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Trudinger-Moser inequality for point vortex mean
field limit with multi-intensities

TAKASHI SUZUKI AND XIAO ZHANG

We study a variational functional associated with point vortex
mean field equation, particularly the extremal case, that is, bound-
edness of the functional and existence of minimizer.

1 Introduction

In 1949, Onsager [13] used statistical mechanics to describe an ordered struc-
ture observed in fluid motion. In the theory of Gibbs, first, the Hamilton
system
dqi . 0H dpi . oH
dt  dp; At g’
is introduced in the phase space z = (qi,...,qn,p1,...,pn)€ ROV, It
induces the micro-canonical measure

v 1 ds(H)
W = owm o

1<i<N,

where d¥(H) and Q(H) denote the measure on each level set {z € R | H(z) = H}
and the weight factor defined by
d¥(H)

IVH]

dr = dH -

and
dX(H)

Q(H) = / ,
(H) (H@z)=Hy |VH]

respectively. Then the thermodynamical relation gives the inverse temper-
ature 8 = 1/(kgT) by

9 1og Q(H)

P=3H



from which emerges the canonical measure

~BH j
BN =% __ 2 Z(B,N =/ ~BHg
W =zEny ZON= fw

where kg denotes the Boltzmann constant. Then the mean field limt of the
factorized density of du?", that is, the one point pdf, arises as N 1 400
under the principle of equal a priori probabilities.

Onsager [13] used the vorticity equation of Kirchhoff which is derived
from the Euler equation

v+ (- V)v=-Vp, V-u=0, inQx(0,7T)
v-v=_0 on 90 x (0,T), (1.1)

where Q ¢ R? is a simply-connected domain with smooth boundary 69 and
v denotes the outer unit normal vector. If w = V X v is so concentrated as

N
wr(dz,t) = ) 0iby, 4 (d),
i=1

equation (1.1) is reduced to

9 Glfy, 1<i<N
dt
for )
~ o
HN(:L‘l, - ,.’L‘N) = Z jR(.L‘J) + ZaiajG(:ri,xj),
1 1<J
where

9
1 .
Vi=| %% |, z=(za,za),
3xil

G = G(z,z') denotes the Green’s function, and

R(z) = [G(x,x’) + 517;10g z — xll}

=z

is the Robin function. For the single intensity case o; = &, the equation
to which mean field limit of the canonical measure is subject is derived by
(5, 12]. Namely, it arises in the high energy limit, N 1 +oc0 with

&GN =1, Hy = H, 6*NB = B,



and the one-point pdf takes the limit satisfying

p= g 6= [ G 12)
Jae P Q .

The rigorous proof [2, 6] for this limit process is valid if A = -8 < 8«
because of the uniqueness of the solution to (1.2) proven by [18]. Equation
(1.2) takes the form of the Boltzmann-Poisson equation

e
fﬂ ev

If the distribution of the vortices of the intensity aé, o € [—1,1], N& = 1,
is subject to the Borel probability measure P(da), then (1.3) is replaced by

—Av = inQ, v=0 ondN. (1.3)

av

~Av = /\/ 2 _P(da) inQ, v=0 on Q. (1.4)
[-1,1] fQ €

It is the point vortex mean field equation for the case of multi-intensities.
A formal derivation of this deterministic distribution is done in [16], but
Onsager himself has left a note where (1.4) is shown for the discrete case

£

P(da) = nids, (1.5)

1=1

(see [3]).
A different model derived by [8] is the stochastic case where relative
intensity a € [—1, 1] is a random variable subject to the distribution function

P(dca). Then it follows that

f[—l,ll ae® P(da)

—Av = A ,  Ulgq =0. (1.6)
f}—l,l] Joe*"P(da) on
If the intensities are neutral we have
1
P(da) = 5 (61 +6-1) (1.7)

and then equations (1.4) and (1.6) read

A e’ e’
CAv=2 _ ~0
YT (fQ evde [, e‘“da:) Voo



and
Ae? —e™)

_Ap = ,
v Joet +e v dzx

vlaﬂ = Oa

respectively.
Equations (1.4) and (1.6) are the Euler-Lagrange equations of the func-
tionals

