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1. INTRODUCTION
In this note, we discuss the asymptotics of the higher dimensional Reidemeister torsion

for Brieskom manifolds $\Sigma(p, q, npq+1)$ through explicit computations. Our computation
is based on a cut and paste method to construct a Brieskorn manifold $\Sigma(p, q, npq+1)$ .
We will see that the Reidemeister torsion for $\Sigma(p, q, npq+1)$ is expressed as a product
of Reidemeister torsions for circles. This computation result allows us to describe the
properties of the Reidemeister torsion for $\Sigma(p, q, npq+1)$ by observing the Reidemeister
torsion for the circle. As results, we can see that the asymptotic behavior of the higher
dimensional Reidemeister torsion for a Brieskorn manifold and determine the limit of the
leading coefficient. This is the purpose of this note. Our results can be extended to more
general situation. We refer to [11] for an extension to orientable closed Seifert 3-manifolds.
The observations of this note are based on the results in [10, 11] by the author.

We will show the following explicit form of the higher dimensional Reidemeister torsion
for a Brieskorn manifold $\Sigma(p, q, npq+1)$ and an $SL_{2}(\mathbb{C})$-representation $\rho$ . The higher
dimensional Reidemeister torsion is defined by the induced $n$-dimensional representation
$\rho_{n}$ from $\rho$ . We denote by $Tor(\Sigma(p, q, npq+1);\rho_{n})$ this Reidemeister torsion.
Main theorem 1 (Theorem3.3). Let $\rho$ be an $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(\Sigma(p, q, npq+1))$

and $rbe|npq+1|$ . Suppose that $\rho$ is irreducible and satisfies the acyclicity condition. Then
the higher dimensional Reidemeister torsion $Tor(\Sigma(p, q, npq+1);\rho_{2N})$ is $expre\mathcal{S}sed$ as

$Tor(\Sigma(p, q, npq+1);\rho_{2N})$

$= \frac{2^{2N}}{\prod_{k=1}^{N}\{4\sin^{2}\frac{(2k-1)a\pi}{2p}\cdot 4\sin^{2}\frac{(2k-1)b\pi}{2q}\cdot 4\sin^{2}\frac{(2k-1)(\varphi q-r)\pi}{2r}\}}$

where $a,$ $b$ and $c$ are integers determined by the $SL_{2}(\mathbb{C})$ -representation $\rho.$

We are interested in the asymptotic behavior of $\log|Tor(\Sigma(p, q, npq+1);\rho_{2N})|$ on $N\geq$

$1$ . We will compute the limit of the leading coefficient and show that the maximal value is
given $by-\chi\log 2$ where $\chi$ is the Euler characteristic of the base orbifold of $\Sigma(p, q,npq+1)$

as a Seifert manifold.
Main theorem 2 (Theorem 3.7 and Corollary 3.9). Suppose that $\rho$ is irreducible and
satisfies the acyclicity condition. Then we can describe the asymptotic behavior as follows:

$N arrow hm_{\infty}\frac{\log|Tor(\Sigma(p,q,npq+1);\rho_{2N})|}{(2N)^{2}}=0$

$\lim_{Narrow\infty}\frac{\log|Tor(\Sigma(p,q,npq+1);\rho_{2N})|}{2N}=(1-\frac{1}{p}-\frac{1}{q}-\frac{1}{r})\log 2$
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where $p’=\overline{(}p,a\overline{)}L,$ $q=\dotplus_{qb)}$ and $r= \frac{f}{(r,c)}$ . Here $(p,a)$ denotes the $g.c.dofp$ and $a.$

Moreover there exists an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ satisfying that the acyclic-
ity condition and $(p, a)=(q, b)=(r, c)=1$ . In particular, such an $SL_{2}(\mathbb{C})$ -representation
$\rho$ gives the maximal value of $\lim_{Narrow\infty}\log|Tor(\Sigma(p, q, npq+1);\rho_{2N})|/(2N)$ by

$- \chi\log 2=(1-\frac{1}{p}-\frac{1}{q}-\frac{1}{r})\log 2.$

In the context of the Reidemeister torsion for a Seifert manifold, we carry out our
computation under the assumption that an $SL_{2N}(\mathbb{C})$-representation sends every general
fiber to $-I_{2N}$ where $I_{2N}$ denotes the identity matrix in $SL_{2N}(\mathbb{C})$ . For a Seifert manifold,
the Reidemeister torsion can be also computed explicitly with more general special linear
representations. This can be found in the paper [4] by Teruaki Kitano.

2. PRELIMINARIES

2.1. Review of higher dimensional Reidemeister torsion. We review the higher
dimensional Reidemeister torsion very briefly. For details on the definition of the Reide-
meister torsion, we refer to Turaev’s book [9]. We also refer to [6, 10] on the definition of
the higher dimensional Reidemeister torsion.

