered weak 2－randomness，an interesting notion lying strictly between Martin－Löf randomness and 2 －randomness．In this report，we will introduce other randomness notions which be－ tween Martin－Löf randomness and 2 －randomness．
Γ－randomness was first studied in［9］，and is strongly connected with Yu＇s research ［7］．The Γ－randomess notion could sometimes produce alternative proofs of existing results．For instance，some properties of \emptyset^{\prime}－Schnorr randomness are proved more easily by the characterization due to \mathbb{L}－randomness than the usual methods．In section 3， we will report some new characterizations of \mathbb{L}－randomness．The detail proof of these results will be published in the future literature．

[^0]
2 Preliminaries

The collection of binary strings is denoted by $2^{<\mathbb{N}}$, i.e. the set of all functions from $\{0, \ldots, n\}$ to $\{0,1\}$ for some $n \in \mathbb{N}$. We use σ, τ, \cdots to denote the elements of $2^{<\mathbb{N}}$. Let $2^{\mathbb{N}}$ denote the set of infinite binary sequences. Subsets of \mathbb{N} can be identified with element of $2^{\mathbb{N}}$. These are also called reals. For sets A, B, Let $A \oplus B=\{2 x: x \in$ $A\} \cup\{2 x+1: x \in B\}$, namely the set which is A on the even bit positions and B on the odd positions.

For $\sigma \in 2^{<\mathbb{N}}$, we write $|\sigma|$ for the length of σ. Equivalently, $|\sigma|=\# \operatorname{dom}(\sigma)$. Here the cardinality of a set A is denoted by $\# A$. The empty string is denoted by λ. For strings σ and τ, let $\sigma \preceq \tau$ denotes that σ is a prefix of τ, i.e., $\operatorname{dom}(\sigma) \subseteq \operatorname{dom}(\tau)$ and $\sigma(m)=\tau(m)$ holds for each $m \in \operatorname{dom}(\sigma)$. The concatenation of two strings σ and τ is denoted by $\sigma \tau$. For a set $A, A \upharpoonright n$ is the prefix of A of length n. A topology of $2^{\mathbb{N}}$ is induced by basic open sets $[\sigma]=\left\{X \in 2^{\mathbb{N}}: X \succeq \sigma\right\}$ for all strings $\sigma \in 2^{<\mathbb{N}}$. So each open set of $2^{\mathbb{N}}$ is generated by a subset of $2^{<\mathbb{N}}$, that is $[S]^{\prec}=\left\{X \in 2^{\mathbb{N}}: \exists \sigma \in S \sigma \preceq X\right\}$. With this topology, $2^{\mathbb{N}}$ is called the Cantor space.

The Lebesgue measure on $2^{\mathbb{N}}$ is induced by giving each basic open set $[\sigma]$ measure $\mu([\sigma]):=2^{-|\sigma|}$. for each string σ. If a class $G \subseteq 2^{\mathbb{N}}$ is open then $\mu(G)=\sum_{\sigma \in B} 2^{-|\sigma|}$ where B is a prefix-free set of strings such that $G=\bigcup_{\sigma \in B}[\sigma]$. A class $\mathcal{C} \subseteq 2^{\mathbb{N}}$ is called null if $\mu(\mathcal{C})=0$. If $2^{\mathbb{N}}-\mathcal{C}$ is null we say that \mathcal{C} is conull.

3 Г-randomness

ML-randomness is a central notion of algorithmic randomness for subsets of \mathbb{N}, which defined in the following way.

Definition 1 (Martin-Löf [3]). (i) A Martin-Löf test, or ML-test for short, is a uniformly c.e. sequence $\left(G_{m}\right)_{m \in \mathbb{N}}$ of open sets such that $\forall m \in \mathbb{N} \mu\left(G_{m}\right) \leq 2^{-m}$.
(ii) A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_{m} G_{m}$, otherwise Z passes the test.
(iii) Z is $M L$-random if Z passes each ML-test. Let $M L R$ denote the class of MLrandom sets. Let non-MLR denote its complement in $2^{\mathbb{N}}$.

Following Schnorr [10], we will look at other natural notion of randomness, which refine the notion of Martin-Löf randomness.

Definition 2 (Schnorr [10]). A Schnorr test is a ML-test $\left(G_{m}\right)_{m \in \mathbb{N}}$ such that μG_{m} is computable uniformly in m. A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_{m} G_{m}$, otherwise Z passes the test. Z is Schnorr random if Z passes each Schnorr test.

We recall some definitions in [9].
Definition 3. Let $\Gamma \subset \omega^{\omega}$. A set Z is Γ-random if Z is ML-random relative to f for all $f \in \Gamma$. Any ML-test relative to $f \in \Gamma$ is called a Γ-test.

For $f \in \omega^{\omega}$, we say f-random and f-test instead of $\{f\}$-random and $\{f\}$-test, respectively. Recall that a set A is low if $A^{\prime} \leq_{T} \emptyset^{\prime}$. In particular, Γ-randomness is called \mathbb{L}-randomness if Γ is the set of low sets.