J4(0) = %HVvH% A /[—1,11 [log /ﬂ em’: P(da)

and

1 av]
J;(v)=§(|vv||§—,\10g/[ - Une P(da)

defined for v € H}(f), respectively. Then the extremal values of A for their
boundedness is a fundamental factor to prescribe the critical state of many
stationary point vortices. We study these functionals on

E:{veHl(Q)l/szo}

where 2 is a Riemann surface without boundary.
First, it is obvious that
I 25

by Jensen’s inequality. Next, the Trudinger-Moser-Fontana inequality [4]
/ ™’ <C, YweE, |[Vu|p<1
Q
implies
i%f Jgp > —00.
In fact, we have
1 v2

< — 2 tane® ——
av < 16ﬂ_HVvH2+ TO ol

and hence

Vi3
log/ [/e“”]Pda < +C, veFE.
[-1,1] LJa (da) 16w

In fact the value A = 87 is actually the extremal for J° to be bounded by
the following theorem.



Theorem 1 ([15]). If
supsupp P=+1 or infsupp P = -1 (1.8)
it holds that infg Jy = —o0 for A > 8.

Proof. We assume supsupp P = +1 without loss of generality. If a > 0 we
have

and hence

Then it holds that

log/ [/ eo‘”} P(da) > log/ /eo‘”P(da)
-1, L/o 1-61 Ja

> log/ e(1=9v 4 Jog P[1 — 6, 1]
Q
for 0 <0 <1 and v € E. Writing w = (1 — §)v, then we obtain

s 1 1 2 w
OB §-muwn2—xlog/9e +Cs

1

_ _]: 2 _ 2 /w
= (1—6)2{2va“2 A(1—6)log Qe }+C’5.

Given A > 87, we have 0 < § < 1 such that A = A(1 — 6)2 > 8x. Then
it follows that
inf J§ = —o0
E

from infg JS\O = —00, Where

1 v
J(v) = §||Vv||§ - /\log/ﬂe . (1.9)

Now we turn to the extremal value for J¢ defined by

A = sup{X | inf J¢ > —oo}.



If A < A, then Jj\i takes minimizer on E which solves

av 1
—sz)\/ a[—i———:IPda, /v=0. 1.10
(-1,1] Joex 19 (de) Q (1-10)

If the minimizer of J/‘\i* on E does not exist, there will be a formation of
singularity of ground states at the critical level of negative inverse temper-
ature A = \,. Furthermore, the profile of its singularity is associated with
the boundedness of the extremal functional indicated by

inf JL > —co. (1.11)

Thus we are addressed by three questions at this moment; prescribing the
exact value )\, boundedness of the extremal functional (1.11), and the exis-
tence or non-existence of the minimizer of Jf\" on E. In fact, Ohtsuka-Suzuki
[10] showed A, = 167 for the neutral case (1.7).

In 2010, Ohtsuka-Ricciardi-Suzuki [9] prescribed the profile of singular
limits of the solution to (1.10), and derived a rough estimate,

Ay > inf st 8n
t = f[—1,0] a?P(da)’ f[o,l] a?P(da)

The exact value of )., however, had been obtained for the discrete case
(1.5) by [17], represented in the dual form (see [19]). Taking the limit of
this inequality, we obtain the following theorem.

Theorem 2 ([14]). Under the assumption of (1.8) it holds that

P(K
A, = inf 8P (Ky) 3 ‘Ki CcI.NsuppP ,, (1.12)
[fK:t aP(doz)]
where I, = [0,1] and I = [-1,0].

To approach (1.11), here we take Ay T A, and the minimizer vj of
infg J)‘\ik. This (v,\) = (vx, M) is a solution to (1.10) and if {v} C E
is compact, then we have (1.11) with a minimizer. If this is not the case we
apply [9] to get the following lemma.