The higher dimensional Reidemeister torsion of a finite $CW$-complex $W$ is defined as
the torsion of the twisted chain complex of $W$ . The twisted chain complex $C_{*}(W;V)$ is
defined as $V\otimes_{Z[\pi 1(W)]}C_{*}(\overline{W};\mathbb{Z})$ , by choosing a homomorphism from $\pi_{1}(W)$ into $GL$($V$),

where $\overline{W}$ is the universal cover of $W$ . In the definition of $C_{*}(W;V)$ , the vector space $V$

is a right $\mathbb{Z}[\pi_{1}(W)]$ -module through the representation $\rho^{-1}.$

Definition 2.1. Let $W$ be a finite $CW$-complex and $\rho$ an $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(W)$ .
(1) We denote by $\rho_{n}$ the composition of $\rho$ with the $n$-dimensional irreducible repre-

sentation of $SL_{2}(\mathbb{C})$ .
(2) The n-th higher dimensional Reidemeister torsion $Tor(W;\rho_{n})$ is defined as the

torsion of $C_{*}(W;V_{n})$ when $C_{*}(W;V_{n})$ is acyclic $(i.e., H_{*}(W;V_{n})=0)$ . Here $V_{n}$ is
the $n$-dimensional vector space equipped with the action of $SL_{2}(\mathbb{C})$ .

Remark 2.2. The $n$-dimensional irreducible representation of $SL_{2}(\mathbb{C})$ is given by the
vector space $V_{n}$ of homogeneous polynomials $p(z_{1}, z_{2})$ with degree $n-1$ and the following
action of $SL_{2}(\mathbb{C})$ :

$A\cdot p(z_{1}, z_{2})=p(A^{-1}(\begin{array}{l}z_{1}z2\end{array})) , \forall A\in SL_{2}(\mathbb{C})$.

Actually we need only the explicit form of the higher Reidemeister torsion for the circle.
We will see the details on the case of the circle in the next Subsection.

2.2. Example for the circle. We begin with the twisted chain complex for $S^{1}$ and a
$GL$ ( $V$)-representation of $\pi_{1}(S^{1})$ . We denote by $\gamma$ a generator of $\pi_{1}(S^{1})$ . When we think
of $S^{1}$ as the union $e^{0}\cup e^{1}$ , the twisted chain complex $C_{*}(S^{1};V)$ is expressed as follows:

$0arrow C_{1}(S^{1};V)(\simeq V)arrow C_{0}(S^{1};V)(\simeq V)\partial_{1}arrow 0$

$v\otimes\tilde{e}^{1}\mapsto v\cdot\gamma\otimes e\triangleleft-v\otimes e\triangleleft.$

The boundary operator $\partial_{1}$ is given by $(\rho(\gamma)^{-1}-I)$ . The Reidemeister torsion for $S^{1}$ is
determined by this matrix presentation of $\partial_{1}.$
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Proposition 2.3. Let $\rho$ be $a$ $GL$ ( $V$)-representation of $\pi_{1}(S^{1})(=\langle\gamma\rangle)$ . If $\rho(\gamma)$ does
not have the eigenvalue 1, then the twisted chain complex $C_{*}(S^{1};V_{2})$ is acyclic, $i.e,$

$H_{*}(S^{1};V)=0$ . Moreover the Reidemeister torsion is expressed as

$Tor(S^{1};\rho)=\frac{1}{\det(\rho(\gamma)^{-1}-I)}.$

We are interested in the sequence of $\rho_{n}$ induced by an $SL_{2}(\mathbb{C})$-representation $\rho$ of $\pi_{1}(S^{1})$

and the corresponding Reidemeister torsion. When the eigenvalues of $\rho(\gamma)$ are $\zeta^{\pm 1}$ , direct
calculations show that the eigenvalues of $\rho_{n}(\gamma)$ are given by

$\{\begin{array}{ll}\{\zeta^{\pm(2N-1)}, \zeta^{\pm(2N-3)}, \ldots, \zeta^{\pm 3}, \zeta^{\pm 1}\} if n=2N\{\zeta^{\pm(2N)}, \zeta^{\pm(2N-2)}, \ldots, \zeta^{\pm 2},1\} if n=2N+1.\end{array}$

We require the acyclicity of the twisted chain complex for $\rho_{n}$ . Hence we will focus on even
dimensional representations $\rho_{2N}$ . Then the corresponding Reidemeister torsion of $S^{1}$ is
expressed in terms of the eigenvalues $\zeta^{\pm 1}$ of $\rho(\gamma)$ as follows.

Proposition 2.4. Suppose that the eigenvalue $\zeta$ of $\rho(\gamma)$ is not any $(2j-1)$ -th root of
unity for all $j=1,$ $\ldots$ N. Then we can express the Reidemeister torsion $Tor(S^{1};\rho_{2N})$ as

$Tor(S^{1};\rho_{2N})=\frac{1}{\det(\rho_{2N}(\gamma)^{-1}-I)}$

$= \{\prod_{k=1}^{N}(\zeta^{2k-1}-1)(\zeta^{-(2k-1)}-1)\}^{-1}$

Corollary 2.5. If $\rho(\gamma)$ has the order of $2p$, then for every $N\geq 1$ the twisted chain
complex $C_{*}(S^{1};V_{2N})$ is acyclic and the Reidemeister torsion $Tor(S^{1};\rho_{2N})$ is given by the
following product:

