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1. INTRODUCTION

For a knot complement of $S^{3}$ , Heusener [H03] showed that a 1-dimensional smooth
part of the space of the conjugacy classes of irreducible $SU_{2}$-representations of the knot
group carries a canonical orientation, and Dubois [D05, D06] constructed a canonical
volume form on the part which induces Heusener’s orientation via Reidemeister torsion.
Later the author [K09] slightly generalized the volume form for a knot complement of
a general rational homology 3-sphere, and studied compatibility with the actions by the
lst cohomology group with $\mathbb{Z}/2$ coefficients and the outer automorphism group of the
fundamental group. The idea of regarding non-acyclic Reidemeister torsion as a volume
form on a moduli space of group representations was first considered by Witten [Wi91].
He obtained an explicit formula to compute the symplectic volumes of moduli spaces of
representations of surface groups in terms of the Reidemeister torsion volume forms.

The aim of the article is to construct a canonical complex volume form on a smooth part
of lowest dimension of the $SL_{2}(\mathbb{C})$ -character variety of a 3-manifold group analogously
via Reidemeister torsion.

2. REIDEMEISTER TORSION

We begin with reviewing the definition of sigh-refined Reidemeister torsion, following
Turaev [TOl, T02]. See also [M66, P97]. Note that we consider the torsion of a twisted
cochain complex instead of that of a twisted chain complex for the construction of a
volume form on a $mo$duh space of group representations.

Let $C_{*}=(C_{n}arrow\partial_{n}C_{n-1}arrow\cdotsarrow C_{0})$ be a chain complex of finite dimensional vector
spaces over a field $\mathbb{F}$ . For given bases $b_{i}$ of ${\rm Im}\partial_{i+1}$ and $h_{i}$ of $H_{i}(C_{*})$ , we choose a basis
$b_{i}h_{i}b_{i-1}$ of $C_{i}$ as follows. Taking a lift of $h_{i}$ in $Ker\partial_{i}$ and combining it with $b_{i}$ , we have a
basis $b_{i}h_{i}$ of $Ker\partial_{i}$ . Then taking a lift of $b_{i-1}$ in $C_{i}$ and combining it with $b_{i}h_{i}$ , we have a
basis $b_{i}h_{i}b_{i-1}$ of $C_{i}.$

Definition 2.1. For given bases $c=\{c_{i}\}$ of $C_{*}$ and $h=\{h_{i}\}$ of $H_{*}(C_{*})$ , we choose a
basis $\{b_{i}\}$ of ${\rm Im}\partial_{*}$ and define

$\tau(C_{*}, c, h):=(-1)^{|C_{l}|}\prod_{i=0}^{n}[b_{i}h_{i}b_{i-1}/c_{i}]^{(-1)^{i+1}}\in \mathbb{F}^{*},$

where

$|C_{*}|:= \sum_{j=0}^{n}(\sum_{i=0}^{j}\dim C_{i})(\sum_{i=0}^{j}\dim H_{i}(C_{*}))$ ,

and $[b_{i}h_{i}b_{i-1}/c_{i}]$ is the determinant of the base change matrix from to $b_{i}h_{i}b_{i-1}.$
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It can be easily checked that $\tau(C_{*}, c, h)$ does not depend on the choices of $b_{i}$ and $b_{i}h_{i}b_{i-1}.$

Let $Y$ be a connected finite $CW$-complex and $\rho:\pi_{1}Yarrow GL_{n}(\mathbb{F})$ a linear representation.
We regard the vector space $\mathbb{F}^{n}$ as a left $\mathbb{Z}[\pi_{1}Y]$-module by

$\gamma\cdot v:=\rho(\gamma)v,$

for $\gamma\in\pi_{1}Y$ and $v\in \mathbb{F}^{n}$ . Then we define the twisted cohomology group associated to $\rho$ as
$H_{\rho}^{:}(Y;\mathbb{F}^{n}) :=H^{i}(Hom_{Z[\pi_{1}Y]}(C_{*}(\tilde{Y}), \mathbb{F}^{n}))$ ,

where $\tilde{Y}$ is the universal cover of $Y$ . By a cohomology orientation of $Y$ we mean an
orientation $\omega$ of the cohomology group $H^{*}(Y;\mathbb{R})=\oplus_{i}H^{i}(Y;\mathbb{R})$ as a vector space.