Lemma 1. If the above {vx} C E is non-compact, then passing to a
subsequence we obtain

)‘keavk

fQ ek

dzP(da) — u(dzP(da)) in M (Q x [-1,1])



u(dzP(da)) = | > m(wo, a)dzy(dx) + r(z, a)dz | P(da), (1.13)
TgES

where
m(zg,a) >0, 0<7=r(z,a)¢c L'(Qx[-1,1],dzP(da)
and S =S4 US_ with
Sy = {zo | Iz = 20 s.t. vg(zk) = Loo}

with §S < +o0o. Furthermore, it holds that

8n /[—1’1]m(a:0,a)P(da) _ { /[-1,11 am(:cg,a)P(da)} (1.14)

4 < ny(xzp) = la|m(zg, @) P(da), Vo € Si. (1.15)

It

Henceforth, we assume the non-compactness of the above {vx} C FE
although the property described in Lemma 1 is valid to any non-compact
solution sequence to (1.10). If »r = O we say that the residual vanishing
occurs to (1.13). Then we obtain the following lemma.

Lemma 2 ([20]). Let P(da) be non-atomic, supp P C I,

supfa € Iy | P(10,)) =0} > 5 [ aP(da),
and
1 P(K,)

(J;, aP(d))? ~ ([, aP(da))?

for any K, C I, Nsupp P satisfying K, # 1., P(Ky) < 1. Then it follows
that (1.11) under the assumption of the residual vanishing of {vx} C E
defined above.

The propery (1.11) is valid for the discrete case (1.5) (see [17]). Hence
there may be the other approach of evaluating its bound uniformly. Here
we note that this approach was successful for the sub-critical case [14], and



also that any counter example to (1.11) has not yet be known. Thus there
may be a chance for (1.11) to be proven by a limit process similar to the
sub-critical case. Actually we expect (1.11) for all cases.

In contrast, the argument taken by this paper may have an advantage
of picking up the case of the existence of minimizers. More precisely, if we
get a contradiction from the non-compactness of the above {vx} C E, then
there must be a minimizer to J§ on E. So far, the argument employed here
guarantees (1.11) for both clustered and separated cases of P(da). We have,
furthermore, the existence of minimizer in the latter case. This property
arises even under slight perturbations of J2, defined by (1.9), which may be
surprising because Jg,r itself does not always take any minimizers on F.

This paper is composed of three sections. In §2 we study the residual
vanishing and related properties. Then the notion of partially compact is
introduced and studied in § 3.

2 Residual Vanishing

The proof of the following fact may be useful to observe the role of residual
vanishing for (1.11) to be valid.

Proposition 1. Let P(da) = §1 and define the sequence {vx} C E as
in the previous section with Ay T A.. Then it holds that

JE (uk) = O(1).

Proof. We have A\, = 87 and

(4

Vi 1

Since S = 1 we may assume

v (0) — +o0, / e’ — +o0.
Q

Then & = vk — log / e’ satisfies
Q

/ etk =1, &% — g
Q



Y.Y. Li’s estimate [7] now guarantees

(14 Apesn0x]2)

&x(X) — log 5|+ & (0) +&| <C

for | X| < 1, where X denotes the iso-thermal chart and

— 1
& = —/ €k
1] Ja
Here we have log / e’* = —& and also
Q
1
Vol = (—Auvg,vg) = (e — W’vk) = /\k/(zef’“vk

= M (/Qe‘gkékJrlog/Qe”"> = Ak (/Qeg"fk—g_k

which implies

2

/\_J/\k(vk) = /£k€£k+f_k
k 0

B /Q(fk — &(0)e + (6(0) + &) = O(1).

O

The next observation is the following lemma. It shows what is emerged

from the residual vanishing if P(da) is one-sided.

Lemma 3. Assume supp P C I and the residual vanishing for {vx} C
E defined in the previous section. Then it holds that S = 1 and (1.12) is

attained by K = I, that is,

8

M= U aP@a)y?

Proof. By (1.13) with » = 0 we have

As = Z m(zg,a), P-a.e. a,
ZpES

(2.1)



while the first equality of (1.14) reads

s [ man,0)P(de) = { /1+ am(xo,a)P(da)}z, VneS  (22)

by supp P C I;. Then it holds that

87A, = Z{ /[+ am(xo,a)P(da)}

a)P(da)}2 = { /] ) a/\*P(da)}z (2.3)

IN
—
]
Q
3
8

Iy LoES
and hence
8T
A > 5
{ /, I, aP(da)}
Therefore, (1.12) is attained for Ky = I, and the equality is valid in (2.3)
which means S = 1. O

The following lemma is useful to ensure the residual vanishing.