$\{\prod_{k=1}^{N}4\sin^{2}\frac{(2k-1)a\pi\sqrt{-1}}{2p}\}^{-1}$

where $a$ is an odd integer such that $\zeta=e^{a\pi\sqrt{-1}/p}.$

2.3. Brieskorn manifold $\Sigma(p, q, npq+1)$ . Every Brieskom manifold $\Sigma(p, q, npq+1)$ can
be obtained by $(1/n)$-surgery along the $(p, q)$-torus knot $K$ . We have the decomposition
of $\Sigma(p, q, npq+1)$ as the union $E_{K} \bigcup_{\partial E_{K}}D^{2}\cross S^{1}.$

Moreover we can divide every torus knot exterior into the union of two sohd tori. This
decomposition is expressed as

$E_{K}=D^{2} \cross S^{1}\bigcup_{A}S^{1}\cross D^{2}$

where $A$ denotes the annulus in the torus on which the $(p, q)$-torus knot $K$ lies. This
decomposition arises the following presentation of $\pi_{1}(E_{K})$ :

$\pi_{1}(E_{K})=\langle x,y|x^{p}=y^{q}\rangle$

where $x$ denotes the homotopy class of $\{*\}\cross S^{1}$ and $y$ denotes that of $S^{1}\cross\{*\}.$

We denote by $z$ the element $x^{p}(=y^{q})$ in $\pi_{1}(E_{K})$ , which is the homotopy claes of $S^{1}\cross\{*\}$

in $A=S^{1}\cross[-1,1]$ . It is known that $z$ is a generator of the center in $\pi_{1}(E_{K})$ , which is
an infinite cychc subgroup.
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FIGURE 1. Decomposition of the (2, 3)-torus knot exterior

Summarizing the above, we have seen that a Brieskorn manifold $\Sigma(p, q, npq+1)$ is
decomposed as

$\Sigma(p, q,npq+1)=(D^{2}\cross S^{1}\bigcup_{A}S^{1}\cross D^{2})\bigcup_{\partial E_{K}}D^{2}\cross S^{1}.$

The fundamental group of $\Sigma(p, q, npq+1)$ is expressed as
$\pi_{1}(\Sigma(p, q, npq+1))=\langle x, y|x^{p}=y^{q}, mP^{n}=1\rangle$

where $m$ and $\ell$ denote the meridian and the longitude given by the equality that $m=$
$x^{-u}y^{v}(pv-qu=1)$ and $\ell=m^{pq}x^{-p}$ . Note that $\ell$ also denotes the homotopy class of the
core of $D^{2}\cross S^{1}$ glued to $E_{K}$ in $\pi_{1}(\Sigma(p, q, npq+1))$ since the surgery slope is $1/n.$

We will see that the Reidemeister torsion for $\Sigma(p, q, npq+1)$ is given by the product of
those for the circles corresponding to $x,$ $y,$ $z$ and $\ell$ in $\pi_{1}(\Sigma(p, q,npq+1))$ .

This is due to that the Reidemeister torsions of a solid torus and an annulus coincide
with those of the spines.

3. HIGHER DIMENSIONAL REIDEMEISTER TORSION FOR BRIESKORN MANIFOLDS

3.1. Irreducible $SL_{2}(\mathbb{C})$-representations of $\pi_{1}(E_{K})$ and $\pi_{1}(\Sigma(p, q, npq+1))$ . To de-
scribe the Reidemeister torsion for $\Sigma(p, q,npq+1)$ explicitly, we need to find the eigen-
values of matrices corresponding to $x,$ $y,$ $z$ and $\ell$ in $\pi_{1}(\Sigma(p, q, npq+1))$ . According to
D. Johnson [2], we can regard the eigenvalues of generators of the fundamental group as
a parameter of conjugacy classes of irreducible $SL_{2}(\mathbb{C})$-representations. Johnson derived
this description through $(1/n)$-surgery along the $(p, q)$-torus knot. We first review con-
jugacy classes of irreducible $SL_{2}(\mathbb{C})$ -representations for the $(p, q)$-torus knot exterior $E_{K}.$

Here we choose the presentation $\langle x,y|x^{p}=y^{q}\rangle$ for $\pi_{1}(E_{K})$ .
Proposition 3.1 ([2, 5]). Let $\rho$ be an irreducible $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(E_{K})$ . Then
there exists the pair $(a, b)$ of integers such that

(i) $0<a<p,$ $0<b<q$ and $a\equiv b$ (mod2);
(ii) the eigenvalues of $\rho(x)$ are given by $e^{\pm a\pi\sqrt{-1}/p}$;
(iii) the eigenvalues of $\rho(y)$ are given by $e^{\pm b\pi\sqrt{-1}/q}.$

Conversely, each pair $(a,b)$ satisfying the condition (i) corresponds to the conjugacy class
of an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ satisfying the conditions (ii) and (iii).

These conditions are derived from the requirement that the center of $\pi_{1}(E_{K})$ should be
sent into the center of $SL_{2}(\mathbb{C})$ . As a consequence of Proposition 3.1, the image $\rho(z)$ of
the central element $z$ is given by $(-I)^{a}(=(-I)^{b})$ .

We can deduce the following correspondence between triples of integers and conjugacy
classes of irreducible $SL_{2}(\mathbb{C})$ -representations for $\Sigma(p, q, npq+1)$ by $(1/n)$-surgery along
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the $(p, q)$-torus knot. Note that the eigenvalues for a meridian can move in the conjugacy
class of any irreducible $SL_{2}(\mathbb{C})$-representation of a torus knot group.

