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Abstract

We report some results of our recent studies. Let $\Gamma$ be a set of (Turing) oracles.
A set $Z$ is called $\Gamma$-random if $Z$ is $ML$-random relative to $A$ for all $A\in\Gamma$ . We use
$\mathbb{L}$ and $\mathbb{G}$ to denote the set of low sets and the set of 1-generic sets, respectively.
In [7], Yu proved that Lrandomness is equivalent to $\emptyset^{J}$-Schnorr randomness,
where $\emptyset^{J}$ denotes the halting problem. We show that $(\mathbb{L}\cap \mathbb{G})$-randomness is still
equivalent to $\emptyset’$-Schnorr randomness. We also proved that $(\mathbb{L}\cap \mathbb{M}\mathbb{L}\mathbb{R})$-randomness
is equivalent to $\emptyset’$-Schnorr randomness.

1 Introduction
For a definition of random sequences, many approaches have been made until a def-
inition was proposed by Martin-L6f [3] in 1966, which for the first time included all
standard statistical properties of random sequences. The relativized randomness was
first studied by Gaifman and Snir. We say that a set is $n$-random if it is $ML$-random
relative to $\emptyset(n-1)$ . So it is 1-random if it is $ML$-random. 2-random if it is $ML$-random
relative to $\emptyset’$ . 2-randomness was first studied by Kurtz [6]. He also considered weak
2-randomness, an interesting notion lying strictly between Martin-L6f randomness and
2-randomness. In this report, we will introduce other randomness notions which be-
tween Martin-L6f randomness and 2-randomness.

$\Gamma$-randomness was first studied in [9], and is strongly connected with Yu’s research
[7]. The $\Gamma$-randomess notion could sometimes produce alternative proofs of existing
results. For instance, some properties of $\emptyset’$-Schnorr randomness are proved more easily
by the characterization due to $\mathbb{L}-$-randomness than the usual methods. In section 3,
we will report some new characterizations of $\mathbb{L}$-randomness. The detail proof of these
results will be published in the future literature.

$*$ This research was partially supported by RIMS. The author would like to thank Prof. Toshio
Suzuki for many helpful remarks. The full version of this paper will appear soon.
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2 Preliminaries
The collection of binary strings is denoted by $2^{<\mathbb{N}}$ , i.e. the set of all functions from
$\{0, \ldots, n\}$ to $\{0,1\}$ for some $n\in \mathbb{N}$ . We use $\sigma,$ $\tau,$ $\cdots$ to denote the elements of $2^{<\mathbb{N}}.$

Let $2^{\mathbb{N}}$ denote the set of infinite binary sequences. Subsets of $\mathbb{N}$ can be identified with
element of $2^{\mathbb{N}}$ . These are also called reals. For sets $A,$ $B$ , Let $A\oplus B=\{2x$ : $x\in$

$A\}\cup\{2x+1 : x\in B\}$ , namely the set which is $A$ on the even bit positions and $B$ on
the odd positions.

For $\sigma\in 2^{<\mathbb{N}}$ , we write $|\sigma|$ for the length of $\sigma$ . Equivalently, $|\sigma|=\#$dom $(\sigma)$ . Here
the cardinality of a set $A$ is denoted by $\# A$ . The empty string is denoted by $\lambda$ . For
strings $\sigma$ and $\tau$ , let $\sigma\preceq\tau$ denotes that $\sigma$ is a prefix of $\tau$ , i.e., dom $(\sigma)\subseteq$ dom$(\tau)$ and
$\sigma(m)=\tau(m)$ holds for each $m\in$ dom $(\sigma)$ . The concatenation of two strings $\sigma$ and $\tau$

is denoted by $\sigma\tau$ . For a set $A,$ $A$ $rn$ is the prefix of $A$ of length $n.$ $A$ topology of $2^{\mathbb{N}}$

is induced by basic open sets $[\sigma]=\{X\in 2^{N}:X\succeq\sigma\}$ for all strings $\sigma\in 2^{<N}$ . So each
open set of $2^{\mathbb{N}}$ is generated by a subset of $2^{<\mathbb{N}}$ , that is $[S]^{\prec}=\{X\in 2^{\mathbb{N}} : \exists\sigma\in S\sigma\preceq X\}.$

With this topology, $2^{\mathbb{N}}$ is called the Cantor space.
The Lebesgue measure on $2^{\mathbb{N}}$ is induced by giving each basic open set $[\sigma]$ measure

$\mu([\sigma])$ $:=2^{-|\sigma|}$ . for each string $\sigma$ . If a class $G\subseteq 2^{\mathbb{N}}$ is open then $\mu(G)=\sum_{\sigma\in B}2^{-|\sigma|}$

where $B$ is a prefix-free set of strings such that $G= \bigcup_{\sigma\in B}[\sigma].$ $A$ class $C\subseteq 2^{\mathbb{N}}$ is called
null if $\mu(C)=0$ . If $2^{\mathbb{N}}-C$ is null we say that $C$ is conull.

3 $\Gamma$-randomness
$ML$-randomness is a central notion of algorithmic randomness for subsets of $\mathbb{N}$ , which
defined in the following way.