Lemma 4. Given a relatively open set denoted by Iy C I, we have
r=0, dzP(da)-a.e. on Q2 x I (2.4)

if and only if any k — co admits {k'} C {k} such that
/ e® — 400, P-a.e. o€ . (2.5)
Q

Proof. First, assume (2.5), and take ¢ € C(2\ §). Then it holds that

av,

<1/J, fee:vk> — 0, P-ae ac€l.

1 ' 1
I?l—l/nea”k > exp (W/Qav;c> =1 (2.6)

Here we have

and hence

10



by the dominated convergence theorem, where ¢ € Cy(lp) is arbitrary. Then
it follows that

/1 o (6, 1(,a)) Pda) = 0

from (1.13), which implies (2.4).
If (2.4) is the case, conversely, it holds that

/tp <¢, Lak—> P(da) =0
I fQ ek

for any 0 < 9 € C(Q\ S) and 0 < ¢ € Cy(ly). Passing to a sub-sequence,
we obtain

eavk
<1//, —> — 0, P-ae acly

fQ ek

by a diagonal argument. Here the elliptic regularity to (1.10) combined with
(2.6) guarantees ||vg| Loy = O(1), where w C Q\ S is an open set. Hence

/ et — 400, P-a.e. a€ly
Q

for this subsequence and the proof is complete. O
Now we show the following theorem.

Theorem 3. If supp P C Iy thenr(-,a) =0 a.e. inQ fora >1/2. In
particular, the residual vanishing occurs to {vx} C E defined in the previous
section, provided that supp P C (1/2,1].

Proof. We shall show
/ U 400, Ya> 1/2. (2.8)
0
In fact, (2.2) implies

/ am(zo,a)P(da) > 8r, Vrge S (2.9)
Ly

and the right-hand side of (1.10) for (A, v) = (Ag, vx) takes the limit

/ ap(dzP(da)) — Ar aP(da)

L €2 Jr,

11



12

in M(Q2). Here we have
/ ap(dzP(da)) > Z / am(xg, a)dz, (dz) > 87 Z Oz, (dx)
Iy ToES TpES
by (2.9). Since §S # 0, equation (1.10) implies (2.8) by an argument used
in [1]. O

We conclude this section with the following examples. Henceforth, v, €
E denotes the minimizer of J;{k such that A\ T A..
Example 1. P=1(0; +4,),0<y< 1.

Since 5

us K. ={1,v}
K [(E=mLE + ;
87P(K+) __ ) l6n K, ={1}

2
{Je.aP)} | ¥, Ki={7)
it holds that

160 327 16m, ~v<V2-
e = inf{167, —, ——=} = 2.10
inf {16 42 (1 + )2 {(1372’7;_2, 7>\/__1 ( )

Therefore, the residual vanishing does not occur for v < v2 — 1 by Lemma
3. On the contrary, we have the residual vanishing if ¥ > 1/2 by Theorem
3. Next, (1.13) implies

Ax /I+ @P(da) = /1+ [/ r(z,a)dz + Z m(zo,a) | p(a)P(da) (2.11)

ToES

for any ¢ € C(I,). Regarding supp P = {1,v}, we put mq (o) = m(xo, @)
for « = 1,v. Then we obtain

A > E ml(xo E mA, .’L‘o (2.12)
TgES ZoES

Equality (1.14), on the other hand, is reduced to (2.2), which means
167 (my(xo) + m,,(xo)) = (my(xo) + 'ym.,(azo))Q, Vzg € S. (2.13)

By (2.12)-(2.13) we can conclude §S = 1. We put mg = mq(xo) for
g €S, a=1,v. If y > /2~ 1, then A, —(lif”—)g<167r. There is only one
pair of (m.,m1) with m,,my > 0, satisfying (2.12) and (2.13), that is,
32n
1+

my = me = (2.14)



Then equalities arise in both inequalities in (2.12), which implies 7(-, &) = 0
a.e. for o = 1,7v. Thus we obtain the residual vanishing.

If v < v2 — 1 then we have )\, = 167. If v = V2 - 1, there arise the
cases of (my, m1) = (16m,167) and (m+,m;) = (0,167) from (2.12)-(2.13).
In the former case we have the residual vanishing, while in the latter case we
do not have ry = r(-,7y) = 0 a.e. any more. We may call it mass separation,
regarding m., = 0. If y < v/2 — 1, only (m., m1) = (0, 167) satisfies (2.12)-
(2.13). Hence we always have non-residual vanishing and mass separation.