Proposition 3.2 ([2], Introduction in [3]). Suppose that $\rho$ is an irreducible $SL_{2}(\mathbb{C})-$

representation of $\pi_{1}(\Sigma(p, q, npq+1))$ . Then the conjugacy class of $\rho$ corresponds to the
triple $(a, b, c)$ of integers such that

(i) $0<a<p,$ $0<b<q$ and $a\equiv bmod 2$ ;
(ii) $0<c<r=|npq+1|$ and $c\equiv na(mod 2)$ ;
(iii) the eigenvalues of $\rho(x)$ are given by $e^{\pm a\pi\sqrt{-1}/p}$;
(iv) the eigenvalues of $\rho(y)$ are given by $e^{\pm b\pi\sqrt{-1}/q}$;
(v) the eigenvalues of $\rho(m)$ are given by $e^{\pm c\pi\sqrt{-1}/r}$

where $m$ denotes the meridian of the $(p, q)$ -torus knot, given by the equality that $m=$
$x^{-u}y^{v}(pv-qu=1)$ in $\pi_{1}(E_{K})$ .

Conversely a triple $(a, b, c)$ satisfying the conditions (i) and (ii) corresponds to the con-
jugacy class of an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ satisfying the conditions (iii), (iv)
and (v).

We have chosen the pair of $x^{-u}y^{v}(pv-qu=1)$ and $\ell=m^{pq}x^{-p}$ as a peripheral system.
The conditions on $m$ in Proposition 3.2 are derived from the equality that $m\ell^{n}=1$ in
$\pi_{1}(\Sigma(p, q, npq+1))$ . We can also derive the equality that $\rho(m)^{r}=(-I)^{an}.$

We will see that the twisted chain complex $C_{*}(E_{K};V_{2N})$ and $C_{*}(\Sigma(p, q, npq+1);V_{2N})$ are
acyclic for all $N$ under the condition that $\rho$ sends $zto-I$ in Subsection 3.3. Precisely, the
twisted chain complex $C_{*}(E_{K};V_{2N})$ are acyclic for all $N$ if and only if $\rho$ sends $zto-I$ . The
condition that $\rho(z)=-I$ also gives a sufficient condition for all $C_{*}(\Sigma(p, q, npq+1);V_{2N})$

to be acyclic

3.2. Asymptotics of Reidemeister torsion for Brieskorn manifolds. We observe
the higher dimensional Reidemeister torsion for $\Sigma(p, q, npq+1)$ . First we describe an
explicit form of $(2N)$-th higher dimensional Reidemeister torsion for all $N$ . Next we will
discuss the asymptotic behavior of the sequence given by $\log|Tor(\Sigma(p, q, npq+1);\rho_{2N})|.$

Theorem 3.3. Suppose that the conjugacy class of $\rho$ for $\pi_{1}(\Sigma(p, q, npq+1))$ corre-
sponds to a triple $(a, b, c)$ such that $a\equiv b\equiv 1$ mod2. Then the twisted chain complex
$C_{*}(\Sigma(p, q, npq+1);V_{2N})$ is acyclic and the higher dimensional Reidemeister torsion is
expressed as

$Tor(\Sigma(p, q, npq+1);\rho_{2N})$

(1)
$= \frac{2^{2N}}{\prod_{k=1}^{N}\{4\sin^{2}\frac{(2k-1)a\pi}{2p}\cdot 4\sin^{2}\frac{(2k-1)b\pi}{2q}\cdot 4\sin^{2}\frac{(2k-1)(cpq-r)\pi}{2r}\}}$

for all $N\geq 1.$

Remark 3.4. The acyclicity condition mentioned in Section 1 is that $a\equiv b\equiv 1$ (mod2).

The numerator of (1) is given by the Reidemeister torsion for the annulus in $E_{K}$ . In the
denominator of (1), the factors 4 $\sin((2k-1)a\pi/(2p))$ and 4 $\sin((2k-1)b\pi/(2q))$ come from
the Reidemeister torsions for solid tori in $E_{K}$ and the factors 4 $\sin((2k-1)(cpq-r)\pi/(2r))$

is given by the Reidemeister torsion for the sohd torus glued to $E_{K}$ . Theorem 3.3 follows
from the following Lemma 3.5, which will be shown in Subsection 3.3.
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Lemma 3.5. Under the assumption of Theorem 3.3, the Reidemeister torsion for the
Brieskom manifold $\Sigma(p, q, npq+1)$ is expressed as

$Tor(\Sigma(p, q, npq+1);\rho_{2N})$

$=Tor(S_{x}^{1};\rho_{2N})\cdot Tor(S_{y}^{1};\rho_{2N})\cdot Tor(S_{\ell}^{1};\rho_{2N})\cdot Tor(S_{z}^{1}; \rho_{2N})^{-1}$

where each suffix of $S^{1}$ denotes the homotopy class in $\pi_{1}(\Sigma(p, q, npq+1))$ .
It follows from Theorem 3.3 that the logarithm of $|Tor(\Sigma(p,q, npq+1);\rho_{2N})|$ is a linear

combination of the logarithms of the Reidemeister torsions for the circles. The author
have shown in [11] that the asymptotic behavior of the higher dimensional Reidemeister
torsion for $S^{1}.$