Definition 2.2. For a representation $\rho:\pi_{1}Yarrow GL_{n}(\mathbb{F})$ , a basis $h$ of $H_{\rho}^{*}(Y;\mathbb{F}^{n})$ and a
cohomology orientation $\omega$ , we define the sign-refined Reidemeister torsion $T_{\rho}(Y, h,\omega)$ as
follows. We choose a lift $\tilde{\sigma}_{i}$ in $\tilde{Y}$ of each cell $\sigma_{i}$ in $Y$ and bases $h_{0}$ of $H^{*}(Y;\mathbb{R})$ positively
oriented with respect to $\omega$ and $\langle\xi_{1},$ $\ldots,\xi_{n}\rangle$ of $\mathbb{C}^{n}$ . Then we define

$T_{\rho}(Y, h,\omega) :=\tau_{0}^{n}\tau(Hom_{Z[\pi Y]}1(C_{-*}(\tilde{Y}),\mathbb{F}^{n}), c)\in \mathbb{F}^{*}/\det\rho(\pi_{1}Y)$

where

$\tau_{0}:=$ sgn $\tau(C^{-*}(Y;\mathbb{R}), c_{0}, h_{0})$ ,
$c_{0}:=\langle\sigma_{1}^{*}, \ldots, \sigma_{\dim C_{*}(Y)}^{*}\rangle,$

$c:=\langle\tilde{\sigma}_{1,1}, \ldots,\tilde{\sigma}_{1,n}, \ldots,\tilde{\sigma}_{\dim C_{*}(X),1}, \ldots,\tilde{\sigma}_{\dim C.(X),n}\rangle,$

and $\tilde{\sigma}_{\dot{t}\dot{\beta}}$ is the cochain which maps $\tilde{\sigma}_{i}$ to $\xi_{j}$ and $\tilde{\sigma}_{k}$ to $0$ for $k\neq i.$

It is known that $T_{\rho}(Y, h, \omega)$ does not depend on the choices of $\tilde{\sigma}_{i},$ $h_{0}$ and $\langle\xi_{1},$

$\ldots,$
$\xi_{n}\rangle,$

and that $T_{\rho}(Y, h,\omega)$ is a simple homotopy invariant.

3. CHARACTER VARIETIES

Next we study a smooth subspace of the $SL_{2}(\mathbb{C})$ -character variety of a 3-manifold group
where a desired complex $vo$lume form is defined.

Let $M$ be a compact connected oriented 3-manifold whose boundary consists of $m$ tori
$T_{1}$ and let $\mu_{i}$ an oriented simple closed curve in $T_{i}$ for each $i.$ $A$ typical example is a
link complement of a rational homology 3-sphere equipped with the meridians of the link.
We fix a tree embedded in $M$ and connecting one point on $\mu_{i}$ for each $i$ , and regard it
as a base point. By abuse of notation we use the same letter $\mu_{i}$ for the element in $\pi_{1}M$

represented by $\mu_{i}.$

For a representation $\rho:\pi_{1}Marrow SL_{2}(\mathbb{C})$ , its character $\chi_{\rho}:\pi_{1}Marrow \mathbb{C}$ is given by