Assuming m., = 0, we take 0 < R < 1 such that

/ ry <4m, Sp= U B(zo, R)
SR 2o€S

and define v; = v} (z) by

Ay e e 1 /vvzo,
kT2 Joex 1)’ Q"

Then it holds that ||v]||c < C by Brezis-Merle’s inequality [1] and Lemma

1. Now, v,ﬁ = Vg — vZ satisfies

1
k(B Y
2\ [ Vee 19 Q

for Vj = €% > 0. We have readily shown that {v}} is compact in C%2(0),
0 < a <1, and A\; T 167 with ||vi||o T +0o. In particular, it holds that

JE (uk) = Jk(vi) + O(1) for

o A
Ju(w) = 5IV0l S og | Vie'

2

Here Y.Y. Li’s estimate is available even for this case of variable coefficients,
which implies Jj, (vi) = O(1) similarly to Proposition 1. Hence it holds that
(1.11).

Summing up, if v > v/2 — 1 then we have the residual vanishing where
a refined version of Lemma 2 is expected to apply to guarantee (1.11). If
v < v/2—1 there arises mass separtion, and then (1.11) by a modification of
Proposition 1. Although the case v = v/2 — 1 has not yet been settled down,
the above study may suggest the following. First, if P(da) is sufficiently
separated aroud o = 1 and a = 0, mass separation and consequently non-
residual vanishig occur. Then the property (1.11) is reduced to the case that

13



P(da) is clustered near o = 1. Second, if P(da) is clustered near o = 1 then
the residual vanishing occurs, which will make Lemma 2 available. Actually,
the proof of Lemma 2 is based on a kind of Y.Y. Li’s estimate.

We have to note, however, that the weight of two delta functions are
fixed here. Actually, if the positions of two delta functions are sufficiently
clustered and their weights are concentrated at @« = 1, then we have a
different phenomena, which guarantees that Jf‘ is attained.

Example 2. P=761 +(1-7)4,,0<vy<1,0<7<1.

We shall follow the notations used in the previous example. First obser-
vation is that

8m —
g K+ ={L1}

8w P(K4) o= & K, = {1}
{fK+ aP(da)} ﬁ%m Ky ={}

implies

us VT

T v < l+f{
A = { ! 87 > 'rT
w7 Thve

o

except for the critical case v = 1—43_% Inequality (2.12) is still valid, while
(2.13) is replaced by

8m(rmy(xo) + (1 — 7)my(z0)) = (Tma(z0) +v(1 - T)m~(x0))?, Vzo € S.

Then we can confirm §S = 1 similarly.

\/;

Treating the separative case v < ¥ 7 e observe that the line m; =

87 /7 in m,m; plane crosses the curve

8m(rmy + (1 — 7)m,) = (tmy +7(1 — T)m,)? (2.15)
at m, = 0 and m, = 7—,1{12%;) - 8, recalling that v < 1/2 follows from
v < l—j_% Since

Ae > My, M,y

we have mass separation, my = 0, provided that 1< ;21—(%, ie., v <

T

—0+Vo? + 0,0 = = Insuch a case, (1.11) is reduced to the boundedness
of jk(vk), where U € E, ||Uk||co — +00,

1

o) = 3V0lB — pelog [ Vie®. (2.16)

14
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pe T TA = 87, Vi, = e¥% with {vi} compact in C*%(2), 0 < a < 1. This
property is actually the case by the proof of Proposition 1. Hence (1.11)
arises if (7, 7) is in the above region.

In the clustered case

NG
v 2.17
LEgpn VT (217)
it holds that A, = - +(18fT)7) . In this case the curve (2.15) in mym; plane

crosses the line m; = A, once, with the m,-component of the crossing point
denoted by m}. If
(1—7)m; <drm (2.18)

then we apply Brezis-Merle'’s inequality as in Example 1. We obtain u; 1
TAe, {Vk}, Vi > 0, compact in C>%(Q), 0 < a < 1, and ¥, € E satisfying

- Vie%* 1 -
__A et —_— = 0.
Vi = Mk <fg Vit lQ|) ) /ka

Since Ty < 8, however, this {Ux} C E is compact. Therefore, so is true
for the sequence {vx} C E defined in the previous section. Hence infg J/‘\{
is attained.