Proposition 3.6 (Proposition 3.8 in [11]). Let $\rho$ be an $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(S^{1})=$

$\langle\gamma\rangle$ . If $\rho(\gamma)$ has the order of $2d$, then we have the following limits:

(2) $N arrow\infty hm\frac{\log|Tor(S^{1};\rho_{2N})|}{(2N)^{2}}=0,$

(3) $\lim_{Narrow\infty}\frac{\log|Tor(S^{1};\rho_{2N})|}{2N}=-\frac{1}{d}\log 2.$

By Lemma 3.5 and Proposition 3.6, we can deduce the asymptotics of the higher di-
mensional Reidemeister torsion for $\Sigma(p, q, npq+1)$ as follows.

Theorem 3.7. Suppose that an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ corresponds to a triple
$(a,b, c)$ such that $a\equiv b\equiv 1$ mod2. We have the follouring limits which $e\varphi ress$ the order
of growth for the sequence given by $\log|Tor(\Sigma(p, q, npq+1);\rho_{2N})|.$

(4) $\lim_{Narrow\infty}\frac{\log|Tor(\Sigma(p,q,npq+1);\rho_{2N})|}{(2N)^{2}}=0,$

(5) $\lim_{Narrow\infty}\frac{\log|Tor(\Sigma(p,q,npq+1);\rho_{2N})|}{2N}=(1-\frac{1}{p}-\frac{1}{q’}-\frac{1}{r^{l}})\log 2$

where $p’=p/(p,a),$ $q’=q/(q,b)$ and $r’=r/(r, c)$ .
We have only finitely many conjugacy classes of irreducible $SL_{2}(\mathbb{C})$-representations for

every Brieskorn manifold $\Sigma(p,q,npq+1)$ . Hence we have finitely many possibilities of the
limits for the leading coefficient of $\log|Tor(\Sigma(p, q, npq+1);\rho_{2N})|.$

Remark 3.8. We can regard every Brieskorn manifold $\Sigma(p,q,npq+1)$ as a Seifert man-
ifold. The limits (5) in Theorem 3.7 are less than or equal to $-\chi\log 2$ where $\chi(=$

$1-1/p-1/q-1/r)$ is the Euler characteristic of the base orbifold of the Seifert manifold.

Corollary 3.9. For every Brieskom manifold $\Sigma(p,q,npq+1)$ , there exists an acyclic
irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ which gives the maximal value - $\chi\log 2$ in the set of
limits in Eq. (5).

Proof of Corollary 3.9. It is sufficient to find a triple $(a, b, c)$ satisfies
$\bullet$ $0<a<p,$ $0<b<q$ and $0<c<r$ ;
$\bullet$ $a\equiv b\equiv 1$ and $c\equiv na$ (mod2);
$\bullet(a,p)=(b, q)=(c, r)=1.$

It is easy to see that the triple $(1, 1, |n|)$ satisfies the above conditions. $\square$
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3.3. Reidemeister torsion of $\Sigma(p, q, npq+1)$ by Mayer-Vietoris arguments. We
compute the Reidemeister torsion for $\Sigma(p, q, npq+1)$ by $Mayer-Vietoris$ arguments. Our
computation is based on the decomposition of $\Sigma(p, q, npq+1)$ as

$\Sigma(p, q, npq+1)=E_{K}\bigcup_{\partial E_{K}}D^{2}\cross S_{\ell}^{1}$

$=(D^{2} \cross S_{x}^{1}\bigcup_{S_{z}^{1}\cross[-1},{}_{1]}S_{y}^{1}\cross D^{2})\bigcup_{\partial E_{K}}D^{2}\cross S_{\ell}^{1}.$

The Multiplicativity property of the Reidemeister torsion allows us to use a cut and
paste method for decomposition of $CW$-complexes.

Lemma 3.10 (Multiplicativity property). Let $0arrow C_{*}’arrow C_{*}arrow C_{*}"arrow 0$ be a short exact
sequence of based acyclic chain complexes. Suppose that each chain complex consists of
vector spaces and the basis of $C_{*}$ is given by the bases of $C_{*}’$ and $C_{*}"$ . Then we have the
following equality of the Reidemeister torsions:

$Tor(C_{*})=\pm Tor(C_{*}’)Tor(C_{*}")$ .
For details on the Multiplicativity property, we refer to Turaev’s book [9] and Milnor’s

survey article [7].
We use this property for each decomposition of $E_{K}=D^{2} \cross S_{x}^{1}\bigcup_{S_{z}^{1}\cross[-1},{}_{1]}S^{1}\cross D^{2}$ and

$\Sigma(p, q, npq+1)=E_{K}\bigcup_{\partial E_{K}}D^{2}\cross S_{\ell}^{1}$ . To apply Lemma 3.10 (Multiplicativity property),
we need to check that every twisted chain complex in the decomposition is acychc.