$\chi_{\rho}(\gamma)=tr\rho(\gamma)$

for $\gamma\in\pi_{1}M$ . The $SL_{2}(\mathbb{C})$ -chamcter variety $X$ is the set of the characters $\chi_{\rho}$ of represen-
tations $\rho:\pi_{1}Marrow SL_{2}(\mathbb{C})$ , which is the algebro-geometric quotient of the complex affine
algebraic set $Hom(\pi_{1}M, SL_{2}(\mathbb{C}))$ . We denote by $t:Hom(\pi_{1}M, SL_{2}(\mathbb{C}))arrow X$ the quo-
tient map which maps a representation to its character. It is known that the fiber of $t$ at
the character of an irreducible representation consists only of equivalent representations.
See [CS83, LM85, S02] for more details.
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Following Weil [We64], the Zariski tangent space $T_{\rho}Hom(\pi_{1}M, SL_{2}(\mathbb{C}))$ can be iden-
tified with a subspace of the vector space $Z_{Ad\circ\rho}^{1}(\pi_{1}M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ of group 1-cocycles by the
inclusion

$\frac{d\rho_{t}}{dt}|_{t=0}\mapsto(\gamma\mapsto\frac{d\rho_{t}(\gamma)\rho(\gamma^{-1})}{dt}|_{t=0})$ ,

where $\rho_{0}=\rho$ and $\gamma\in\pi_{1}M$ . It is easy to check that the tangent space to the orbit by the
conjugation corresponds to the vector space $B_{Ad\circ\rho}^{1}(\pi_{1}M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ of group 1-coboundaries.

We define $R_{0}$ to be the set of irreducible $SL_{2}(\mathbb{C})$ -representations $\rho$ of $\pi_{1}M$ such that
$\dim H_{Ad\circ\rho}^{1}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=m$ and $\rho(\mu_{i})\neq\pm I,$

where Ad: $SL_{2}(\mathbb{C})arrow$ Aut $(\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ is the adjoint representation and $I$ the identity matrix.
We set $X_{0}=t(R_{0})$ .
Proposition 3.1. (i) The space $X_{0}$ is a complex $m$ -manifold.

(ii) The tangent space $T_{\chi_{\rho}}X_{0}$ is isomorphic to $H_{Ad\circ\rho}^{1}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ .

Proof. Let $\rho\in R_{0}$ and let $V$ be an irreducible component of $X$ containing $\chi_{\rho}$ . It follows
from the result of Thurston [CS83, Proposition 3.1.2] that

$\dim V\geq m.$

On the other hand

$\dim V\leq\dim T_{\chi_{\rho}}V\leq\dim T_{\chi_{\rho}}X\leq\dim H_{Ado\rho}^{1}(\pi_{1}M;\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))=m.$

Therefore the above inequalities are all equalities, and so $V$ is the unique component
containing $\chi_{\rho}$ and $\chi_{\rho}$ is a smooth point of $V$ . Furthermore $T_{\chi_{\rho}}V$ is isomorphic to
$H_{Ado\rho}^{1}(M;\epsilon\downarrow_{2}(\mathbb{C}))$ .

Now it suffices to show that $X_{0}$ is a Zariski open subspace. It follows from [$CS$83, Lemma
1.4.2] that the subspace of $X$ consisting of the characters of irreducible representations is
Zariski open. Since the subspace of $X$ consisting of the characters of representations such
that

$\dim H_{Ado\rho}^{1}(M;\epsilon l_{2}(\mathbb{C}))\leq m$ and $\rho(\mu_{i})\neq\pm I$

is also Zariski open, so is $X_{0}.$ $\square$

4. TORSION VOLUME FORMS

Here we construct a Reidemeister torsion volume form on $X_{0}.$

Let $\overline{M}$ be the closed oriented manifold obtained by gluing solid tori $Z_{i}$ to $M$ along $T_{i}$

for all $i$ so that $\mu_{i}$ is identified with a meridian of $Z_{i}$ . The manifold $\overline{M}$ has a natural
cohomology orientation $M$ represented by bases $h^{i}$ of $H^{i}(\overline{M};\mathbb{R})$ such that $h^{i}$ and $h^{3-i}$

are dual with respect to the cup product $H^{i}(\overline{M};\mathbb{R})\cross H^{3-i}(\overline{M};\mathbb{R})arrow \mathbb{R}$. Each solid torus
$Z_{i}$ also has a natural cohomology orientation $\omega_{Z_{i}}$ represented by