Finally, we shall show that (2.17) with (2.18) actually arises in the case
of 0<1-7<«1and1/2 <~ < 1. First, given 1/2 < 7 < 1, we have (2.17)
for 0 <1 —7 <« 1. Next, plugging m; = A« into (2.15), we obtain

1T
5 { CES G

T - T)m‘**}Q ’

+(1- T)m:;}

which implies

64m2T 2
T =) {——T+2’)’+ (1 —7)y }
16mym? .
Then it follows that
2y -1

lim m,*y =47
T vy

for each 1/2 <y < 1 and hence (2.18) for 0 < 1 — 7 < 1.



3 Partially Compact

If P is divided into two parts, and one of its total collapse mass is less
than 47 then (1.11) is reduced to that of the other part. We call such a
case the partially compact. It is obvious that mass separation implies both
non-residual vanishing and partially compact. This section is devoted to the
general criterion for blowup vanishing to occur. We deal with the cases of
one-sided and changing-sign P(da), individually.

The first theorem is just a generalization of Example 2.

Theorem 4. Let P = 7Pg+(1—7)P,, where 0 <7 <1,0 <y < <1,
andPs and P, are Borel probability measures on [0,7] and [B, 1], respectively.
If1/2 <y <1 then infg J)‘f‘ is attained, provided that 0 <1 — 7 <K 1.

Proof. Assume the contrary, and let {vx} C E be the non-compact sequence
defined in §1. Then it holds that

8w
{Tf[ﬂl aPg(da)+ (1 -7 f[o 5 &Py (dae)}2

>y / m(zo, @) Pp(dar), ) / o m(xo, o) Py(da) (3.2)

ToES ToES

> (3.1)

and

8 {T/[;M] m(zo, a)Pg(da) + (1 - 7) /[0,«/] m(zo, a)P.,(da)}

2

= {'r/ am(xg, @) Pg(da) + (1 — T)/ am(zg, ) Py(da) 3 (3.3)
(8.1] 0,7]
for each g € S. Fix z¢ € S, and put

X = m(xo, ) Py(da), Y = m(zo, a)Ps(da).
As we have seen, if X < 47 and 7). < 8w, there is a contradiction, and
hence infg J/‘\i* is attained.

First, 7A, < 87 if
r

(r+ (1 —-7)7)?
by (3.1). Here, (3.4) means (2.17). Next, (3.2) and (3.3) imply

<1 (3.4)

8r(tY + (1 -1)X) < (7Y + (1 - I X)?, XY <A

16



Since TA, < 87 is achieved, X is uniquely determined as
(Y + (1 -1 X) = (7Y + (1 —7)vX)?, Y =),.

Hence both 7A, < 87 and X < 47 is achieved if 1/2 < 7 < 1 is given and
0<1-7<«1 asin Example 2. O

The next theorem is concerned with the changing-sign case, where (1.15)
1s used.

Theorem 5. If

P(K)
{Jx. aP(da)}

inf 5 | K+ C I+ N supp P / la|P(da) < cx  (3.5)
Iy

forcc=1landcy =1+ ‘/75 then it holds that S_ = 0.

Proof. Fix xy € S_, and put

Xy = /I lafm(zo, @) P(da) < / m(z0, &) P(da) = Y.

Iy

First, we have A\, > m(zp, @), P-a.e. «, and therefore,
X: < )\*/ || P(dex)
Iy

P(K+)
{Jx. aP(do)} |
/I |a| P(de). (3.6)

= 87 - inf 5 | K+ C I+ Nsupp P

Next, (1.14) implies

2
{/ am(xo,a)P(da)} =(X+ - X_)?
[-1,1]

= 87r/ m(zo, @) P(da) = 87 (Y +Y_)
[‘171]

> 8m(Xy + X_)2 (3.7)

17



Here we have

A < X_ < 8 (3.8)

by (1.15), (3.6), and (3.5) with c_ = 1. Then (3.7) implies

X, > 42+ Vo)1

(see [11]), which contradicts (3.6) and (3.5) with cy = 4(2 + V5)T. O
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