We first observe the decomposition of the $(p, q)$-torus knot exterior $E_{K}.$

Proposition 3.11 (Proposition 3.1 in [10]). Let $\rho$ be an irreducible $SL_{2}(\mathbb{C})$ -representation
of $\pi_{1}(E_{K})$ . The twisted chain complex $C_{*}(E_{K};V_{2N})$ is acyclic for all $N\geq 1$ if and only if
the pair $(a, b)$ corresponding to the conjugacy class of $\rho$ satisfies that $a\equiv b\equiv 1$ (mod2).

Remark 3.12. For any irreducible $SL_{2}(\mathbb{C})$-representation $\rho$ of $\pi_{1}(E_{K})$ , the condition that
$a\equiv b\equiv 1$ (mod2) is equivalent to $\rho(z)=-I$ since $\rho(z)=(-I)^{a}.$

Under the condition which requires that $z$ is sent to -$I$ , we can also see the acyclicity
for every twisted chain complex in the decomposition of $E_{K}=D^{2} \cross S_{x}^{1}\bigcup_{S_{z}^{1}x[-1},{}_{1]}S_{y}^{1}\cross D^{2}.$

The twisted chain complexes $C_{*}(D^{2}\cross S_{x}^{1};V_{2N}),$ $C_{*}(S_{y}^{1}\cross D^{2};V_{2N})$ and $C_{*}(S_{z}^{1}\cross[-1,1];V_{2N})$

are defined by the restrictions of an irreducible $SL_{2}(\mathbb{C})$-representation of $\pi_{1}(E_{K})$ .
Proposition 3.13. Let $\rho$ be an irreducible $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(E_{K})$ . All of the
twisted chain complexes $C_{*}(D^{2}\cross S_{x}^{1};V_{2N}),$ $C_{*}(S_{y}^{1}\cross D^{2};V_{2N})$ and $C_{*}(S_{z}^{1}\cross[-1,1];V_{2N})$ are
acycl\’ic if and only if the image $\rho(z)$ is equal $to$ - $I.$

Proof. The Mayer-Vietoris sequence of twisted homology groups is expressed as
. . . $arrow H_{i}(S_{z}^{1}\cross[-1,1])arrow H_{i}(D^{2}\cross S_{x}^{1})\oplus H_{i}(S_{y}^{1}\cross D^{2})arrow H_{i}(E_{K})arrow\cdots$

where each coefficient is $V_{2N}.$

We assume that $\rho(z)$ is - $I$ . It follows from the Mayer-Vietoris sequence and Propo-
sition 3.11 that the twisted homology group $H_{*}(S_{z}^{1}\cross[-1,1];V_{2N})\simeq H_{*}(S_{z}^{1};V_{2N})$ is
isomorphic to $H_{*}(D^{2}\cross S_{x}^{1};V_{2N})\oplus H_{*}(S_{y}^{1}\cross D^{2};V_{2N})$. By Corollary 2.5, we can see
that $H_{*}(S_{z}^{1};V_{2N})=0$ . Therefore all of the twisted chain complexes $C_{*}(D^{2}\cross S_{x}^{1};V_{2N})$ ,
$C_{*}(S_{y}^{1}\cross D^{2};V_{2N})$ and $C_{*}(S_{z}^{1}\cross[-1,1];V_{2N})$ are acyclic.

Next we assume that all of twisted homology groups for $D^{2}\cross S_{x}^{1},$ $S_{y}^{1}\cross D^{2}$ and $S_{z}^{1}\cross[-1,1]$

are trivial. Then the twisted homology group $H_{*}(E_{K};V_{2N})$ also vanishes from the Mayer-
Vietoris sequence. By Proposition 3.11, we can conclude that $\rho(z)=-I.$ $\square$
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Now we are in a position to apply Lemma 3.10 (Multiplicativity property) to the short
exact sequence:
$0arrow C_{*}(S_{z}^{1}\cross[-1,1];V_{2N})arrow C_{*}(D^{2}\cross S_{x}^{1};V_{2N})\oplus C_{*}(S_{y}^{1}\cross D^{2};V_{2N})arrow C_{*}(E_{K};V_{2N})arrow 0.$

Proposition 3.14. Suppose that an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ of $\pi_{1}(E_{K})$ sends
$z$ $to$ -I. Then the higher Reidemeister torsion $Tor(E_{K};\rho_{2N})$ is expressed as
(6) $Tor(E_{K};\rho_{2N})=Tor(D^{2}\cross S_{x}^{1};\rho_{2N})\cdot Tor(S_{y}^{1}\cross D^{2};\rho_{2N})\cdot Tor(S_{z}^{1}\cross[-1,1];\rho_{2N})^{-i}$

(7) $= \frac{2^{2N}}{\prod_{k=1}^{N}4\sin\frac{(2k-1)a\pi}{2p}\cdot 4\sin\frac{(2k-1)b\pi}{2q}}$

where $a$ and $b$ are integers whose pair $(a, b)$ corresponds to the conjugacy class of $\rho.$

Proof of Proposition 3.14. Eq. (6) follows from Lemma 3.10. By Corollary 2.5, each of
the Reidemeister torsions in Eq. (6) is expressed as follows:

$Tor(S_{z}^{1}\cross[-1,1];\rho_{2N})=\{\det(\rho_{2N}(z)^{-1}-I_{2N})\}^{-1}$

$=(-2)^{-2N},$

$Tor(D^{2}\cross S_{x}^{1};\rho_{2N})=Tor(S_{x}^{1};\rho_{2N})$

$= \{\prod_{k=1}^{N}(e^{(2k-1)a\pi\sqrt{-1}/p}-1)(e^{-(2k-1)a\pi\sqrt{-1}/p}-1)\}^{-1}$

and

$Tor(S_{y}^{1}\cross D^{2};\rho_{2N})=Tor(S_{y}^{1};\rho_{2N})$

$= \{\prod_{k=1}^{N}(e^{(2k-1)b\pi\sqrt{-1}/q}-1)(e^{-(2k-1)b\pi\sqrt{-1}/q}-1)\}^{-1}$

We complete the proof by substituting the above computations into Eq. (6). $\square$

Next we apply Lemma 3.10 (Multiphcativity property) to the short exact sequence for
the decomposition that $\Sigma(p, q, npq+1)=E_{K}\bigcup_{\partial E_{K}}D^{2}\cross S_{\ell}^{1}$ . As seen in the case that
of $E_{K}$ , we need to check the acyclicity of twisted chain complexes. We regard $SL_{2}(\mathbb{C})-$

representations for the resulting manifold $\Sigma(p, q, npq+1)$ as the extensions of irreducible
$SL_{2}(\mathbb{C})$-ones $\rho$ of $\pi_{1}(E_{K})$ such that $\rho(m\ell^{n})=I.$

Lemma 3.15. Let $\rho$ be an irreducible $SL_{2}(\mathbb{C})$ -representation of $\pi_{1}(\Sigma(p, q, npq+1))$ . If
$\rho$ sends $z$ to -$I$ , then the order of $\rho(\ell)$ is even. In particular, under the condition that
$\rho(z)=-I$ , the twisted chain complex $C_{*}(D^{2}\cross S_{\ell}^{1};V_{2N})$ is acyclic for all $N\geq 1.$

Proof. Set $(a, b, c)$ as the triple of integers corresponding to the conjugacy class of $\rho$ . By
Proposition 3.2, we can see that $\rho(\ell)^{r}=(-I)^{a}$ as follows:

$\rho(\ell)^{r}=\rho(m)^{pqr}\rho(x^{-p})^{r}=(-I)^{pqc}(-I)^{-a(npq+1)}=(-I)^{-a}.$

The condition that $\rho(z)=-I$ is equivalent to $a\equiv b\equiv 1$ (mod2). This imphes that $\rho(\ell)$

has the order of even degree if $\rho(z)=-I.$

Therefore it follows from Corollary 2.5 that $H_{*}(D^{2}\cross S_{\ell}^{1};V_{2N})\simeq H_{*}(S_{\ell}^{1};V_{2N})$ vanishes.
$\square$
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By applying Proposition 3.11 and Lemma 3.15 to the Mayer-Vietoris sequence:
(8) . . . $arrow H_{i}(\partial E_{K})arrow H_{i}(E_{K})\oplus H_{i}(D^{2}\cross S_{\ell}^{1})arrow H_{i}(\Sigma(p, q, npq+1))arrow\cdots$

with the coefficient $V_{2N}$ , we can obtain the following acyclicity of the twisted chain com-
plexes under the condition that $\rho(z)=-I.$

Proposition 3.16. If an irreducible $SL_{2}(\mathbb{C})$ -representation $\rho$ of $\pi_{1}(\Sigma(p, q, npq+1))$ sat-
isfies that $\rho(z)=-I$ , then all of $C_{*}(\Sigma(p, q, npq+1);V_{2N}),$ $C_{*}(E_{K};V_{2N}),$ $C_{*}(D^{2}\cross S_{\ell}^{1};V_{2N})$

and $C_{*}(\partial E_{K};V_{2N})$ are acyclic for all $N\geq 1.$

Proof. It follows from Proposition 3.11 and Lemma 3.15 that $C_{*}(E_{K};V_{2N})$ and $C_{*}(D^{2}\cross$

$S_{\ell}^{1};V_{2N})$ are acyclic for all $N\geq 1$ . Since for any $N\geq 1,$ $\rho_{2N}(\ell)$ does not have the eigenvalue
1, we can show that $C_{*}(\partial E_{K};V_{2N})$ is acychc for all $N$ by direct calculation. Hence the
acychcity of $C_{*}(\Sigma(p, q, npq+1))$ follows from the Mayer-Vietoris sequence (8). $\square$

Now we can apply Lemma 3.10 to the decomposition $\Sigma(p, q, npq+1)=E_{K}\cup D^{2}\cross S_{\ell}^{1}$

under the condition that $\rho(z)=-I.$

Proof of Lemma 3.5. Suppose that an irreducible $SL_{2}(\mathbb{C})$-representation $\rho$ sends $zto-I.$
We have seen the acyclicity of $C_{*}(\Sigma(p, q, npq+1);V_{2N})$ in Proposition 3.16. By applying
Lemma 3.10 to the short exact sequence:
$0arrow C_{*}(\partial E_{K};V_{2N})arrow C_{*}(E_{K};V_{2N})\oplus C_{*}(D^{2}\cross S_{\ell}^{1};V_{2N})arrow C_{*}(\Sigma(p, q, npq+1);V_{2N})arrow 0,$

we have the following equality of the Reidemeister torsions:
(9) $Tor(\Sigma(p, q, npq+1);\rho_{2N})=\pm Tor(E_{K};\rho_{2N})\cdot Tor(D^{2}\cross S_{\ell}^{1};\rho_{2N})\cdot Tor(\partial E_{K};\rho_{(}2N))^{-1}$