Since a ML-test is a uniformly c.e. sequence $\left(G_{m}\right)_{m \in \mathbb{N}}$ of open sets such that $\forall m \in \mathbb{N} \mu G_{m} \leq 2^{-m}$. Thus, we can define an \mathbb{L}-test to be a sequence $\left(G_{m}\right)_{m \in \mathbb{N}}$ of open sets, which is uniformly c.e in some low set, such that $\forall m \in \mathbb{N} \mu G_{m} \leq 2^{-m}$.

The randomness notions between ML-randomness and 2-randomness have been extensively investigated in the literature by many researchers. In 2012, Yu [7] show that \mathbb{L}-randomness lying strictly between Martin-Löf randomness and 2-randomness.

Theorem 1 (Yu [7]). \mathbb{L}-randomness is equivalent to \emptyset^{\prime}-Schnorr randomness.
In [8], we also give another characterization of \mathbb{L}-randomness. Let PA denote the set of all functions of PA degrees.

Proposition 1 (Peng, Higuchi, Yamazaki and Tanaka [8]). \mathbb{L}-randomness is equivalent to $\mathbb{L} \cap$ PA-randomness.

Let \mathbb{G} denote the set of all 1 -generic elements of 2^{ω}. Here, recall that an element Z of 2^{ω} is 1 -generic if for any c.e. subset W of $2^{<\omega}$, there exists $\sigma \prec Z$ such that either $\sigma \in W$ or $[\sigma] \cap W=\emptyset$ holds. It is well-known that any 1 -generic element Z of 2^{ω} is generalized low, i.e., $Z \oplus \emptyset^{\prime}$ computes Z^{\prime}. Thus a 1 -generic element of 2^{ω} is computable relative to \emptyset^{\prime} if and only if it is low.

Now we have the following theorem.
Theorem 2. ($\mathbb{L} \cap \mathbb{G}$)-randomness is equivalent to \emptyset^{\prime}-Schnorr randomness.
The following answer a question in [8].
Theorem 3. ($\mathbb{L} \cap \mathbb{M} \mathbb{R}$)-randomness is equivalent to \emptyset^{\prime}-Schnorr randomness.
A natural of Turing reducibility from the point of view of ML-randomness is the LR-reducibility which was introduced in [5].

Definition 4 (Nies [5]). For any $A, B \subseteq \mathbb{N}$, we say that A is $L R$-reducible to B, abbreviated $A \leq_{L R} B$, if

$$
\forall X(X \text { is } B-\text { random } \Rightarrow X \text { is } A-\text { random })
$$

Intuitively this means that if oracle A can identify some patterns on some real x, oracle B can also find patterns on x. In other words, B is at least as good as A for this purpose.

In 2012, Diamondstone [2] show a surprising divergence between the LR degrees and the Turing degrees.

Theorem 4 (David, [2]). For any low real X, Y, there exists a low c.e. real Z such that $X, Y \leq_{\mathrm{LR}} Z$.

We also show some similar results as follows.
Theorem 5. For any low real X, Y, there exists a low 1-generic real Z such that $X, Y \leq_{\mathrm{LR}} Z$.

The above can be shown from theorem 2.
Theorem 6. For any low real X, Y, there exists a low Martin-Löf random real Z such that $X, Y \leq_{\text {LR }} Z$.

This follows from theorem 3.

Acknowledgments

We would like to thank Prof. Kazuyuki Tanaka and Prof. Takeshi Yamazaki, Dr. Kojiro Higuchi for their valuable comments and discussions.

References

[1] Rod G. Downey, Denis R. Hirshfeldt: Algorithmic Randomness and Complexity. Springer-Verlag, Berlin. November, 2010.
[2] David Diamondstone: Low upper bounds in the LR degrees. Annals of Pure and Applied Logic, vol. 163, no.3, pp. 314-320, 2012.
[3] Per. Martin-Löf: The definition of random sequences. Information and Control, vol. 9, no. 6, pp. 602-619, 1966.
[4] André Nies: Computability and Randomness. Oxford University Press, 2009.
[5] Andre. Nies: Lowness properties and randomness. Advances in Mathematics, vol. 197, pp. 274-305, 2005.
[6] Stuart A. Kurtz: Randomness and genericity in the degrees of unsolvability. In: Ph.D. Dissertation, University of Illinois, Urbana, 1981.
[7] Liang Yu: Characterizing strong randomness via Martin-Löf randomness. Annals of Pure and Applied Logic, vol.163, no. 3, pp. 214-224, 2012.
[8] NingNing Peng, Kojiro Higuchi, Takeshi Yamazaki and Kazuyuki Tanaka Relative Randomness for Martin-Löf random Sets. Lecture Notes in Computer Science, vol.7318, pp. 581-588, 2012.
[9] NingNing Peng: The notions between Martin Löf randomness and 2-randomness. RIMS Kôkyûroku, No. 1792, pp. 117-122, 2010.
[10] Claus Peter Schnorr: A unified approach to the definition of a random sequence, Mathematical Systems Theory, 5, 246-258, 1971.

[^0]: ＊This research was partially supported by RIMS．The author would like to thank Prof．Toshio Suzuki for many helpful remarks．The full version of this paper will appear soon．