$\langle\lceil pt]^{*}, [Z_{i}, \partial Z_{i}]^{*}\rangle,$

where $[pt]$ is the homology class represented by a point, and $[Z_{i}, \partial Z_{i}]^{*}$ is the Poincar\’e dual
of the fundamental class. The natural cohomology orientation $\omega_{T_{i}}$ of each $T_{i}$ is represented
by

$\langle\lceil pt]^{*}, [\lambda_{i}]^{*}, [\mu_{i}]^{*}, [T_{i}]^{*}\rangle,$
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where $\lambda$ is an oriented simple closed curve in $T_{i}$ such that $\lambda_{i},\mu_{i}$ is a longitude-meridian
pair. We regard the Mayer-Vietoris long exact sequence as a cochain complex:

$H^{*}=(H^{0}(\overline{M};\mathbb{R})arrow H^{0}(M;\mathbb{R})\oplus(\oplus_{i}H^{0}(Z_{l};\mathbb{R}))arrow\oplus_{i}H^{0}(T_{i};\mathbb{R})arrow H^{1}(\overline{M};\mathbb{R})arrow\ldots)$ .
We define a cohomology orientation $\omega_{M}$ so that

sgn $\tau(H^{-*}, h, \emptyset)=1,$

where $h$ is the basis obtained by combining bases of $H^{*}(\overline{M};\mathbb{R}),$ $H^{*}(M;\mathbb{R}),$ $H^{*}(Z_{i};\mathbb{R})$ and
$H^{*}(T_{i};\mathbb{R})$ representing $\omega_{\overline{M}},$ $\omega_{M},\omega_{z_{:}}$ and $\omega_{T_{i}}$ respectively.

The Killing form of $\epsilon \mathfrak{l}_{2}(\mathbb{C})$ induces non-degenerate cup products

(1) $\cup:H_{Ado\rho}^{i}(M;\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))\cross H_{Ad\circ\rho}^{3-i}(M, \partial M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))arrow H_{Ado\rho}^{3}(M, \partial M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ ,

(2) $H_{Ad\circ\rho}^{:}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))\cross H_{Ad\circ\rho}^{2-i}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))arrow H_{Ad\circ\rho}^{2}(T_{t};\epsilon \mathfrak{l}_{2}(\mathbb{C}))$.

Lemma 4.1. For $\rho\in R_{0}$ , the following hold:
(i) $\dim H_{Ad\circ\rho}^{0}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{3}(M;\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))=0,$

(ii) $\dim H_{Ad\circ\rho}^{2}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=m,$

(iii) $\dim H_{Ad\circ\rho}^{0}(T_{1};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{2}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=1$ for all $i,$

(iv) $\dim H_{Ad\circ\rho}^{1}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=2$ for all $i.$

Proof. Since $\rho$ is non-abelian, we observe that
$H_{Ad\circ\rho}^{0}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\epsilon \mathfrak{l}_{2}(\mathbb{C})^{Ad\circ\rho(\pi_{1}M)}=0.$

The boundary of $M$ is non-empty, and so $H_{Ad\circ\rho}^{3}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=0$ , which shows (i).
The equation

$\sum_{i=0}^{3}(-1)^{i}\dim H_{Ad\circ\rho}^{i}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=3\chi(M)=0$

together with (i) gives
$\dim H_{Ad\circ\rho}^{2}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{1}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=m,$

which shows (ii).
Since $\rho|_{\pi_{1}T_{i}}$ is non-trivial, we observe that

$\dim H_{Ad\circ\rho}^{0}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim\epsilon \mathfrak{l}_{2}(\mathbb{C})^{Ad\circ\rho(\pi_{1}T_{1})}=1.$