We can see that $Tor(\partial E_{K};\rho_{2N})=1$ by definition. Together with Eq. (6) in Proposi-
tion 3.14, we obtain the equality of the Reidemeister torsions in Lemma 3.5. $\square$

Proof of Theorem 3.3. To compute $Tor(D^{2}\cross S_{\ell}^{1};\rho_{2N})$ , we need to consider the eigenvalues
of $\rho(\ell)$ . The relation $\ell=m^{pq}x^{-p}(=m^{pq}z^{-1})$ imphes that the eigenvalues of $\rho(\ell)$ are
$e^{\pm(\varphi q-r)\pi\sqrt{-1}/r}$ by the assumption that the eigenvalues of $\rho(m)$ are $e^{\pm c\pi\sqrt{-1}/r}$ where $r=$
$|npq+1|$ . Hence the Reidemeister torsion for $D^{2}\cross S_{\ell}^{1}$ is expressed as

(10) $Tor(D^{2}\cross S_{\ell}^{1};\rho_{2N})=\{\prod_{k=1}^{N}4\sin^{2}\frac{(cpq-r)\pi}{2r}\}^{-1}$

Substituting Proposition 3.14 and Eq. (10) into Lemma 3.5, we obtain the desired equality.
$\square$

Remark 3.17. Since the $co$efficient $V_{2N}$ is an even dimensional vector space, we do not
need the $sign\pm$ in Eq. (9) in fact.

4. ON SOME SEIFERT SURGERIES ALONG THE FIGURE EIGHT KNOT WITH SNAPPY
We also touch a relation to the result of P. Menal-Ferrer and J. Porti [6]. They have

shown the relation between the hyperbohc volume of a hyperbolic 3-manifold and the
leading coefficient of its higher dimensional Reidemeister torsion. It is expressed as

(11) $\lim_{Narrow\infty}\frac{\log|Tor(M;\rho_{2N})|}{(2N)^{2}}=-\frac{Vo1(M)}{4\pi}$

where $\rho_{2N}$ is induced by the holonomy representation corresponding to the complete
hyperbolic structure of $M.$
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We can consider the volume of an $SL_{2}(\mathbb{C})$-representation. The volume changes contin-
uously when we move $SL_{2}(\mathbb{C})$-representations. In the case that $M$ is the interior of the
figure eight knot exterior, the volume is expected to be zero when we move the holonomy
representation to $SL_{2}(\mathbb{C})$-representations corresponding to the slopes of Seifert surgeries.
Here Seifert surgery means that the resulting manifold tums into a Seifert manifold. We
denote by $4_{1}$ the figure eight knot. We can work on numerical experiments with SnapPy [1]
which is a program for studying the topology and geometry of -manifolds. SnapPy cal-
culates the hyperbolic volume of $S^{3}\backslash 4_{1}$ and the resulting manifold by $(-1)$-surgery.

In $[]3:W\alpha*11f\aleph dく^{}*4_{\sim}1’)$

$b\beta l3:w.gr\underline{t}l,*t^{1}ttC$く-$t$, $\iota)),$

rn [3]: $\{$

FIGURE 2. Screenshot of SnapPy

It is known that $(-1)$-surgery along $4_{1}$ yields the Seifert manifold obtained by 1-surgery
along the trefoil knot (we refer to [8]). Since the trefoil knot is the (2, 3)-torus knot, the
resulting manifold is the Brieskorn manifold $\Sigma(2,3,7)$ .

Let $\rho$ be an irreducible $SL_{2}(\mathbb{C})$-representation of the figure eight knot group such that
$\rho(\mu\lambda^{-1})=I$ where $\mu$ is a meridian and $\lambda$ is a longitude. It follows from our computations
in Section 3 that the growth order of $\log|Tor(S_{4_{1}}^{3}(-1);\rho_{2N})|$ is $2N$ and the coefficient
$\log|Tor(S_{4_{1}}^{3}(-1);\rho_{2N})|/(2N)$ converges -$\chi\log 2$ where $S_{4_{1}}^{3}(-1)$ is the resulting manifold
by $(-1)$-surgery along $4_{1}.$

It is known that the conjugacy classes of irreducible $SL_{2}(\mathbb{C})$-representations of $\pi_{1}(S^{3}\backslash 4_{1})$

form a set which we can equip with the structure of an affine variety. The Reidemeister
torsion and the volume of a representation have the invariance under the conjugation of
representations. Eq. (11) can be regard as an equality of functions on a neighbourhood
of the conjugacy class of $\rho$ . We can rephrase the above observation as follows.

The leading coefficient of $\log|Tor(S_{4_{1}}^{3}(-1);\rho_{2N})|$ vanishes at the conjugacy class of $\rho$

and the second coefficient converges $to-\chi\log 2$ where $\chi$ is the Euler characteristic of the
base orbifold for the resulting Seifert manifold.
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