Definition 1 (Martin-L6f [3]). (i) A Martin-Lof test, or $ML$-test for short, is a
uniformly c.e. sequence $(G_{m})_{m\in N}$ of open sets such that $\forall m\in \mathbb{N}\mu(G_{m})\leq 2^{-m}.$

(ii) $A$ set $Z\subseteq \mathbb{N}$ fails the test if $Z \in\bigcap_{m}G_{m}$ , otherwise $Z$ passes the test.

(iii) $Z$ is $ML$-mndom if $Z$ passes each $ML$-test. Let $MLR$ denote the class of $ML$-

random sets. Let non-MLR denote its complement in $2^{N}.$

Following Schnorr [10], we will look at other natural notion of randomness, which
refine the notion of Martin-L6f randomness.

Definition 2 (Schnorr [10]). $ASchnor^{r}r$ test is a $ML$-test $(G_{m})_{m\in \mathbb{N}}$ such that $\mu G_{m}$ is
computable uniformly in $m.$ $A$ set $Z\subseteq \mathbb{N}$ fails the test if $Z \in\bigcap_{m}G_{m}$ , otherwise $Z$

passes the test. $Z$ is Schnorr random if $Z$ passes each Schnorr test.

We recall some definitions in [9].

Definition 3. Let $\Gamma\subset\omega^{\omega}.$ $A$ set $Z$ is $\Gamma$ -mndom if $Z$ is $ML$-random relative to $f$ for
all $f\in\Gamma$ . Any $ML$-test relative to $f\in\Gamma$ is called a $\Gamma$-test.
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For $f\in\omega^{\omega}$ , we say $f$-random and $f$-test instead of $\{f\}$-random and $\{f\}$-test,
respectively. Recall that a set $A$ is low if $A’\leq\tau\emptyset^{J}$ . In particular, $\Gamma$-randomness is
called $\mathbb{L}$ -mndomness if $\Gamma$ is the set of low sets.

Since a $ML$-test is a uniformly c.e. sequence $(G_{m})_{m\in N}$ of open sets such that
$\forall m\in \mathbb{N}\mu G_{m}\leq 2^{-m}$ . Thus, we can define an $\mathbb{L}$-test to be a sequence $(G_{m})_{m\in N}$ of open
sets, which is uniformly c.e in some low set, such that $\forall m\in \mathbb{N}\mu G_{m}\leq 2^{-m}.$

The randomness notions between $ML$-randomness and 2-randomness have been
extensively investigated in the literature by many researchers. In 2012, Yu [7] show
that $\mathbb{L}$-randomness lying strictly between Martin-L\"of randomness and 2-randomness.

Theorem 1 (Yu [7]). $\mathbb{L}$ -mndomness is equivalent to $\emptyset^{J}$ -Schnow mndomness.

In [8], we also give another characterization of $\mathbb{L}$-randomness. Let $PA$ denote the
set of all functions of $PA$ degrees.

Proposition 1 (Peng, Higuchi, Yamazaki and Tanaka [8]). $\mathbb{L}$-mndomness is equivalent
to $\mathbb{L}\cap PA$ -mndomness.

Let $\mathbb{G}$ denote the set of all 1-generic elements of $2^{\omega}$ . Here, recall that an element $Z$

of $2^{\omega}$ is 1-generic if for any c.e. subset $W$ of $2^{<\omega}$ , there exists $\sigma\prec Z$ such that either
$\sigma\in W$ or $[\sigma]\cap W=\emptyset$ holds. It is well-known that any 1-generic element $Z$ of $2^{\omega}$ is
generalized low, i.e., $Z\oplus\emptyset’$ computes $Z’$ . Thus a 1-generic element of $2^{\omega}$ is computable
relative to $\emptyset’$ if and only if it is low.

Now we have the following theorem.

Theorem 2. $(\mathbb{L}\cap \mathbb{G})$ -mndomness is equivalent to $\emptyset’$-Schnow randomness.

The following answer a question in [8].

Theorem 3. $(\mathbb{L}\cap \mathbb{M}\mathbb{L}\mathbb{R})$-mndomness is equivalent to $\emptyset^{J}$-Schnorr randomness.

A natural of Turing reducibility from the point of view of $ML$-randomness is the
$LR$-reducibility which was introduced in [5].

Definition 4 (Nies [5]). For any $A,$ $B\subseteq \mathbb{N}$ , we say that $A$ is $LR$-reducible to $B,$

abbreviated $A\leq_{LR}B$ , if

$\forall X(X$ is $B-$ random $\Rightarrow X$ is $A$ -random$)$

Intuitively this means that if oracle $A$ can identify some patterns on some real $x,$

oracle $B$ can also find patterns on $x$ . In other words, $B$ is at least as good as $A$ for
this purpose.

In 2012, Diamondstone [2] show a surprising divergence between the $LR$ degrees
and the Turing degrees.

Theorem 4 (David, [2]). For any low real $X,$ $Y$ , there exists a low $c.e$ . real $Z$ such
that $X,$ $Y\leq_{LR}Z.$
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We also show some similar results as follows.
Theorem 5. For any low real $X,$ $Y$ , there exists a low 1-generic real $Z$ such that
$X,$ $Y\leq_{LR}Z.$

The above can be shown from theorem 2.
Theorem 6. For any low real $X,$ $Y$ , there exists a low Martin-Lof mndom real $Z$ such
that $X,$ $Y\leq_{LR}Z.$

This follows from theorem 3.
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