From (2) we have
$\dim H_{Ad\circ\rho}^{2}(T_{i};\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{0}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=1,$

which shows (iii).
The equation

$\sum_{i=0}^{2}(-1)^{i}\dim H_{Ad\circ\rho}^{i}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=3\chi(T_{i})=0$

together with (iii) gives

$\dim H_{Ado\rho}^{1}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{0}(M;\mathfrak{s}\mathfrak{l}_{1}(\mathbb{C}))+\dim H_{Ad\circ\rho}^{2}(M;\epsilon \mathfrak{l}_{i}(\mathbb{C}))=2,$

which shows (iv). $\square$
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We denote by $\theta:H_{Ado\rho}^{2}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))arrow\oplus_{i=0}^{m}H_{Ad\circ\rho}^{0}(T_{i};\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))^{*}$ the composition of the
homomorphisms

$H_{Ad\circ\rho}^{2}(M;\mathfrak{s}1_{2}(\mathbb{C}))arrow H_{Ad\circ\rho}^{2}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))$ and $H_{Ad\circ\rho}^{2}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))arrow H_{Ad\circ\rho}^{0}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))^{*}$

induced by the natural inclusion and (1) respectively.

Lemma 4.2. For $\rho\in R_{0}$ , it follows that $\theta$ is an isomorphism.

Proof. We need to show that the homomorphism $H_{Ad\circ\rho}^{2}(M;\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C}))arrow\oplus H_{Ad\circ\rho}^{2}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))$

is an isomorphism. From (2) and Lemma 4.1 (i)

$\dim H_{Ad\circ\rho}^{3}(M, \partial M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\dim H_{Ad\circ\rho}^{0}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=0.$

Therefore it follows from the long exact sequence for the pair $(M, \partial M)$ that the above
homomorphism is surjective. $\mathbb{R}om$ Lemma 4.1 (ii), (iii)

$\dim H_{Ad\circ\rho}^{2}(M;\epsilon \mathfrak{l}_{2}(\mathbb{C}))=\sum_{i=0}^{m}\dim H_{Ado\rho}^{2}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=m,$

which deduces the desired conclusion. $\square$

It is easily seen that for $\rho\in R_{0}$ , the complex vector space $H_{Ad\circ\rho}^{0}(T_{i};\epsilon \mathfrak{l}_{2}(\mathbb{C}))=$

$\epsilon 1_{2}(\mathbb{C})^{Ad\circ\rho(\pi_{1}T_{i})}$ is generated by

$P_{i,\rho}:= \rho(\mu_{i})-\frac{1}{2}$ tr $\rho(\mu_{i})I$

for all $i$ . We define a basis $h_{\rho}$ of $H_{Ad\circ\rho}^{2}(M;\epsilon 1_{2}(\mathbb{C}))^{*}$ to be

$\langle\theta^{-1}(P_{1,\rho}^{*}), \ldots, \theta^{-1}(P_{m,\rho}^{*})\rangle$

for each $i.$

Definition 4.3. We choose a triangulation of $M.$ $A$ linear form $\tau_{\chi_{\rho}}:\bigwedge_{i=1}^{m}T_{X\rho}X_{0}arrow \mathbb{C}$ is
defined by

$\tau_{\chi_{\rho}}(v_{1}\wedge\cdots\wedge v_{m}):=\{\begin{array}{ll}T_{\rho}(M, \langle v_{1}, \ldots, v_{m}, h_{\rho}\rangle,\omega_{M}) if v_{1}\wedge\cdots\wedge v_{m}\neq 0,0 if v_{1}\wedge\cdots\wedge v_{m}=0.\end{array}$

We call the $m$-form $\tau$ the Reidemeister torsion volume form.
It follows from the simple homotopy invariance of Reidemeister torsion and the conju-

gation invariance that $\tau$ does not depend on the choices of a triangulation and a represen-
tative $\rho$ . The following theorem is now straightforward to be checked from the definition
of Reidemeister torsion.

Theorem 4.4. The Reidemeister torsion volume form $\tau$ is a complex volume form on
$X_{0}.$
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